

328154-001

Enabling High-

Performance

Galois-Counter-

Mode on Intel®

Architecture

Processors

 October 2012

White Paper

Erdinc Ozturk

Vinodh Gopal

IA Architects

Intel Corporation

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

2

Executive Summary

Galois-Counter Mode (GCM) is a block cipher mode of operation providing

data security with AES encryption, and authentication with universal

hashing over a binary field (GHASH). The main usage of GCM is in the

IPSec, TLS 1.2 and SSH protocols – mostly for secure network

communications.

With the recent introduction of AES-NI instructions (including

PCLMULQDQ), highly-optimized implementations of GCM mode of

operation were made possible on Intel® Architecture Processors. In this

paper, we describe techniques to improve GCM performance further and

describe a few versions of optimized code with performance data.

 With our recent GCM implementations a single core of an Intel®

Core™ i7 processor 2600 with Intel® HT Technology can compute

GCM Encrypt on a large data buffer at the rate of ~2.2 cycles/byte1.

Further performance improvements are expected in the 4th generation

Intel® Architecture Processors. We expect and encourage the GCM

mode to be more widely adopted due to performance improvements

on Intel® Architecture Processors using the highly optimized code

that we developed.

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

1 Software and workloads used in performance tests may have been optimized for performance

only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.
For configuration and tests used, refer to the Performance section, paragraph 1. For more
information go to: http://www.intel.com/performance.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 3

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

http://www.intel.com/p/en_US/embedded.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

4

Contents

Overview .. 5

Previous Work ... 5

Motivation ... 6

Implementation Details ... 6

Micro-architectural Optimizations ... 6
Further Parallelization ... 6
Optimized Multiplication .. 7
Optimized reduction ... 8

Critical-Path Optimization .. 9
Counter Increment and Shuffle operations 9
AES-CTR Mode Optimization for XOR operations 13

Software Versions .. 14

Performance .. 15

Methodology .. 15
Results ... 16

GCM Adoption .. 18

Conclusion .. 18

Acknowledgements .. 18

References .. 19

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 5

Overview

Galois-Counter Mode (GCM) is a block cipher mode of operation providing

data security with AES encryption, and authentication with universal hashing

over a binary field (GHASH) [2]. GCM is a component of Suite B

Cryptography, which is a selection of cryptographic algorithms that has been

approved by NSA for use by the U.S. Government and specified in NIST

standards and recommendations.

GCM is a relatively new algorithm submitted to the National Institute of

Standards and Technology (NIST) in January 2004. NIST published the

approved GCM specifications in November 2007. The main usage of GCM is in

the IPSec, 802.1AE MACSec, TLS 1.2 and SSH protocols – mostly for secure

network communications.

With the recent introduction of AES-NI instructions (including PCLMULQDQ),

highly-optimized implementations of GCM mode of operation were made

possible on IA processors. In this paper, we describe recent techniques to

improve GCM performance further and describe a few versions of optimized

code with performance data.

We expect and encourage the GCM mode to be more widely adopted due to

performance improvements on IA processors [11] using the highly optimized

code that we developed.

Previous Work

In [4], we described the function stitching method which significantly

improves performance of algorithm pairs running in parallel. Using the

function stitching method, we improve the performance of GCM mode

significantly as encryption and authentication algorithms are performed in

parallel in this mode.

In [1], we described an optimized implementation of GCM combining function

stitching with optimized polynomial large multiplication methods. Optimized

code using those earlier techniques can be found in the Linux kernel (versions

v2.6.38.3 onwards), in the aesni-intel_asm.s file under the /arch/x86/crypto

folder [5]. System-level performance of IPSec using our earlier code was

published in [3].

In this paper, we describe further optimizations for the GCM implementation

via micro-architectural, algorithmic and implementation improvements.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

6

Motivation

The primary motivations for the recent GCM code were to increase

performance for recent and forthcoming IA processors, and to target usages

other than IPSec. In particular, we see the opportunity of wider adoption of

GCM in the SSL/TLS protocols, and developed optimized code for that usage

as well.

In SSL/TLS, the records could be as large as 16KB in size. We also developed

a new API of splitting the pre-computes from the main function, which

enables the best performance when re-using keys across data buffers.

Implementation Details

Since optimized GCM code requires running two separate algorithms in

parallel, the implementation of the algorithm is challenging as it utilizes a

large portion of the architectural resources. Also, efficient implementations of

GCM can reach very high instructions/cycle retirement rate, which makes

every instruction critical for the performance of the algorithm. Even though

some instructions can be taken outside of the critical path, because of micro-

architectural limitations, the instruction might still be in the critical path of

the execution pipeline of the CPU. We realized our optimizations considering

these facts.

The optimizations can be summarized in 2 categories: Micro-architectural

optimizations and Critical-path optimizations.

Micro-architectural Optimizations

AES-NI was first introduced in 2010 and it led to 3-10X improvements [7] in

AES software implementations. As we showed in [1], efficient GCM

implementations were also possible with AES-NI. GCM performance increases

with improved throughput performance of AES-NI, by enabling further

parallelization of the AES portion of GCM algorithm.

Further Parallelization

If the throughput of the AES-NI instructions is improved (including

improvements in PCLMULQDQ instructions), increased parallelization of the

functions becomes feasible. In our previous paper, we implemented GCM

using a by-4 approach, which means that we applied both AES-CTR mode

operations and GHASH on 4 blocks (or 64-byte chunks) at a time. With

increased throughput of the AES-NI, further parallelization is possible and we

could increase the chunk sizes to 128-bytes (a by-8 approach), resulting in a

significant increase in performance.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 7

Optimized Multiplication

In our previous paper, we implemented the 128-bit multiplication

components of the GHASH algorithm using the Karatsuba multiplication

algorithm[6]. With a classical approach, 4 PCLMULQDQ instructions are

required for a 128-bit multiplication. With the Karatsuba Algorithm, this

number drops to 3. Even though the Karatsuba approach decreases the

number of core multiplications, it introduces overhead. For those micro-

architectures where the PCLMULQDQ performance has improved [11] to have

better performance than the Karatsuba overhead, we can implement the 128-

bit multiplications using the classical approach. The difference is shown in

Table 1.

Table 1. Classical Multiplication vs. Karatsuba Multiplication

Classical Approach Karatsuba Approach

movdqa T1, GH

; T1 = a1*b1

pclmulqdq T1, HK, 0x11

movdqa T2, GH

; T2 = a0*b0

pclmulqdq T2, HK, 0x00

movdqa T3, GH

; T3 = a1*b0

pclmulqdq T3, HK, 0x01

; GH = a0*b1

pclmulqdq GH, HK, 0x10

pxor GH, T3

movdqa T3, GH

psrldq T3, 8

pslldq GH, 8

; <T1:GH> holds the result of the carry-less

multiplication of GH by HK

movdqa T1, GH

pshufd T2, GH, 01001110b

pshufd T3, HK, 01001110b

; T2 = (a1+a0)

pxor T2, GH

; T3 = (b1+b0)

pxor T3, HK

; T1 = a1*b1

pclmulqdq T1, HK, 0x11

; GH = a0*b0

pclmulqdq GH, HK, 0x00

; T2 = (a1+a0)*(b1+b0)

pclmulqdq T2, T3, 0x00

pxor T2, GH

pxor T2, T1

movdqa T3, T2

pslldq T3, 8

psrldq T2, 8

; <T1:GH> holds the result of the carry-less

multiplication of GH by HK

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

8

Classical Approach Karatsuba Approach

pxor T1, T3

pxor GH, T2

pxor GH, T3

pxor T1, T2

Optimized reduction

The GHASH algorithm requires modular multiplication of 128-bit numbers and

since the algorithm utilizes a simple modulus polynomial, a shift-based

reduction [9] can be utilized as we did in [1]. An alternative approach uses

the PCLMULQDQ instruction for reduction. As stated before, the performance

depends on the throughput of the PCLMULQDQ instruction. The different

algorithms are shown in Table 2.

Table 2. Shift-based Reduction vs. PCLMULQDQ-based reduction

Shift-based reduction[9] PCLMULQDQ-based reduction

;first phase of the reduction

movdqa T2, GH

movdqa T3, GH

movdqa T4, GH

pslld T2, 31

pslld T3, 30

pslld T4, 25

pxor T2, T3

pxor T2, T4

movdqa T5, T2

psrldq T5, 4

pslldq T2, 12

pxor GH, T2

;second phase of the reduction

movdqa T2,GH

movdqa T3,GH

movdqa T4,GH

psrld T2,1

psrld T3,2

psrld T4,7

pxor T2,T3

pxor T2,T4

pxor T2, T5

pxor GH, T2

;first phase of the reduction

movdqa %%T3, [POLY2 wrt rip]

movdqa %%T2, %%T3

pclmulqdq %%T2, %%GH, 0x01

pslldq %%T2, 8

pxor %%GH, %%T2

;second phase of the reduction

movdqa %%T2, %%T3

pclmulqdq %%T2, %%GH, 0x00

psrldq %%T2, 4

pclmulqdq %%GH, %%T3, 0x01

pslldq %%GH, 4

pxor %%GH, %%T2

pxor %%GH, %%T1

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 9

Shift-based reduction[9] PCLMULQDQ-based reduction

pxor GH, T1

Critical-Path Optimization

The mode of operation of AES in the GCM mode is the counter or CTR mode.

We describe optimizations that improve performance of counter mode

processing by alleviating the critical-path.

Counter Increment and Shuffle operations

The plaintext input to the AES algorithm has to be byte-reflected due to AES

specifications. For a buffer size of n 16-Byte blocks, the algorithm for

encryption portion of GCM is:

Initialize CTR as Y0 (as explained in [2])
for (i = 0 ; i < n ; i++)
{
 CTR = CTR+1
 xmm1 = byte_reflect(CTR) //realized with a pshufb instruction
 xmm1 = AES(xmm1, Key)
 ciphertext = xmm1 XOR plaintext
}

This algorithm is illustrated in Figure 1.

We devised an algorithm that eliminates the need for a pshufb instruction.

We implement the increment of the counter value by adding a 1 to the most

significant byte of this value. The pseudocode is:

for (i = 0 ; i < n ; i++)
{

 CTR = CTR + (1 << (128-8))
 xmm1 = AES(CTR, Key)
 ciphertext = xmm1 XOR plaintext

}

This algorithm is illustrated in Figure 2.

However, we need to implement careful looping to ensure carry propagations

are handled correctly in the 32-bit counter field, which results in the

following:

index = msb(CTR)
for (i = 0 ; i < n ; i++)
{
 if (index == 0xFF)
 CTR = byte_reflect(CTR)
 CTR = CTR+1

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

10

 xmm1 = byte_reflect(CTR) //realized with a pshufb instruction
 xmm1 = AES(xmm1, Key)
 ciphertext = xmm1 XOR plaintext
 index = 0
 else
 CTR = CTR + (1 << (128-8))
 xmm1 = AES(CTR, Key)
 ciphertext = xmm1 XOR plaintext
 index = (index + 1) mod (0x100)
}

This algorithm is illustrated in Figure 3. Note that the fast-path with no

shuffle/byte-reflections is executed the majority of the time, yielding a

performance gain.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 11

Figure 1. AES-CTR mode operations of GCM

Increment IV

State = IV

State =AES(State,
Key)

Ciphertext=
State^Plaintext

Byte-reflect State

01Nonce 000000

02Nonce 000000

00 Nonce’000002

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

12

Figure 2. Optimized main loop of AES-CTR mode of GCM

IV’ = IV’ + 1’

State = IV

State =AES(State,
Key)

Ciphertext=
State^Plaintext

01’
IV’ 00 Nonce’000001

01

00 Nonce’000002

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 13

Figure 3. Optimized loop flow

AES-CTR Mode Optimization for XOR operations

The AES-CTR mode algorithm is implemented as follows:

xmm0 = CTR + 1

aesenc xmm0, key0

…

aesenc xmm0, key9

aesenclast xmm0, key10

pxor xmm0, ptext

Here the last pxor operation is in the critical path of the operation as it has to

wait for the result of the aesenclast instruction. Aesenclast instruction is

defined by the pseudocode in [7]:

 AESENCLAST xmm1, xmm2/m128

Tmp := xmm1;

Round Key := xmm2/m128;

Tmp := Shift Rows (Tmp);

Tmp := SubBytes (Tmp);

xmm1 := Tmp xor Round Key

As can be seen, the last operation in the aesenclast instruction is XOR with

the round key, which is key10 in our implementation. This means that we can

XOR the ptext with key10 before the aesenclast instruction, which will

remove the xor operation from the critical path. The new pseudocode is:

MSB of IV’<0xFF

Flow 1
Flow 2 (no byte-

reflection)

No Yes

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

14

xmm0 = CTR + 1

aesenc xmm0, key0

…

aesenc xmm0, key9

aesenclast xmm0, (key10^ptext)

Similar techniques to improve performance of some modes of AES have been

described in [8].

Software Versions

In [1], we explained the methodology for implementing highly optimized GCM

software by pre-computing certain values related to the Hashkey. To

efficiently parallelize (by-8) GHASH computations, the following values are

precomputed using Hashkey H:

H2, H3, H4, H5, H6, H7, H8

Since Hashkey H is directly related to the AES key used for GCM and the

same key can be used for multiple GCM computations in some application

contexts, we separated the pre-compute operations as a separate function.

This resulted in 3 functions: precompute, encrypt and decrypt.

For each of the functions mentioned above, three versions of software are

available in [6], which we refer to as:

1. gcm_sse.asm: This version uses the SSE instruction set and is

optimized for 1st generation Core architecture. The Karatsuba

Algorithm is used for multiplication and shift-based reduction is used

for the 128-bit reduction.

2. gcm_gen2.asm: This version uses the AVX1 instructions and is

optimized for 2nd generation Core architecture. Algorithms used for the

implementation are identical to the SSE version.

3. gcm_gen4.asm: This version also uses the AVX1 instruction set.

However, Classical Multiplication Algorithm is used for multiplication

and multiplication-based reduction is used for the 128-bit reduction.

The applications that can re-use keys over many data buffers should call the

precompute function once to generate the expanded AES key schedule and

the GHASH precomputed values. The data buffers are then processed using

either the encrypt or decrypt functions that also take in the precomputed

values as additional input.

Applications that cannot re-use keys across many data buffers will need to

call the precompute function once for every buffer encrypted or decrypted.

However for such usages, once could create a combined function that

includes precomputation with slightly better performance, utilizing the

stitching method to parallelize precompute and main functions as much as

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 15

possible. A combined function would also be beneficial when there is no key

re-use across small data buffers, because in those cases, we could selectively

compute as many precompute values as needed; thus, based on the length of

the data buffer, the function could determine whether a by-4 or a by-8

method is appropriate and then compute only the required constants.

Note that the gcm_gen4 code has been optimized to run on the 4th

generation processors and beyond, and should not be used on the previous

generations (such as the 2nd generation), as there are better performing

versions designed for the previous generations.

For the IPSec usage, it would be better to upgrade from our earlier code in

[5] to our new by-8 SSE code, especially if the application context is being

modified to cache key material and re-use them across data buffers.

Performance

The performance results provided in this section were measured on widely

available Intel® Processors. The SSE version was run on an Intel® Xeon®

processor X5670 and Intel® Core™ i7 processor 2600, and the AVX1 versions

were run on an Intel® Core™ i7 processor 2600. In each case the

performance of 512, 1024, 2048, 4096 and 8192-Byte buffer sizes was

measured. The tests were run with Intel® Turbo Boost Technology off.

Methodology

We measured the performance of the functions on data buffers of different

sizes. We called the functions on the same buffer a large number of times,

collecting many timing measurements. For each data buffer, we then sorted

the timings, discarded the top and bottom 1/8th samples and then the

largest/smallest quarter, and averaged the remaining quarter.

The timing was measured using the rdtsc() function which returns the

processor time stamp counter (TSC). The TSC is the number of clock cycles

since the last reset. The ‘TSC_initial’ is the TSC recorded before the function

is called. After the function is complete, the rdtsc() was called again to record

the new cycle count ’TSC_final’. The effective cycle count for the called

routine is computed using

of cycles = (TSC_final-TSC_initial).

A large number of such measurements were made for each data buffer and

then averaged as described above to get the number of cycles for that buffer

size. Finally, that value was divided by the buffer size to express the

performance in cycles per byte.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

16

Results

We show performance in cycles/byte for varying sizes of input data buffers in

Table 3. The code we developed has not been optimized for small data buffer

performance.

Table 3. Performance data (cycles/byte) for GCM Encrypt and Decrypt
functions2

SSE-ENCRYPT 512 1024 2048 4096 8192

X5670

single
thread 3.37 3.14 3.03 2.99 2.97

HT 3.04 2.88 2.80 2.77 2.75

i7 2600

single
thread 3.02 2.84 2.75 2.71 2.69

HT 2.59 2.45 2.38 2.34 2.33

SSE-DECRYPT 512 1024 2048 4096 8192

X5670

single
thread 3.42 3.21 3.11 3.05 3.04

HT 3.07 2.91 2.84 2.80 2.79

i7 2600

single
thread 3.05 2.89 2.81 2.77 2.75

HT 2.65 2.51 2.45 2.41 2.39

AVX-GEN2-ENCRYPT 512 1024 2048 4096 8192

i7 2600

single
thread 2.96 2.78 2.71 2.65 2.68

HT 2.52 2.37 2.30 2.26 2.24

2 Software and workloads used in performance tests may have been optimized for performance
only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.
For configuration and tests used, refer to the Performance section, paragraph 1. For more
information go to: http://www.intel.com/performance.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 17

AVX-GEN2-DECRYPT 512 1024 2048 4096 8192

i7 2600

single
thread 2.94 2.74 2.67 2.61 2.59

HT 2.52 2.36 2.30 2.25 2.23

AVX-GEN4-ENCRYPT 512 1024 2048 4096 8192

i7 2600

single
thread 3.67 3.48 3.39 3.34 3.32

HT 3.06 2.91 2.84 2.80 2.78

AVX-GEN4-DECRYPT 512 1024 2048 4096 8192

i7 2600

single
thread 3.70 3.48 3.38 3.34 3.31

HT 3.06 2.90 2.83 2.79 2.77

It can be seen that HT brings ~10% speedup on X5670 and ~20% on i7

2600. Decrypt is slightly lower performance than encrypt by ~2%. The best

performance can be seen for large buffers on the i7 2600, using the AVX-

GEN2 Encrypt code – a single core can achieve a performance of 2.24

Cycles/Byte.3

3 Software and workloads used in performance tests may have been optimized for performance

only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.
For configuration and tests used, refer to the Performance section, paragraph 1. For more
information go to: http://www.intel.com/performance.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

18

GCM Adoption

GCM adoption has not been very fast to-date, due to its recent

standardization and the fact that Cipher Suites were added to TLS 1.2 very

recently (August 2008). Some facts to note:

 Only one web browser today supports GCM (IE 9 on Windows 7, where

GCM is not default and is the 10th choice on the cipher-suite list).

 iOS does not support GCM, despite supporting TLS 1.2 by default.

NSS does not support TLS 1.2, which impacts the Chrome and Firefox

browsers. TLS 1.2 is not widely used today, but we are hoping to see

increased adoption with OpenSSL. Given the performance on IA Processors,

we believe the ecosystem should increase the ramp of GCM for authenticated

encryption.

A recent draft standard in [10] proposes an update to the Cryptographic

Algorithm Implementation Requirements for Encapsulating Security Payload

(ESP) and Authentication Header (AH) for the IPSec protocol, and adds usage

guidance to help in the selection of these algorithms. Notably it emphasizes

and elevates the importance of AES-GCM in IPSec.

Conclusion

In this paper we described three highly-optimized GCM implementations

optimized for Intel® Architecture processors. We described various algorithm

and implementation optimizations we used in this GCM code, and presented

performance data. On the 2nd generation Intel® Core™ i7 processor 2600, a

single core can achieve GCM Encrypt performance of 2.24 Cycles/Byte on

large data buffers.4

Acknowledgements

We thank Wajdi Feghali, Jim Guilford, Gilbert Wolrich and Sean Gulley for

their substantial contributions.

4 Software and workloads used in performance tests may have been optimized for performance

only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.
For configuration and tests used, refer to the Performance section, paragraph 1. For more
information go to: http://www.intel.com/performance.

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 19

References

[1] Vinodh Gopal, Erdinc Ozturk, Wajdi Feghali, Jim Guilford, Gil Wolrich,

Martin Dixon. Optimized Galois-Counter-Mode Implementation on Intel®

Architecture Processors. Intel White Paper, August 2010.

[2] David A. McGrew, John Viega. The Galois/Counter Mode of Operation

(GCM).

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/

gcm-spec.pdf.

[3] Adrian Hoban. Using Intel® AES New Instructions and PCLMULQDQ to

Significantly Improve IPSec Performance on Linux. Intel White Paper, August

2010.

[4] Vinodh Gopal, Wajdi Feghali, Jim Guilford, Erdinc Ozturk, Gil Wolrich,

Martin Dixon, Max Locktyukhin, Maxim Perminov. Fast Cryptographic

Computation on IA processors via Function Stitching. Intel White Paper,

April, 2010.

[5] GCM Linux patch

http://lkml.indiana.edu/hypermail/linux/kernel/1010.1/01087.html

[6] Optimized AES GCM Software

http://www.intel.com/p/en_US/embedded/hwsw/software/crc-

license?id=6386&iid=6387

[7] Intel® Advanced Encryption Standard (AES) New Instructions Set

http://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-

22-v01.pdf

[8] Manley, R., Gregg, D. “A program generator for Intel AES-NI

instructions.” in: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol.

6498, pp. 311–327. Springer (2010)

[9] Intel Corporation: Intel Carry-Less Multiplication Instruction and its Usage

for Computing the GCM Mode — Rev 2 (2010)

[10] D McGrew, W Feghali “Cryptographic Algorithm Implementation

Requirements and Usage Guidance for Encapsulating Security Payload (ESP)

and Authentication Header (AH)” http://www.ietf.org/internet-drafts/draft-

mcgrew-ipsec-me-esp-ah-reqts-00.txt

[11] Intel’s Haswell Architecture Analyzed

http://www.anandtech.com/show/6355/intels-haswell-architecture/8

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-galois-counter-mode-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-galois-counter-mode-paper.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://download.intel.com/design/intarch/papers/324238.pdf
http://download.intel.com/design/intarch/papers/324238.pdf
http://download.intel.com/design/intarch/PAPERS/323686.pdf
http://download.intel.com/design/intarch/PAPERS/323686.pdf
http://lkml.indiana.edu/hypermail/linux/kernel/1010.1/01087.html
http://www.intel.com/p/en_US/embedded/hwsw/software/crc-license?id=6386&iid=6387
http://www.intel.com/p/en_US/embedded/hwsw/software/crc-license?id=6386&iid=6387
http://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
http://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
http://www.ietf.org/internet-drafts/draft-mcgrew-ipsec-me-esp-ah-reqts-00.txt
http://www.ietf.org/internet-drafts/draft-mcgrew-ipsec-me-esp-ah-reqts-00.txt
http://www.anandtech.com/show/6355/intels-haswell-architecture/8

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

20

The Intel® Embedded Design Center provides qualified developers with web-

based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

http://www.intel.com/p/en_US/embedded.

Authors

Erdinc Ozturk and Vinodh Gopal are IA Architects with the Intel
Architecture Group at Intel Corporation.

Acronyms

IA Intel® Architecture

http://www.intel.com/p/en_US/embedded

Enabling High-Performance Galois-Counter-Mode on Intel® Architecture Processors

 21

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S
PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD
INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY,
ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT
OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR

WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information

here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request. Contact your local Intel sales office or your distributor to obtain the latest

specifications and before placing your product order. Copies of documents which have an order

number and are referenced in this document, or other Intel literature, may be obtained by calling 1-

800-548-4725, or go to: http://www.intel.com/design/literature.htm

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology

and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending

on the specific hardware and software you use. For more information including details on which

processors support HT Technology, see here.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS,

operating system, device drivers and applications enabled for Intel® 64 architecture. Performance

will vary depending on your hardware and software configurations. Consult with your system vendor

for more information.

Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology

capability. Intel Turbo Boost Technology performance varies depending on hardware, software and

overall system configuration. Check with your PC manufacturer on whether your system delivers Intel

Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost.

Intel, Intel Turbo Boost Technology, Intel Hyper Threading Technology, Intel Xeon are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012 Intel Corporation. All rights reserved.

§

http://www.intel.com/design/literature.htm
http://www.intel.com/technology/turboboost

