
Intel® Platform Innovation Framework
for EFI

System Management Mode
Core Interface Specification

(SMM CIS)

Version 0.9

September 16, 2003

System Management Mode
Core Interface Specification (SMM CIS)

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, Itanium, Pentium, and MMX are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright 2000–2003, Intel Corporation.

Intel order number xxxxxx-001

Version 0.9 September 2003 iii

Revision History

Revision Revision History Date

0.9 First public release. 9/16/03

System Management Mode
Core Interface Specification (SMM CIS)

iv September 2003 Version 0.9

Version 0.9 September 2003 v

Contents

1 Introduction ..9
Overview..9
Rationale ...9
Organization of the SMM CIS ..9
Conventions Used in This Document...10

Data Structure Descriptions ..10
Protocol Descriptions ..11
Procedure Descriptions...12
Pseudo-Code Conventions ...12
Typographic Conventions ...13

2 Overview ...15
Definition of Terms...15
System Management Mode (SMM) ...16
SMM on the Itanium® Processor Family..17
System Management System Table (SMST) ...17
SMM Services..18

SMM and Available Services...18
SMM Services...18
SMM Library (SMLib) Services..18

SMM Drivers..19
Loading Drivers into SMM...19
IA-32 SMM Drivers..19
Itanium® Processor Family SMM Drivers..19

SMM Protocols ..20
SMM Protocols..20
SMM Protocols for IA-32 ...20
SMM Protocols for Itanium®-Based Systems ...21

SMM Infrastructure Code and Dispatcher ..21
SMM Infrastructure Code and Dispatcher ...21

Initializing the SMM Phase...21
Initializing the SMM Phase..21
Processor Execution Mode ...22
Access to Platform Resources ..23

3 System Management System Table (SMST) ...25
Introduction..25
SMM Handler Entry Point ..26

EFI_SMM_HANDLER_ENTRY_POINT ..26
EFI Table Header ..28

EFI_TABLE_HEADER ..28
System Management System Table (SMST) ...29

EFI_SMM_SYSTEM_TABLE ..29
SMM Configuration Table ..33

EFI_CONFIGURATION_TABLE ...33

System Management Mode
Core Interface Specification (SMM CIS)

vi September 2003 Version 0.9

4 Services - SMM...35
Introduction..35
SMM Install Configuration Table ..36

SmmInstallConfigurationTable()..36
SMM I/O Services..38

SMM CPU I/O Overview ...38
SmmIo() ...39
EFI_SMM_CPU_IO_INTERFACE.Mem() ...40
EFI_SMM_CPU_IO_INTERFACE.Io() ..42

SMM Runtime Memory Services..44
SmmAllocatePool() ...44
SmmFreePool()...46
SmmAllocatePages() ..47
SmmFreePages()..49

SMM CPU Information Records...50
SMM CPU Information Records Introduction...50
EFI_SMM_CPU_SAVE_STATE..51

EFI_SMU_CPU_SAVE_STATE..51
IA-32 ..52
Itanium® Processor Family...54

EFI_SMM_OPTIONAL_FP_SAVE_STATE...57
EFI_SMM_FLOATING_POINT_SAVE_STATE ..57
IA-32 ..58
Itanium® Processor Family...59

5 Services - SMM Library (SMLib) ...61
Introduction..61
Status Codes Services...61

EFI_SMM_STATUS_CODE_PROTOCOL..61
EFI_SMM_STATUS_CODE_PROTOCOL.ReportStatusCode()62

6 SMM Protocols ...67
Introduction..67
EFI SMM Base Protocol...67

EFI_SMM_BASE_PROTOCOL...67
EFI_SMM_BASE_PROTOCOL.Register() ..70
EFI_SMM_BASE_PROTOCOL.UnRegister()..73
EFI_SMM_BASE_PROTOCOL.Communicate() ...74
EFI_SMM_BASE_PROTOCOL.RegisterCallback() ..76
EFI_SMM_BASE_PROTOCOL.InSmm() ..78
EFI_SMM_BASE_PROTOCOL.SmmAllocatePool() ...79
EFI_SMM_BASE_PROTOCOL.SmmFreePool()...81
EFI_SMM_BASE_PROTOCOL.GetSmstLocation() ..82

SMM Access Protocol..83
EFI_SMM_ACCESS_PROTOCOL ...83
EFI_SMM_ACCESS_PROTOCOL.Open() ...85

Contents

Version 0.9 September 2003 vii

EFI_SMM_ACCESS_PROTOCOL.Close() ...86
EFI_SMM_ACCESS_PROTOCOL.Lock()...87
EFI_SMM_ACCESS_PROTOCOL.GetCapabilities() ..88

SMM Control Protocol..91
EFI_SMM_CONTROL_PROTOCOL...91
EFI_SMM_CONTROL_PROTOCOL.Trigger() ..93
EFI_SMM_CONTROL_PROTOCOL.Clear() ...94
EFI_SMM_CONTROL_PROTOCOL.GetRegisterInfo()...95

7 SMM Child Dispatch Protocols...97
Introduction..97
SMM Software Dispatch Protocol ..97

EFI_SMM_SW_DISPATCH_PROTOCOL ..97
EFI_SMM_SW_DISPATCH_PROTOCOL.Register() ..99
EFI_SMM_SW_DISPATCH_PROTOCOL.UnRegister() ...102

SMM Sx Dispatch Protocol ..103
EFI_SMM_SX_DISPATCH_PROTOCOL ...103
EFI_SMM_SX_DISPATCH_PROTOCOL.Register() ...104
EFI_SMM_SX_DISPATCH_PROTOCOL.UnRegister() ..107

SMM Periodic Timer Dispatch Protocol ...108
EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL ..108
EFI_SMM_PERIODIC_TIMER_DISPATCH_ PROTOCOL.Register().......................109
EFI_SMM_PERIODIC_TIMER_DISPATCH_ PROTOCOL.UnRegister()112
EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL.GetNextShorterInterval() 113

SMM USB Dispatch Protocol ...114
EFI_SMM_USB_DISPATCH_PROTOCOL...114
EFI_SMM_USB_DISPATCH_PROTOCOL.Register() ..115
EFI_SMM_USB_DISPATCH_PROTOCOL.UnRegister()..118

SMM General Purpose Input (GPI) Dispatch Protocol ...119
EFI_SMM_GPI_DISPATCH_PROTOCOL ..119
EFI_SMM_GPI_DISPATCH_PROTOCOL.Register()..120
EFI_SMM_GPI_DISPATCH_PROTOCOL.UnRegister() ...123

SMM Standby Button Dispatch Protocol ..124
EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL.....................................124
EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL.Register()125
EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL.UnRegister()................128

SMM Power Button Dispatch Protocol ...129
EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL ..129
EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL.Register()........................130
EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL.UnRegister()133

8 Interactions with PEI, DXE, and BDS.. 135
Introduction..135
Verification (Security)...135

Introduction ...135
Execution ..135
SMM Chain of Trust ..135

System Management Mode
Core Interface Specification (SMM CIS)

viii September 2003 Version 0.9

PEI Support ...135
Introduction ...135
EFI_HOB_SMRAM_DESCRIPTOR_BLOCK ..136

SMM and DXE...138
SMM-to-DXE/EFI Communication...138

9 Appendix .. 139
Introduction..139
SMM ICHn Dispatch Protocol ..139

SMM ICHn Dispatch Protocol..139
EFI_SMM_ICHN_DISPATCH_PROTOCOL..140
EFI_SMM_ICHN_DISPATCH_PROTOCOL.Register() ...141
EFI_SMM_ICHN_DISPATCH_PROTOCOL.UnRegister() ..145

Processor-Specific Information ..146
Introduction ...146
Multiprocessor Issues ...146
Register Summaries..146

IA-32 ..146
Itanium® Processor Family...149

Figures
Figure 2-1. Framework SMM Architecture ..17
Figure 2-2. Published Protocols for IA-32 Systems...20
Figure 2-3. Published Protocols for Itanium-Based Systems ..21
Figure 2-4. SMRAM Relationship to Main Memory ...22
Figure 9-1. General IA-32 Register Usage..148
Figure 9-2. SMM IA-32 Register Usage ..149

Tables
Table 1-1. Organization of the SMM CIS ..10
Table 4-1. Defined CPU Information Records...50
Table 9-1. IA-32 Register Summary..147
Table 9-2. Itanium® Processor Family Register Summary..149

Version 0.9 September 2003 9

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
System Management Mode (SMM) phase of the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the “Framework”). This SMM Core Interface Specification (CIS) does the
following:

• Describes the basic components of SMM
• Provides code definitions for services and functions that are architecturally required by the

Intel® Platform Innovation Framework for EFI Architecture Specification
• Describes the interactions between SMM and other phases in the Framework
• Describes processor-specific details in SMM mode for IA-32 and Intel® Itanium® processors

See Organization of the SMM CIS for more information.

Rationale
Certain artifacts of the hardware and platform design require programmatic workarounds. This
interface design aims to provide a clean mechanism for installing these modules. Possible
candidates include the following:

• ACPI S3 reserve handler
• Enable/disable ACPI mode
• Power button support while not in ACPI mode
• Error logging for ECC/PERR/SERR in IA-32
• Protected flash writes on some IA-32 platforms
• Century rollover bug workaround

Organization of the SMM CIS
This SMM Core Interface Specification (CIS) is organized as listed in the table below. Because the
SMM is just one component of a Framework-based firmware solution, there are a number of
additional specifications that are referred to throughout this document.

• For references to other Framework specifications, click on the hyperlink in the page or navigate
through the table of contents (TOC) in the left navigation pane to view the referenced
specification.

• For references to non-Framework specifications, see References in the Interoperability and
Component Specifications help system.

System Management Mode
Core Interface Specification (SMM CIS)

10 September 2003 Version 0.9

Table 1-1. Organization of the SMM CIS

Book Description

Overview Describes the major components of SMM, including
the System Management System Table (SMST),
System Management Library (SMLib) services, and
SMM protocols.

System Management System Table (SMST) Defines the data structure that provides access to
the services that can be used while in SMM.

Services - SMM Defines a set of standard functions that a
conformant SMM implementation will publish for use
by SMM drivers.

Services - SMM Library (SMLib) Defines a set of worker routines that are usable by a
large class of drivers in SMM.

SMM Protocols Defines a series of protocols that abstract the
loading of DXE drivers into SMM, manipulation of
the System Management RAM (SMRAM) apertures,
and generation of System Management Interrupts
(SMIs).

SMM Child Dispatch Protocols Defines a series of protocols that abstract
installation of handlers for a chipset-specific SMM
design.

Interactions with PEI, DXE, and BDS Describes issues related to image verification and
interactions between SMM and other Framework
phases.

Appendix Provides additional definitions of nonarchitectural
SMM protocols and processor-specific information for
IA-32 and Itanium® processors.

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®

processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

Introduction

Version 0.9 September 2003 11

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.
Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

System Management Mode
Core Interface Specification (SMM CIS)

12 September 2003 Version 0.9

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Introduction

Version 0.9 September 2003 13

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

System Management Mode
Core Interface Specification (SMM CIS)

14 September 2003 Version 0.9

Version 0.9 September 2003 15

2
Overview

Definition of Terms
The following terms are used in the SMM Core Interface Specification (CIS). See Glossary in the
master help system for additional definitions.

Communicate

Intermodule communication. Mechanism for posting data to an SMM handler. See
EFI_SMM_BASE_PROTOCOL.Communicate().

C-SEG

Compatibility Segment. SMRAM that is located at address 0xA0000 through 0xBFFFF,
which is the location of the VGA frame buffer, below the 1 MB address.

GMCH

Graphics Memory Controller Hub.

HMAC

Hashed Message Authentication Code.

H-SEG

High Segment. SMRAM that is the same physical memory as C-SEG (i.e., frame buffer) but
is remapped by the chipset to appear to the processor at address 0xFEFFA0000 through
0xFEFFBFFF.

ICH

I/O Controller Hub.

IP

Instruction pointer.

IPI

Interprocessor Interrupt. This interrupt is the means by which multiple processors in a system
or a single processor can issue APIC-directed messages for communicating with self or other
processors.

MCH

Memory Controller Hub.

MTRR

Memory Type Range Register.

PMI

Platform Management Interrupt. Maskable, level-activated interrupt on the Itanium®
processor family.

System Management Mode
Core Interface Specification (SMM CIS)

16 September 2003 Version 0.9

RSM

Resume. On IA-32, processor instruction to exit from System Management Mode (SMM).

SBE

Single-Bit Error.

SMI

System Management Interrupt. Nonmaskable interrupt on IA-32 processors that evolves the
process to SMM.

SMM

System Management Mode. A processor mode on IA-32 processors, in addition to the
following modes: real, protected, and V86.

SMM handler

A DXE runtime driver that has relocated itself into SMRAM via the
EFI_SMM_BASE_PROTOCOL.Register() function.

SMST

System Management System Table. Hand-off to handler.

T-SEG

Top Segment. It is physical memory that is reserved for SMRAM at the top of physical
memory below 4 GB. The physical start and processor view of this memory are identical.

System Management Mode (SMM)
System Management Mode (SMM) on IA-32 processors is a mode of operation that is distinct from
the flat-model, protected-mode operation of the Driver Execution Environment (DXE) and Pre-EFI
Initialization (PEI) phases. SMM is defined to be a real-mode environment with 32-bit data access
and is activated in response to an interrupt type or using the System Management Interrupt (SMI)
pin. The interesting point about SMM is that it is an OS-transparent mode of operation and is a
distinct operational mode. It can coexist within an OS runtime.

The Framework SMM design provides a mechanism to load DXE runtime drivers into SMM. The
SMM infrastructure code will be loaded by an Boot Service driver and then does the following:

• Prepares an execution environment that relocates itself to the appropriate SMRAM location.
• Trampolines into flat-model protected mode.
• Supports receiving image loading requests from Boot Service agents. The SMM infrastructure

code also supports receiving messages from both Boot Service and Runtime agents.

The implementation of the SMM phase is more dependent on the processor architecture than any
other phase.

The figure below shows the Framework SMM architecture.

Overview

Version 0.9 September 2003 17

Power on

Security
(SEC)

[. . Platform initialization . .]

Pre-EFI
Initialization

(PEI)

Boot Device
Selection
(BDS)

[.. . OS boot . .]

Transient
System Load

(TSL)

Shutdown

Afterlife
(AL)

Runtime
(RT)

CPU
Init

Chipset
Init

Board
Init

ve
ri
fy

SMM

Constructor

Pre
Verifier

DXE
Dispatcher

Boot Services
Runtime Services

security

SMM Intrinsic
Services SMM Handler

Driver Execution
Environment

(DXE)

Figure 2-1. Framework SMM Architecture

SMM on the Itanium® Processor Family
Similarly, for the Itanium® processor family, there is a mode of firmware operation that is invoked
by the Platform Management Interrupt (PMI). The firmware, in response to the PMI pin or interrupt
type, will gain control in physical mode.

This physical mode of operation is not a unique processor mode as SMM is on IA-32, but for
purposes of this description, "SMM" will be used to describe the operational regime for both IA-32
and Itanium processors. The characteristic that PMI-based firmware on Itanium processors and
SMI-based firmware on IA-32 share is the OS-transparency.

System Management System Table (SMST)
The chief mechanism for passing information and enabling activity in the SMM handler is the
System Management System Table (SMST).

This table provides access to the SMST-based services, called SMM Services, which drivers can
use while executing within the SMM context. The address of the SMST can be ascertained from the
EFI_SMM_BASE_PROTOCOL.GetSmstLocation() service.

System Management Mode
Core Interface Specification (SMM CIS)

18 September 2003 Version 0.9

SMM Services

SMM and Available Services
There are two types of services available during SMM:

• SMM Services
• SMM Library (SMLib) Services

NOTE
The SMM architecture does not support the execution of handlers written to the EFI Byte Code
(EBC) specification.

SMM Services
The model of SMM in the Framework will have constraints similar to those of EFI runtime drivers.
Specifically, the dispatch of drivers in SMM will not be able to use core protocol services. There
will be SMST-based services, called SMM Services, that the drivers can access using an SMM
equivalent of the EFI System Table, but the core protocol services will not necessarily be available
during runtime.

Instead, the full collection of EFI Boot Services and EFI Runtime Services are available only
during the driver load or "constructor" phase. This constructor visibility is useful in that the SMM
driver can leverage the rich set of EFI services to do the following:

• Marshall interfaces to other EFI services.
• Discover EFI protocols that are published by peer SMM drivers during their constructor phases.

This design makes the EFI protocol database useful to these drivers while outside of SMM and
during their initial load within SMM.

The SMST-based services that are available include the following:

• A minimal, blocking variant of the device I/O protocol
• A memory allocator from SMM memory

These services are exposed by entries in the System Management System Table (SMST).

SMM Library (SMLib) Services
Additional services in the SMM Library (SMLib) are exposed as conventional EFI protocols that
are located during the constructor phase of the SMM driver in SMM. For example, the status code
equivalent in SMM is simply an EFI protocol whose interface references an SMM-based driver's
service. Other SMM drivers locate this SMM-based status code and can use it during runtime to
emit error or progress information.

Overview

Version 0.9 September 2003 19

SMM Drivers

Loading Drivers into SMM
The model for loading drivers into SMM is that the DXE SMM runtime driver will have a
dependency expression that includes at least the EFI_SMM_BASE_PROTOCOL. This dependency
is necessary because the DXE runtime driver that is intended for SMM will use the
EFI_SMM_BASE_PROTOCOL to reload itself into SMM and rerun its entry point in SMM. In
addition, other SMM-loaded protocols can be placed in the dependency expression of a given SMM
DXE runtime driver. The logic of the DXE Dispatcher—namely, checking if the GUIDs for the
protocols are present in the protocol database—can then be used to determine if the driver can be
loaded.

Once loaded into SMM, the DXE SMM runtime driver can use a very limited set of services. The
driver can use EFI Boot Services while in its constructor entry point that runs in the boot service
space and SMM. In this second entry point in SMM, the driver can do several things:

• Register an interface in the conventional protocol database to name the SMM-resident
interfaces to future-loaded SMM drivers

• Register with the SMM infrastructure code for a callback in response to an SMI-pin activation
or an SMI-based message from a boot service or runtime agent (i.e., outside-of-SMM code)

After this “constructor” phase in SMM, however, the environmental constraints are the same as
other runtime drivers. Specifically, the SMM driver should not rely upon any other boot services
because the operational mode of execution can migrate away from these services (the
ExitBootServices() call is asynchronous to invoking the SMM infrastructure code). Several
EFI Runtime Services can have the bulk of their processing migrated into SMM, and the runtime-
visible portion would simply be a proxy that uses the EFI_SMM_BASE_PROTOCOL to “thunk” or
call back into SMM to implement the services. Having a proxy allows for a model of sharing error-
handling code, such as flash access services, with runtime code, such as the EFI Runtime Services
GetVariable() or SetVariable().

IA-32 SMM Drivers
The IA-32 runtime drivers are not callable from SMM because of the SetVirtualAddress()
action that is taken upon the image. As such, code that needs to be shared between SMM and EFI
runtime should migrate into SMM.

Itanium® Processor Family SMM Drivers
The runtime drivers for the Itanium® processor family are callable from a Platform Management
Interrupt (PMI) because each is a variant of a position-independent code (PIC) runtime driver.

System Management Mode
Core Interface Specification (SMM CIS)

20 September 2003 Version 0.9

SMM Protocols

SMM Protocols
The system architecture of the SMM driver is broken into the following two pieces:

• SMM Base Protocol
• SMM Access Protocol

The SMM Base Protocol will be published by a processor driver and is responsible for the
following:

• Initializing the processor state
• Registering the handlers

The SMM Access Protocol understands the particular enable and locking mechanisms that an IA-32
memory controller might support while executing in SMM. For the Itanium® processor family, the
SMM Access Protocol is not needed because the PMI does not engender a unique processor
execution mode. As a result, there is no possibility of the memory complex having any modal
behavior.

The following topics show the SMM protocols that are published for IA-32 and Itanium®-based
systems.

SMM Protocols for IA-32
The following figure shows the SMM protocols that are published for an IA-32 system.

Graphics
Memory
Controller

Hub (GMCH)
Driver

EFI_SMM_ACCESS_PROTOCOL
DXE Driver for
Pentium® 4
Processor

EFI_SMM_BASE_PROTOCOL

I/O
Controller
Hub (ICH)
Driver

EFI_SMM_CONTROL_PROTOCOL

Figure 2-2. Published Protocols for IA-32 Systems

Overview

Version 0.9 September 2003 21

SMM Protocols for Itanium®-Based Systems
The following figure shows the SMM protocols that are published for Itanium®-based systems.

DXE Driver for
Itanium®
Processor

EFI_SMM_BASE_PROTOCOL

I/O
Controller
Hub (ICH)
Driver

EFI_SMM_CONTROL_PROTOCOL

Figure 2-3. Published Protocols for Itanium-Based Systems

SMM Infrastructure Code and Dispatcher

SMM Infrastructure Code and Dispatcher
The SMM infrastructure code centers around the SMM Dispatcher. The SMM Dispatcher’s job is
to hand control to the SMM handlers in an orderly manner. The SMM infrastructure code also
assists in SMM-to-SMM communication. The SMM handles are PE32+ images that have an image
type of EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER.

See System Management System Table (SMST) for more information on the mechanism for
passing information and enabling activity in the SMM handler.

Initializing the SMM Phase

Initializing the SMM Phase
The SMM driver for the Framework is essentially a registration vehicle for dispatching drivers in
response to the following:

• IA-32: System Management Interrupts (SMIs)
• Itanium® processor family: Platform Management Interrupts (PMIs)

Throughout this specification, the term platform management is synonymous with system
management to avoid using "xMI" and "xMM" monikers.

System Management Mode
Core Interface Specification (SMM CIS)

22 September 2003 Version 0.9

The figure below shows the relationship of System Management RAM (SMRAM) to main memory
in IA-32.

Conventional Memory

System Management Mode (SMM)

SMRAM

Real/Protected/V86 Mode

IA-32

Figure 2-4. SMRAM Relationship to Main Memory

Processor Execution Mode
SMM is entered asynchronously to the main program flow. SMM was originally designed to be
opaque to the operating system and provide a transparent power management facility.

In IA-32, SMM is a processor operating mode in the same fashion as V86, real mode, and protected
mode. With power-management policy beyond the Advanced Power Management (APM) era, such
as ACPI, the original intent of the processor mode became less important. However, in the interim
period, additional uses of SMM have been introduced. These alternate uses of SMM that are
initiated by preboot agents include the following:

• Workarounds for chipset errata
• Error logging
• Platform security

A System Management Interrupt (SMI) can be entered by activating the SMI logic pin on the
baseboard or using the local APIC.

In Itanium® architecture, there is no distinguished processor mode for the manageability
interruption. Instead, the processor supports a Platform Management Interrupt (PMI), which is a
maskable interruption. PMI can also be entered using a message on the local Streamlined
Advanced Programmable Interrupt Controller (SAPIC).

This architecture describes a mechanism for loading the modules of required code that embody the
functionality mentioned above. The instantiation of the protocol that supports the loading of the
handler images runs in normal boot-services memory. It is only the handler images that need to run
in the System Management Random Access Memory (SMRAM). See SMM Protocols earlier in this
Overview chapter for more information on SMM protocols.

Overview

Version 0.9 September 2003 23

Access to Platform Resources
As a policy decision, the execution of SMM handlers is logically precluded from accessing
conventional memory resources. As such, there is no easy binding mechanism through a call or trap
interface to leverage services in the preempted, non-SMM state.

However, there is a library of services, the SMM Services, that supports a subset of the core EFI
services, such as memory allocation, the Device I/O Protocol, and others. The SMM driver
execution mode has the same structure as the EFI baseline—namely a component that executes in
boot services mode and that can possibly execute in runtime. The latter mechanism happens using
an unregister event when ExitBootServices() is invoked.

System Management Mode
Core Interface Specification (SMM CIS)

24 September 2003 Version 0.9

Version 0.9 September 2003 25

3
System Management System Table (SMST)

Introduction
This section describes the System Management System Table (SMST). The SMST is a set of
capabilities exported for use by all drivers that are loaded into System management RAM
(SMRAM).

The SMST is akin to the Boot Services table in the EFI System Table in that it is a fixed set of
services and data, by design, and does not admit to the extensibility of an EFI protocol interface.
The SMST is provided by the Framework's SMM infrastructure component, which also manages
the following:

• Dispatch of drivers in SMM
• Allocations of SMRAM
• Transitioning the Framework into and out of the respective system management mode of the

processor

System Management Mode
Core Interface Specification (SMM CIS)

26 September 2003 Version 0.9

SMM Handler Entry Point

EFI_SMM_HANDLER_ENTRY_POINT

Summary
This function is the main entry point for an SMM handler dispatch or communicate-based
callback. An SMM handler is a DXE runtime driver that has relocated itself into SMRAM via the
EFI_SMM_BASE_PROTOCOL.Register() service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_HANDLER_ENTRY_POINT) (

IN EFI_HANDLE SmmImageHandle,
IN OUT VOID *CommunicationBuffer OPTIONAL,
IN OUT UINTN *SourceSize OPTIONAL

);

Parameters
SmmImageHandle

A unique value returned by the SMM infrastructure in response to registration for a
communicate-based callback or dispatch. Type EFI_HANDLE is defined in the
InstallProtocolInterface() function definition in the EFI 1.10
Specification.

CommunicationBuffer

An optional buffer that will be populated by the SMM infrastructure in response to a
non-SMM agent (preboot or runtime) invoking the
EFI_SMM_BASE_PROTOCOL.Communicate() service.

SourceSize

If CommunicationBuffer is non-NULL, this field indicates the size of the data
payload in this buffer.

System Management System Table (SMST)

Version 0.9 September 2003 27

Description
This service is the prototype of how an SMM driver exposes a callback into its SMM-loaded image
from the SMM infrastructure. The SMM infrastructure can call an image within SMM in response
to the following two types of events:

• SMI dispatch
• EFI_SMM_BASE_PROTOCOL.Communicate()

The callback is negotiated with the SMM infrastructure via the service
EFI_SMM_BASE_PROTOCOL.RegisterCallback(). This interface has the additional fields
of a communication buffer so that a non-SMM agent can convey a message into the SMM-based
agent. This communication is a stylized form of interprocess communication (IPC) that is mediated
by the SMM infrastructure. This SMM infrastructure multiplexes the passing of the buffer from a
possibly virtual-mode, runtime environment into the physical-mode, SMM environment.

System Management Mode
Core Interface Specification (SMM CIS)

28 September 2003 Version 0.9

EFI Table Header

EFI_TABLE_HEADER

Summary
Data structure that precedes all of the services in the System Management System Table (SMST).

Related Definitions
typedef struct {

UINT64 Signature;
UINT32 Revision;
UINT32 HeaderSize;
UINT32 CRC32;
UINT32 Reserved;

} EFI_TABLE_HEADER;

Parameters
Signature

A 64-bit signature that identifies the type of table that follows.

Revision

The revision of the SMM CIS to which this table conforms. The upper 16 bits of this
field contain the major revision value, and the lower 16 bits contain the minor
revision value. The minor revision values are limited to the range of 00..99.

HeaderSize

The size in bytes of the entire table including the EFI_TABLE_HEADER.

CRC32

The 32-bit CRC for the entire table. This value is computed by setting this field to 0
and computing the 32-bit CRC for HeaderSize bytes. This value should be
computed across all of the entries in the SMST. The SMM infrastructure code will
compute this value.

Reserved

Reserved field that must be set to 0.

Description
The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard EFI
table types. It includes a signature that is unique for each table type, a revision of the table that may
be updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an
EFI table type can validate the contents of the EFI table.

System Management System Table (SMST)

Version 0.9 September 2003 29

System Management System Table (SMST)

EFI_SMM_SYSTEM_TABLE

Summary
The System Management System Table (SMST) is a table that contains a collection of common
services for managing SMRAM allocation and providing basic I/O services. These services are
intended for both preboot and runtime usage.

Related Definitions
#define SMM_SMST_SIGNATURE EFI_SIGNATURE_32('S','M','S','T')
#define EFI_SMM_SYSTEM_TABLE_REVISION (0<<16) | (0x09)

typedef struct _EFI_SMM_SYSTEM_TABLE {
EFI_TABLE_HEADER Hdr;

CHAR16 *SmmFirmwareVendor;
UINT32 SmmFirmwareRevision;

EFI_SMM_INSTALL_CONFIGURATION_TABLE SmmInstallConfigurationTable;

//
// I/O Services
//

EFI_GUID EfiSmmCpuIoGuid;
EFI_SMM_CPU_IO_INTERFACE SmmIo;

//
// Runtime memory service
//
EFI_SMM_ALLOCATE_POOL SmmAllocatePool;
EFI_SMM_FREE_POOL SmmFreePool;
EFI_SMM_ALLOCATE_PAGES SmmAllocatePages;
EFI_SMM_FREE_PAGES SmmFreePages;

//
// CPU information records
//

UINTN CurrentlyExecutingCpu;
UINTN NumberOfCpus;
EFI_SMM_CPU_SAVE_STATE *CpuSaveState;
EFI_SMM_FLOATING_POINT_SAVE_STATE

*CpuOptionalFloatingPointState;

System Management Mode
Core Interface Specification (SMM CIS)

30 September 2003 Version 0.9

//
// Extensibility table
//

UINTN NumberOfTableEntries;
EFI_CONFIGURATION_TABLE *SmmConfigurationTable;

} EFI_SMM_SYSTEM_TABLE;

Parameters
Hdr

The table header for the System Management System Table (SMST). This header
contains the SMM_SMST_SIGNATURE and
EFI_SMM_SYSTEM_TABLE_REVISION values along with the size of the
EFI_SMM_SYSTEM_TABLE structure and a 32-bit CRC to verify that the contents
of the SMST are valid.

SmmFirmwareVendor

A pointer to a NULL-terminated Unicode string containing the vendor name. It is
permissible for this pointer to be NULL.

SmmFirmwareRevision

The particular revision of the firmware.

SmmInstallConfigurationTable

Adds, updates, or removes a configuration table entry from the SMST. See the
SmmInstallConfigurationTable() function description.

EfiSmmCpuIoGuid

A GUID that designates the particular CPU I/O services. Type
EFI_SMM_CPU_IO_GUID is defined in the SmmIo() function description. Type
EFI_GUID is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

SmmIo

Provides the basic memory and I/O interfaces that are used to abstract accesses to
devices. See the SmmIo() function description.

SmmAllocatePool

Allocates pool memory from SMRAM for IA-32 or runtime memory for the
Itanium® processor family. See the SmmAllocatePool() function description.

System Management System Table (SMST)

Version 0.9 September 2003 31

SmmFreePool

Returns pool memory to the system. See the SmmFreePool() function description.

SmmAllocatePages

Allocates memory pages from the system. See the SmmAllocatePages()
function description.

SmmFreePages

Frees memory pages for the system. See the SmmFreePages() function
description.

CurrentlyExecutingCpu

A 1-relative number between 1 and the NumberOfCpus field. This field designates
which processor is executing the SMM infrastructure. This number also serves as an
index into the CpuSaveState and CpuOptionalFloatingPointState
fields.

NumberOfCpus

The number of current operational processors in the platform.

CpuSaveState

A pointer to a catenation of the EFI_SMM_CPU_SAVE_STATE structure. The size
of this entire table is NumberOfCpus * size of the
EFI_SMM_CPU_SAVE_STATE. Type EFI_SMM_CPU_SAVE_STATE is defined
in SMM CPU Information Records in Services - SMM.

CpuOptionalFloatingPointState

A pointer to a catenation of the EFI_SMM_FLOATING_POINT_SAVE_STATE.
The size of this entire table is NumberOfCpus * size of the
EFI_SMM_FLOATING_POINT_SAVE_STATE. These fields are populated only if
there is at least one SMM driver that has registered for a callback with the
FloatingPointSave field in
EFI_SMM_BASE_PROTOCOL.RegisterCallback() set to TRUE. Type
EFI_SMM_FLOATING_POINT_SAVE_STATE is defined in SMM CPU
Information Records in Services - SMM.

NumberOfTableEntries

The number of EFI Configuration Tables in the buffer
SmmConfigurationTable.

SmmConfigurationTable

A pointer to the EFI Configuration Tables. The number of entries in the table is
NumberOfTableEntries.

System Management Mode
Core Interface Specification (SMM CIS)

32 September 2003 Version 0.9

Description
The table is similar to the EFI System Table, but it is flat. The only notable artifact from the EFI
System Table is the ability to register additional tables prior to locking the System Management
Random Access Memory (SMRAM) and exiting boot services.

The CurrentlyExecutingCpu parameter is a value that is less than or equal to the
NumberOfCpus field. The CpuSaveState is a pointer to a contiguous run of
EFI_SMM_CPU_STATE structures in SMRAM. The CurrentlyExecutingCpu can be used
as an index to locate the respective save-state for which the given processor is executing, if so
desired. The same indexing scheme is used for the CpuOptionalFloatingPointState
structure.

The EFI_SMM_CPU_STATE is a data structure that contains the SMM save-state information for
IA-32 and the record of saved data for Itanium processors. The data for each processor instance are
linearly concatenated in SMRAM.

When a handler is executed, it is passed the EFI_SMM_HANDLER_ENTRY_POINT.

System Management System Table (SMST)

Version 0.9 September 2003 33

SMM Configuration Table

EFI_CONFIGURATION_TABLE

Summary
The ConfigurationTable field of the System Management System Table (SMST) points to a
list of GUID/pointer pairs. Some GUIDs may be required for OS and firmware interoperability.
Other GUIDs may be defined as required by different IBV, OEMs, IHVs, and OSVs.

Related Definitions
typedef struct{

EFI_GUID VendorGuid;
VOID *VendorTable;

} EFI_CONFIGURATION_TABLE;

Parameters
VendorGuid

The 128-bit GUID value that uniquely identifies the EFI Configuration Table. Type
EFI_GUID is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

VendorTable

A pointer to the table associated with VendorGuid.

Description
The EFI Configuration Table is the SmmConfigurationTable field in the
EFI_SMM_SYSTEM_TABLE. This table contains a set of GUID/pointer pairs. Each element of
this table is described by this EFI_CONFIGURATION_TABLE structure. The number of types of
configuration tables is expected to grow over time, which is why a GUID is used to identify the
configuration table type. The EFI Configuration Table may contain at most once instance of each
table type.

System Management Mode
Core Interface Specification (SMM CIS)

34 September 2003 Version 0.9

Version 0.9 September 2003 35

4
Services - SMM

Introduction
The expectation is that the SMM drivers can be built in the same framework as other DXE runtime
drivers. A set of services is available to facilitate loading SMM drivers into SMRAM. The
following topics describe these services.

System Management Mode
Core Interface Specification (SMM CIS)

36 September 2003 Version 0.9

SMM Install Configuration Table

SmmInstallConfigurationTable()

Summary
Adds, updates, or removes a configuration table entry from the System Management System Table
(SMST).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_INSTALL_CONFIGURATION_TABLE) (

IN struct _EFI_SMM_SYSTEM_TABLE *SystemTable,
IN EFI_GUID *Guid,
IN VOID *Table,
IN UINTN TableSize
)

Parameters
SystemTable

A pointer to the System Management System Table (SMST).

Guid

A pointer to the GUID for the entry to add, update, or remove.

Table

A pointer to the buffer of the table to add.

TableSize

The size of the table to install.

Services - SMM

Version 0.9 September 2003 37

Description
The SmmInstallConfigurationTable() function is used to maintain the list of
configuration tables that are stored in the SMST. The list is stored as an array of (GUID, Pointer)
pairs. The list must be allocated from pool memory with PoolType set to
EfiRuntimeServicesData.

If Guid is not a valid GUID, EFI_INVALID_PARAMETER is returned. If Guid is valid, there
are four possibilities:

• If Guid is not present in the SMST and Table is not NULL, then the (Guid, Table) pair is
added to the SMST. See Note below.

• If Guid is not present in the SMST and Table is NULL, then EFI_NOT_FOUND is returned.
• If Guid is present in the SMST and Table is not NULL, then the (Guid, Table) pair is

updated with the new Table value.
• If Guid is present in the SMST and Table is NULL, then the entry associated with Guid is

removed from the SMST.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.

NOTE
If there is not enough memory to perform an add operation, then EFI_OUT_OF_RESOURCES is
returned.

For Itanium®-based systems, a possible candidate for installation here would be the System
Abstraction Layer (SAL) System Table. The reason is that a power-button support handler in
Itanium-based systems has to issue a PAL_HALT_LIGHT call.

Status Codes Returned
EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.

EFI_INVALID_PARAMETER Guid is not valid.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.

EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.

System Management Mode
Core Interface Specification (SMM CIS)

38 September 2003 Version 0.9

SMM I/O Services

SMM CPU I/O Overview
The interfaces provided in EFI_SMM_CPU_IO_INTERFACE are for performing basic operations
to memory and I/O. The EFI_SMM_CPU_IO_INTERFACE can be thought of as the bus driver for
the system. The system provides abstracted access to basic system resources to allow a driver to
have a programmatic method to access these basic system resources.

The EFI_SMM_CPU_IO_INTERFACE allows for future innovation of the platform. It abstracts
device-specific code from the system memory map. This abstraction allows system designers to
greatly change the system memory map without impacting platform-independent code that is
consuming basic system resources.

The device I/O services in the system are blocking and will be installed by the agent that abstracts
the compatibility bus.

The SMM handler that supports the SMM device I/O services must be executed prior to any other
handler installations. The DXE grammar mechanism should be used to enforce this requirement. If
this temporal ordering is carried out, then the preamble initialization of the SMM processor I/O
handler can populate the SMST using the SmmInstallConfigurationTable() mechanism
and the GUID listed in SmmIo().

Services - SMM

Version 0.9 September 2003 39

SmmIo()

Summary
Provides the basic memory and I/O interfaces that are used to abstract accesses to devices.

GUID
#define EFI_SMM_CPU_IO_GUID \

{ 0x5f439a0b, 0x45d8, 0x4682, 0xa4, 0xf4, 0xf0, 0x57, 0x6b,
0x51, 0x34, 0x41 }

Protocol Interface Structure
typedef struct _EFI_SMM_CPU_IO_INTERFACE {

EFI_SMM_IO_ACCESS Mem;
EFI_SMM_IO_ACCESS Io;

} EFI_SMM_CPU_IO_INTERFACE;

Parameters
Mem

Allows reads and writes to memory-mapped I/O space. See the Mem() function
description. Type EFI_SMM_IO_ACCESS is defined in “Related Definitions”
below.

Io

Allows reads and writes to I/O space. See the Io() function description. Type
EFI_SMM_IO_ACCESS is defined in “Related Definitions” below.

Description
The EFI_SMM_CPU_IO_INTERFACE service provides the basic memory, I/O, and PCI
interfaces that are used to abstract accesses to devices.

Related Definitions
//***
// EFI_SMM_IO_ACCESS
//***
typedef struct {

EFI_SMM_CPU_IO Read;
EFI_SMM_CPU_IO Write;

} EFI_SMM_IO_ACCESS;

Read

This service provides the various modalities of memory and I/O read.

Write

This service provides the various modalities of memory and I/O write.

System Management Mode
Core Interface Specification (SMM CIS)

40 September 2003 Version 0.9

EFI_SMM_CPU_IO_INTERFACE.Mem()

Summary
Enables a driver to access device registers in the memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_SMM_CPU_IO) (

IN struct _EFI_SMM_CPU_IO_INTERFACE *This,
IN EFI_SMM_IO_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);

Parameters
This

The EFI_SMM_CPU_IO_INTERFACE instance.

Width

Signifies the width of the I/O operations. Type EFI_SMM_IO_WIDTH is defined in
“Related Definitions” below.

Address

The base address of the I/O operations. The caller is responsible for aligning the
Address if required.

Count

The number of I/O operations to perform. Bytes moved is Width size * Count,
starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations,
the source buffer from which to write data.

Description
The EFI_SMM_CPU_IO.Mem() function enables a driver to access device registers in the
memory.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues that the bus, device, platform, or type of I/O might require. For example, on
IA-32 platforms, width requests of SMM_IO_UINT64 do not work.

The Address field is the bus relative address as seen by the device on the bus.

Services - SMM

Version 0.9 September 2003 41

Related Definitions
//***
// EFI_SMM_IO_WIDTH
//***

typedef enum {
SMM_IO_UINT8 = 0,
SMM_IO_UINT16 = 1,
SMM_IO_UINT32 = 2,
SMM_IO_UINT64 = 3

} EFI_SMM_IO_WIDTH;

Status Codes Returned
EFI_SUCCESS The data was read from or written to the device.

EFI_UNSUPPORTED The Address is not valid for this system.

EFI_INVALID_PARAMETER Width or Count, or both, were invalid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

System Management Mode
Core Interface Specification (SMM CIS)

42 September 2003 Version 0.9

EFI_SMM_CPU_IO_INTERFACE.Io()

Summary
Enables a driver to access device registers in the I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_SMM_CPU_IO) (

IN struct _EFI_SMM_CPU_IO_INTERFACE *This,
IN EFI_SMM_IO_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);

Parameters
This

The EFI_SMM_CPU_IO_INTERFACE instance.

Width

Signifies the width of the I/O operations. Type EFI_SMM_IO_WIDTH is defined in
Mem().

Address

The base address of the I/O operations. The caller is responsible for aligning the
Address if required.

Count

The number of I/O operations to perform. Bytes moved is Width size * Count,
starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations,
the source buffer from which to write data.

Description
The EFI_SMM_CPU_IO.Io() function enables a driver to access device registers in the I/O
space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example, on
IA-32 platforms, width requests of SMM_IO_UINT64 do not work.

The caller must align the starting address to be on a proper width boundary.

Services - SMM

Version 0.9 September 2003 43

Status Codes Returned
EFI_SUCCESS The data was read from or written to the device.

EFI_UNSUPPORTED The Address is not valid for this system.

EFI_INVALID_PARAMETER Width or Count, or both, were invalid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

System Management Mode
Core Interface Specification (SMM CIS)

44 September 2003 Version 0.9

SMM Runtime Memory Services

SmmAllocatePool()

Summary
Allocates pool memory from SMRAM for IA-32 or runtime memory for the Itanium® processor
family.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_ALLOCATE_POOL) (

IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size,
OUT VOID **Buffer
);

Parameters
PoolType

The type of pool to allocate. The only supported type is
EfiRuntimeServicesData; the interface will internally map this runtime
request to SMRAM for IA-32 and leave it as this type for the Itanium processor
family. Other types are ignorable. Type EFI_MEMORY_TYPE is defined in
AllocatePages() in the EFI 1.10 Specification.

Size

The number of bytes to allocate from the pool.

Buffer

A pointer to a pointer to the allocated buffer if the call succeeds; undefined
otherwise.

Description
The SmmAllocatePool() function allocates a memory region of Size bytes from memory of
type PoolType and returns the address of the allocated memory in the location that is referenced
by Buffer. This function allocates pages from EFI SMRAM memory for IA-32 as needed to
grow the requested pool type. All allocations are 8-byte aligned.

PoolType can be ignored in that the type will always be SMRAM for IA-32 and runtime memory
for the Itanium processor family.

The allocated pool memory is returned to the available pool with the SmmFreePool() function.

Services - SMM

Version 0.9 September 2003 45

Status Codes Returned
EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_UNSUPPORTED In runtime.

System Management Mode
Core Interface Specification (SMM CIS)

46 September 2003 Version 0.9

SmmFreePool()

Summary
Returns pool memory to the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_FREE_POOL) (

IN VOID *Buffer
);

Parameters
Buffer

Pointer to the buffer to free.

Description
This function returns the memory specified by Buffer to the system. On return, the memory’s
type is EFI SMRAM memory. The Buffer that is freed must have been allocated by
SmmAllocatePool().

Status Codes Returned
EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.

EFI_UNSUPPORTED In runtime.

Services - SMM

Version 0.9 September 2003 47

SmmAllocatePages()

Summary
Allocates memory pages from the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_ALLOCATE_PAGES) (

IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN NumberOfPages,
OUT EFI_PHYSICAL_ADDRESS *Memory
);

Parameters
Type

The type of allocation to perform. Type EFI_ALLOCATE_TYPE is defined in
AllocatePages() in the EFI 1.10 Specification.

MemoryType

This specification supports only EfiRuntimeServicesData. Type
EFI_MEMORY_TYPE is defined in AllocatePages() in the EFI 1.10
Specification.

NumberofPages

The number of contiguous 4 KB pages to allocate.

Memory

Pointer to a physical address. On input, the way in which the address is used depends
on the value of Type. See “Description” for more information. On output, the
address is set to the base of the page range that was allocated. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

System Management Mode
Core Interface Specification (SMM CIS)

48 September 2003 Version 0.9

Description
The SmmAllocatePages() function allocates the requested number of pages and returns a
pointer to the base address of the page range in the location referenced by Memory. The function
scans the SMM infrastructure memory map to locate free pages. When it finds a physically
contiguous block of pages that is large enough and also satisfies the value of Type, it changes the
SMM infrastructure memory map to indicate that the pages are now of type MemoryType.

SMM drivers should allocate memory (and pool) of type EfiRuntimeServicesData.

Allocation requests of Type AllocateAnyPages allocate any available range of pages that
satisfies the request. On input, the address pointed to by Memory is ignored. Allocation requests of
Type AllocateMaxAddress allocate any available range of pages whose uppermost address is
less than or equal to the address pointed to by Memory on input. Allocation requests of Type
AllocateAddress allocate pages at the address pointed to by Memory on input.

Status Codes Returned
EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or
AllocateMaxAddress or AllocateAddress .

EFI_INVALID_PARAMETER MemoryType is in the range
EfiMaxMemoryType..0x7FFFFFFF.

EFI_NOT_FOUND The requested pages could not be found.

Services - SMM

Version 0.9 September 2003 49

SmmFreePages()

Summary
Frees memory pages for the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_FREE_PAGES) (

IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages
);

Parameters
Memory

The base physical address of the pages to be freed. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

NumberOfPages

The number of contiguous 4 KB pages to free.

Description
The SmmFreePages() function returns memory that was allocated by
SmmAllocatePages() to the firmware.

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
SmmAllocatePages().

EFI_INVALID_PARAMETER Memory is not a page-aligned address or NumberOfPages is
invalid.

System Management Mode
Core Interface Specification (SMM CIS)

50 September 2003 Version 0.9

SMM CPU Information Records

SMM CPU Information Records Introduction
This section describes processor-specific information that is managed by the SMM infrastructure.
These save-state structures are essentially descriptions of all of the operational processors in the
system when the SMI or PMI activation was invoked.

SMM drivers use these structures to discern what type of processing needs to occur (such as the
programmatic action that caused the SMI or PMI event). The SMM infrastructure also uses the
information in these structures to restore the state of the processors after the system exits the SMM
infrastructure and resumes its foreground operational activities.

Drivers can read from these structures but must take care in writing to them because the state of the
machine will be affected by any updates that are performed in these structures.

EFI_SMM_CPU_SAVE_STATE and EFI_SMM_FLOATING_POINT_SAVE_STATE are the
structures that define the processor save-state and floating-point save-state information,
respectively. Each of these structures are unions for processor-specific data structures. The
following table lists the CPU Information Records structures for each processor architecture. The
next topics define these structures.

Table 4-1. Defined CPU Information Records

Platform CPU Save-State Data Type Floating-Point Save-State Data Type

IA-32 EFI_SMI_CPU_SAVE_STATE EFI_PMI_SYSTEM_CONTEXT

Itanium®
processor
family

EFI_SMI_OPTIONAL_FPSAVE_STATE EFI_PMI_OPTIONAL_FLOATING_POINT_CONTEXT

Services - SMM

Version 0.9 September 2003 51

EFI_SMM_CPU_SAVE_STATE

EFI_SMU_CPU_SAVE_STATE

Summary
The processor save-state information for IA-32 and Itanium® processors.

Prototype
typedef union {

EFI_SMI_CPU_SAVE_STATE Ia32SaveState;
EFI_PMI_SYSTEM_CONTEXT ItaniumSaveState;

} EFI_SMM_CPU_SAVE_STATE;

Parameters
Ia32SaveState

The processor save-state information for IA-32 processors. Type
EFI_SMI_CPU_SAVE_STATE is defined in SMM CPU Information Records in
Services - SMM.

ItaniumSaveState

The processor save-state information for Itanium processors. Type
EFI_PMI_SYSTEM_CONTEXT is defined in SMM CPU Information Records in
Services - SMM.

Description
The processor save-state information for IA-32 and Itanium processors. This information is
important in that the SMM drivers may need to ascertain the state of the processor before invoking
the SMI or PMI.

System Management Mode
Core Interface Specification (SMM CIS)

52 September 2003 Version 0.9

IA-32

EFI_SMI_CPU_SAVE_STATE

Summary
The processor save-state information for IA-32 processors. This information is important in that the
SMM drivers may need to ascertain the state of the processor before invoking the SMI.

See the IA-32 Intel® Architecture Software Developer's Manual, volumes 1–3, for more
information on the registers included in this data structure.

See EFI_PMI_SYSTEM_CONTEXT for the structure for the Itanium® processor family.

Prototype
typedef struct _EFI_SMI_CPU_SAVE_STATE {

UINT8 Reserved1[248];
UINT32 SMBASE;
UINT32 SMMRevId;
UINT16 IORestart;
UINT16 AutoHALTRestart;
UINT8 Reserved2[164];
UINT32 ES;
UINT32 CS;
UINT32 SS;
UINT32 DS;
UINT32 FS;
UINT32 GS;
UINT32 LDTBase;
UINT32 TR;
UINT32 DR7;
UINT32 DR6;
UINT32 EAX;
UINT32 ECX;
UINT32 EDX;
UINT32 EBX;
UINT32 ESP;
UINT32 EBP;
UINT32 ESI;
UINT32 EDI;
UINT32 EIP;
UINT32 EFLAGS;
UINT32 CR3;
UINT32 CR0;
} EFI_SMI_CPU_SAVE_STATE;

Services - SMM

Version 0.9 September 2003 53

Parameters
Reserved1

Reserved for future processors. As such, software should not attempt to interpret or
write to this region.

SMBASE

The location of the processor SMBASE, which is the location where the processor
will pass control upon receipt of an SMI.

SMMRevId

The revision of the SMM save state. This value is set by the processor.

IORestart

The value of the I/O restart field. Allows for restarting an in-process I/O instruction.

AutoHALTRestart

Describes behavior that should be commenced in response to a halt instruction.

Reserved2

Reserved for future processors. As such, software should not attempt to interpret or
write to this region.

ES through CR0

Registers in IA-32 processors. See the IA-32 Intel® Architecture Software
Developer's Manual, volumes 1–3, for more information.

Description
This data structure describes the processor save-state of an IA-32 processor. There will be a save-
state structure for each processor, and the SMST shall reference the catenation of these structures.
The processor will save this information upon receipt of the SMI, and the processor will restore this
information to the processor upon receipt of the Resume (RSM) instruction.

System Management Mode
Core Interface Specification (SMM CIS)

54 September 2003 Version 0.9

Itanium® Processor Family

EFI_PMI_SYSTEM_CONTEXT

Summary
The processor save-state information for the Itanium® processor family. This information is
important in that the SMM drivers may need to ascertain the state of the processor before invoking
the PMI. This structure is mandatory and must be 512 byte aligned.

See the Intel® Itanium® Architecture Software Developer’s Manual, volumes 1–4, for more
information on the registers included in this data structure.

Prototype
typedef struct _EFI_PMI_SYSTEM_CONTEXT
{

UINT64 reserved;
UINT64 r1;
UINT64 r2;
UINT64 r3;
UINT64 r4;
UINT64 r5;
UINT64 r6;
UINT64 r7;
UINT64 r8;
UINT64 r9;
UINT64 r10;
UINT64 r11;
UINT64 r12;
UINT64 r13;
UINT64 r14;
UINT64 r15;
UINT64 r16;
UINT64 r17;
UINT64 r18;
UINT64 r19;
UINT64 r20;
UINT64 r21;
UINT64 r22;
UINT64 r23;
UINT64 r24;
UINT64 r25;
UINT64 r26;
UINT64 r27;
UINT64 r28;
UINT64 r29;

Services - SMM

Version 0.9 September 2003 55

UINT64 r30;
UINT64 r31;

UINT64 pr;

UINT64 b0;
UINT64 b1;
UINT64 b2;
UINT64 b3;
UINT64 b4;
UINT64 b5;
UINT64 b6;
UINT64 b7;

// application registers
UINT64 ar_rsc;
UINT64 ar_bsp;
UINT64 ar_bspstore;
UINT64 ar_rnat;

UINT64 ar_fcr;

UINT64 ar_eflag;
UINT64 ar_csd;
UINT64 ar_ssd;
UINT64 ar_cflg;
UINT64 ar_fsr;
UINT64 ar_fir;
UINT64 ar_fdr;

UINT64 ar_ccv;

UINT64 ar_unat;

UINT64 ar_fpsr;

UINT64 ar_pfs;
UINT64 ar_lc;
UINT64 ar_ec;

// control registers
UINT64 cr_dcr;
UINT64 cr_itm;
UINT64 cr_iva;
UINT64 cr_pta;
UINT64 cr_ipsr;
UINT64 cr_isr;
UINT64 cr_iip;
UINT64 cr_ifa;

System Management Mode
Core Interface Specification (SMM CIS)

56 September 2003 Version 0.9

UINT64 cr_itir;
UINT64 cr_iipa;
UINT64 cr_ifs;
UINT64 cr_iim;
UINT64 cr_iha;

// debug registers
UINT64 dbr0;
UINT64 dbr1;
UINT64 dbr2;
UINT64 dbr3;
UINT64 dbr4;
UINT64 dbr5;
UINT64 dbr6;
UINT64 dbr7;

UINT64 ibr0;
UINT64 ibr1;
UINT64 ibr2;
UINT64 ibr3;
UINT64 ibr4;
UINT64 ibr5;
UINT64 ibr6;
UINT64 ibr7;

// virtual registers
UINT64 int_nat; // nat bits for R1-R31

} EFI_PMI_SYSTEM_CONTEXT;

Services - SMM

Version 0.9 September 2003 57

EFI_SMM_OPTIONAL_FP_SAVE_STATE

EFI_SMM_FLOATING_POINT_SAVE_STATE

Summary
The processor save-state information for IA-32 and Itanium® processors.

Prototype
typedef union {

EFI_SMI_OPTIONAL_FPSAVE_STATE Ia32FpSave;
EFI_PMI_OPTIONAL_FLOATING_POINT_CONTEXT ItaniumFpSave;

} EFI_SMM_FLOATING_POINT_SAVE_STATE;

Parameters
Ia32FpSave

The optional floating point save-state information for IA-32 processors. Type
EFI_SMI_OPTIONAL_FPSAVE_STATE is defined in SMM CPU Information
Records in Services - SMM.

ItaniumFpSave

The optional floating point save-state information for Itanium processors. Type
EFI_PMI_OPTIONAL_FLOATING_POINT_CONTEXT is defined in SMM CPU
Information Records in Services - SMM.

Description
The processor save-state information for IA-32 and Itanium processors. If the optional floating
point save is indicated for any handler, then this data structure must be preserved.

System Management Mode
Core Interface Specification (SMM CIS)

58 September 2003 Version 0.9

IA-32

EFI_SMI_OPTIONAL_FPSAVE_STATE

Summary
The optional floating point save-state information for IA-32 processors. If the optional floating
point save is indicated for any handler, the following data structure must be preserved.

See the IA-32 Intel® Architecture Software Developer's Manual, volumes 1–3, for more
information on the registers included in this data structure.

See EFI_PMI_OPTIONAL_FLOATING_POINT_CONTEXT for the structure for the Itanium®
processor family.

Prototype
typedef struct _EFI_SMI_OPTIONAL_FPSAVE_STATE {

UINT16 Fcw;
UINT16 Fsw;
UINT16 Ftw;
UINT16 Opcode;
UINT32 Eip;
UINT16 Cs;
UINT16 Rsvd1;
UINT32 DataOffset;
UINT16 Ds;
UINT8 Rsvd2[10];
UINT8 St0Mm0[10], Rsvd3[6];
UINT8 St0Mm1[10], Rsvd4[6];
UINT8 St0Mm2[10], Rsvd5[6];
UINT8 St0Mm3[10], Rsvd6[6];
UINT8 St0Mm4[10], Rsvd7[6];
UINT8 St0Mm5[10], Rsvd8[6];
UINT8 St0Mm6[10], Rsvd9[6];
UINT8 St0Mm7[10], Rsvd10[6];
UINT8 Rsvd11[22*16];

} EFI_SMI_OPTIONAL_FPSAVE_STATE;

Services - SMM

Version 0.9 September 2003 59

Itanium® Processor Family

EFI_PMI_OPTIONAL_FLOATING_POINT_CONTEXT

Summary
The optional floating point save-state information for the Itanium® processor family. If the optional
floating point save is indicated for any handler, then this data structure must be preserved. See the
Intel® Itanium® Architecture Software Developer’s Manual, volumes 1–4, for more information
on the registers included in this data structure.

Prototype
typedef struct {

UINT64 f2[2];
UINT64 f3[2];
UINT64 f4[2];
UINT64 f5[2];
UINT64 f6[2];
UINT64 f7[2];
UINT64 f8[2];
UINT64 f9[2];
UINT64 f10[2];
UINT64 f11[2];
UINT64 f12[2];
UINT64 f13[2];
UINT64 f14[2];
UINT64 f15[2];
UINT64 f16[2];
UINT64 f17[2];
UINT64 f18[2];
UINT64 f19[2];
UINT64 f20[2];
UINT64 f21[2];
UINT64 f22[2];
UINT64 f23[2];
UINT64 f24[2];
UINT64 f25[2];
UINT64 f26[2];
UINT64 f27[2];
UINT64 f28[2];
UINT64 f29[2];
UINT64 f30[2];
UINT64 f31[2];

} EFI_PMI_OPTIONAL_FLOATING_POINT_CONTEXT;

System Management Mode
Core Interface Specification (SMM CIS)

60 September 2003 Version 0.9

Version 0.9 September 2003 61

5
Services - SMM Library (SMLib)

Introduction
There is a share-nothing model that is employed between the management-mode application and
the boot service/runtime EFI environment. As such, a minimum set of services needs to be
available to the boot service agent.

The services described in this section are purposely coded to coexist with a foreground preboot or
runtime environment. The latter can include both EFI and non-EFI aware operating systems. As
such, the implementation of these services must save and restore any "shared" resources with the
foreground environment or only use resources that are private to the SMM code.

This library should be used in place of the runtime or boot services library. It is specially coded to
survive in an SMM environment.

Status Codes Services

EFI_SMM_STATUS_CODE_PROTOCOL

Summary
Provides status code services from SMM.

GUID
#define EFI_SMM_STATUS_CODE_PROTOCOL_GUID \

{ 0x6afd2b77, 0x98c1, 0x4acd, 0xa6, 0xf9, 0x8a, 0x94, 0x39,
0xde, 0xf, 0xb1 }

Protocol Interface Structure
typedef struct _EFI_SMM_STATUS_CODE_PROTOCOL {

EFI_SMM_REPORT_STATUS_CODE ReportStatusCode;
} EFI_SMM_STATUS_CODE_PROTOCOL;

Parameters
ReportStatusCode

Allows for the SMM agent to produce a status code output. See the
ReportStatusCode() function description.

Description
The EFI_SMM_STATUS_CODE_PROTOCOL provides the basic status code services while in
SMRAM.

System Management Mode
Core Interface Specification (SMM CIS)

62 September 2003 Version 0.9

EFI_SMM_STATUS_CODE_PROTOCOL.ReportStatusCode()

Summary
Service to emit the status code in SMM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_REPORT_STATUS_CODE) (

IN struct _EFI_SMM_STATUS_CODE_PROTOCOL *This,
IN EFI_STATUS_CODE_TYPE CodeType,
IN EFI_STATUS_CODE_VALUE Value,
IN UINT32 Instance,
IN EFI_GUID *CallerId,
IN EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
Type

Indicates the type of status code being reported. Type EFI_STATUS_CODE_TYPE
is defined in "Related Definitions" below.

Value

Describes the current status of a hardware or software entity. This status includes
information about the class and subclass that is used to classify the entity, as well as
an operation. For progress codes, the operation is the current activity. For error
codes, it is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in "Related Definitions" below. Specific
values are discussed in the Intel® Platform Innovation Framework for EFI Status
Codes Specification.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

Services - SMM Library (SMLib)

Version 0.9 September 2003 63

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in "Related Definitions" below. The
contents of this data type may have additional GUID-specific data. The standard
GUIDs and their associated data structures are defined in the Intel® Platform
Innovation Framework for EFI Status Codes Specification.

Description
The EFI_SMM_STATUS_CODE_PROTOCOL.ReportStatusCode() function enables a
driver to emit a status code while in SMM. The reason that there is a separate protocol definition
from the DXE variant of this service is that the publisher of this protocol will provide a service that
is capability of coexisting with a foreground operational environment, such as an operating system
after the termination of boot services.

In case of an error, the caller can specify the severity. In most cases, the entity that reports the error
may not have a platform-wide view and may not be able to accurately assess the impact of the error
condition. The DXE driver that produces the Status Code SMM Protocol is responsible for
assessing the true severity level based on the reported severity and other information. This DXE
driver may perform platform specific actions based on the type and severity of the status code being
reported.

If Data is present, the driver treats it as read only data. The driver must copy Data to a local
buffer in an atomic operation before performing any other actions. This is necessary to make this
function re-entrant. The size of the local buffer may be limited. As a result, some of the Data can
be lost. The size of the local buffer should at least be 256 bytes in size. Larger buffers will reduce
the probability of losing part of the Data. If all of the local buffers are consumed, then this service
may not be able to perform the platform specific action required by the status code being reported.
As a result, if all the local buffers are consumed, the behavior of this service is undefined.

If the CallerId parameter is not NULL, then it is required to point to a constant GUID. In other
words, the caller may not reuse or release the buffer pointed to by CallerId.

System Management Mode
Core Interface Specification (SMM CIS)

64 September 2003 Version 0.9

Related Definitions
//
// Status Code Type Definition
//
typedef UINT32 EFI_STATUS_CODE_TYPE;

//
// A Status Code Type is made up of the code type and severity
// All values masked by EFI_STATUS_CODE_RESERVED_MASK are
// reserved for use by this specification.
//
#define EFI_STATUS_CODE_TYPE_MASK 0x000000FF
#define EFI_STATUS_CODE_SEVERITY_MASK 0xFF000000
#define EFI_STATUS_CODE_RESERVED_MASK 0x00FFFF00

//
// Definition of code types, all other values masked by
// EFI_STATUS_CODE_TYPE_MASK are reserved for use by
// this specification.
//
#define EFI_PROGRESS_CODE 0x00000001
#define EFI_ERROR_CODE 0x00000002
#define EFI_DEBUG_CODE 0x00000003

//
// Definitions of severities, all other values masked by
// EFI_STATUS_CODE_SEVERITY_MASK are reserved for use by
// this specification.
// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error
// For example, if a memory error was not detected early enough,
// the bad data could be consumed by other drivers.
//
#define EFI_ERROR_MINOR 0x40000000
#define EFI_ERROR_MAJOR 0x80000000
#define EFI_ERROR_UNRECOVERED 0x90000000
#define EFI_ERROR_UNCONTAINED 0xa0000000

//
// Status Code Value Definition
//
typedef UINT32 EFI_STATUS_CODE_VALUE;

Services - SMM Library (SMLib)

Version 0.9 September 2003 65

//
// A Status Code Value is made up of the class, subclass, and
// an operation.
//
#define EFI_STATUS_CODE_CLASS_MASK 0xFF000000
#define EFI_STATUS_CODE_SUBCLASS_MASK 0x00FF0000
#define EFI_STATUS_CODE_OPERATION_MASK 0x0000FFFF

//
// Definition of Status Code extended data header.
// The data will follow HeaderSize bytes from the beginning of
// the structure and is Size bytes long.
//
typedef struct {

UINT16 HeaderSize;
UINT16 Size;
EFI_GUID Type;

} EFI_STATUS_CODE_DATA;

HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Type

The GUID defining the type of the data. The standard GUIDs and their associated
data structures are defined in the Intel® Platform Innovation Framework for EFI
Status Codes Specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR The function should not be completed due to a device error.

System Management Mode
Core Interface Specification (SMM CIS)

66 September 2003 Version 0.9

Version 0.9 September 2003 67

6
SMM Protocols

Introduction
The services described in this chapter describe a series of protocols that abstract the loading of
DXE drivers into SMM, manipulation of the System Management RAM (SMRAM) apertures, and
generation of System Management Interrupts (SMIs). These services have both boot services and
runtime services.

The following protocols are defined in this chapter:

• EFI_SMM_BASE_PROTOCOL

• EFI_SMM_ACCESS_PROTOCOL

• EFI_SMM_CONTROL_PROTOCOL

EFI SMM Base Protocol

EFI_SMM_BASE_PROTOCOL

Summary
This protocol is used to install SMM handlers for support of subsequent SMI/PMI activations. This
protocol is available on both IA-32 and Itanium®-based systems.

GUID
#define EFI_SMM_BASE_PROTOCOL_GUID \

{ 0x1390954D, 0xda95, 0x4227, 0x93, 0x28, 0x72, 0x82, 0xc2,
0x17, 0xda, 0xa8 }

Protocol Interface Structure
typedef struct _EFI_SMM_BASE_PROTOCOL {

EFI_SMM_REGISTER_HANDLER Register;
EFI_SMM_UNREGISTER_HANDLER UnRegister;
EFI_SMM_COMMUNICATE Communicate;
EFI_SMM_CALLBACK_SERVICE RegisterCallback;
EFI_SMM_INSIDE_OUT InSmm;
EFI_SMM_ALLOCATE_POOL SmmAllocatePool;
EFI_SMM_FREE_POOL SmmFreePool;
EFI_SMM_GET_SMST_LOCATION GetSmstLocation;

} EFI_SMM_BASE_PROTOCOL;

System Management Mode
Core Interface Specification (SMM CIS)

68 September 2003 Version 0.9

Parameters
Register

Registers a handler to run in System Management RAM (SMRAM). See the
Register() function description.

UnRegister

Removes a handler from execution in SMRAM. See the UnRegister() function
description.

Communicate

Sends/receives a message for a registered handler. See the Communicate()
function description.

RegisterCallback

Registers a callback from the constructor. See the RegisterCallback()
function description.

InSmm

Detects whether the caller is inside or outside of SMM. See the InSmm() function
description.

SmmAllocatePool

Allocates SMRAM. See the SmmAllocatePool() function description.

SmmFreePool

Deallocates SMRAM. See the SmmFreePool() function description.

GetSmstLocation

Retrieves the location of the System Management System Table (SMST). See the
GetSmstLocation() function description.

Description
The EFI_SMM_BASE_PROTOCOL is a set of services that is exported by a processor device. It is
a required protocol for the platform processor. This protocol can be used in both boot services and
runtime mode. However, only the following member functions need to exist into runtime:

• InSmm()

• Communicate()

This protocol is responsible for registering the handler services. The order in which the handlers are
executed is prescribed only with respect to the MakeLast flag in the RegisterCallback()
service. The driver exports these registration and unregistration services in boot services mode, but
the registered handlers will execute through the preboot and runtime. The only way to change the
behavior of a registered driver after ExitBootServices() has been invoked is to use some
private communication mechanism with the driver to order it to quiesce. This model permits typical
use cases, such as invoking the handler to enter ACPI mode, where the OS loader would make this
call before boot services are terminated. On the other hand, handlers for services such as chipset
workarounds for the century rollover in CMOS should provide commensurate services throughout
preboot and OS runtime.

SMM Protocols

Version 0.9 September 2003 69

For an IA-32 system, the dependency expression for the EFI_SMM_BASE_PROTOCOL driver
might contain the EFI_GUID for the EFI_SMM_CONTROL_PROTOCOL, with a DEPEX_AND
opcode combining this protocol with the EFI_SMM_ACCESS_PROTOCOL. For an Itanium-based
system, the dependency expression might contain only the EFI_GUID for the
EFI_SMM_CONTROL_PROTOCOL. This will allow the EFI_SMM_BASE_PROTOCOL driver to
load only after the one (Itanium® processor family) or two (IA-32) supporting protocols have
successfully loaded and installed their protocol interfaces.

An important additional aspect of the implementation of the driver that publishes the
EFI_SMM_BASE_PROTOCOL, which we shall call the SMM infrastructure, concerns how it
manages synchronous and asynchronous activations. Specifically, an SMI can be activated through
the Communicate() interface, using inband software on a host processor that is manipulating the
APM port through the EFI_SMM_CONTROL_PROTOCOL, for example. After the system has
transitioned to SMM in response to a synchronous SMI, such as the
EFI_SMM_BASE_PROTOCOL.Communicate(), there may be an asynchronous SMI
activation, say from a periodic source in the I/O Controller Hub (ICH) device. The infrastructure
must ensure that both activations are handled. As such, the SMM infrastructure will service the
Communicate() request because there is a software handoff that it can parse. The SMM
infrastructure, which is platform independent, will not be aware of the ICH-based pending SMI,
because the latter is a platform source that should be managed by a child driver. As such, the SMM
infrastructure should invoke all child handlers; it is up to the child handlers to decide if an exit can
occur without activating a given source.

Given the information above, the SMM infrastructure cannot exit immediately after servicing a
Communicate() or RegisterCallback() call.

System Management Mode
Core Interface Specification (SMM CIS)

70 September 2003 Version 0.9

EFI_SMM_BASE_PROTOCOL.Register()

Summary
Registers a given driver into System Management RAM (SMRAM). This function is the
equivalent of performing the LoadImage()/StartImage() call (see the EFI 1.10
Specification, section 5.4) into SMM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_REGISTER_HANDLER) (

IN struct _EFI_SMM_BASE_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
IN VOID *SourceBuffer OPTIONAL,
IN UINTN SourceSize,
OUT EFI_HANDLE *ImageHandle,
IN BOOLEAN LegacyIA32Binary OPTIONAL
)

Parameters
This

The EFI_SMM_BASE_PROTOCOL instance.

FilePath

Location of the image to be installed as the handler. Type EFI_DEVICE_PATH is
defined in the EFI 1.10 Specification.

SourceBuffer

Memory location of image to be used as handler.

SourceSize

Size of the memory image to be used for handler.

ImageHandle

The handle that the base driver uses to decode the handler. Unique among SMM
handlers only, not unique across DXE/EFI. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

LegacyIA32Binary

An optional parameter that details that the associated file is a real-mode IA-32
binary. This flag should not be used on Itanium®-based systems.

SMM Protocols

Version 0.9 September 2003 71

Description
The Register() function is the equivalent of LoadImage() for the SMM execution phase.
The SMM infrastructure code will invoke its equivalent of the start image immediately after the
driver is loaded. The registered handlers are PE32+ images that conform to the EFI image
specification. They export a single entry point that is used for both runtime dispatch and
initialization.

As part of the initialization process, the driver will be passed in its image handle and the EFI
System Table, as would any DXE driver. The driver constructor can use the EFI Boot Services to
discover the instance of the EFI_SMM_BASE_PROTOCOL that loaded the image. Additionally, the
boot service protocol services can be used to discover child dispatch protocols, and so on.

If the input handler is LegacyIA32Binary, the only interesting argument is
SourceBuffer, which is simply a pointer to a 16-bit binary image handler. The SMM
infrastructure code needs to maintain a list of 16-bit real-mode handlers that can exist only in the
SMRAM locations below 1 MB such as the A- and B-segments. The handlers will be 16-bit code
that expects to run in big-real mode or to have 32-bit pointer accessibility. The SMM infrastructure
code should maintain an array of these 16-bit handlers that are dispatched before going into
protected mode and dispatching the list of native-mode, PE32+ handlers. The 16-bit code can be
relocated to any 16-byte boundary by way of fixing of the Code Segment (CS) register before
invoking each handler.

The SMM infrastructure code will maintain a priority queue of the handlers for both 16-bit and 32-
bit native handlers for IA-32 and native 64-bit handlers for Itanium® processors.

The scheduling model of this driver is rudimentary inasmuch as the SMM infrastructure code will
exhaustively invoke every handler. This implementation will respect return codes and implement
the appropriate exit policy; see "Related Definitions" below for defined SMM handler return codes.
The behavior should be to continue exiting additional handlers on a return value of
EFI_HANDLER_SUCCESS. Return values will be in the following registers:

• 16-bit handlers: Register AX
• 32-bit handlers: Register EAX
• Itanium processors: Register R8

For return values of EFI_CRITICAL_EXIT, the system should immediately return from SMM or
the PMI state; the usage model here is that some latency-sensitive handler requires the context to
immediately return to normal execution.

Finally, for returns of EFI_HANDLER_SOURCE_QUIESCED, the system believes that it has
retired the SMI/PMI source. It is up to the main dispatcher to have acquired at least one handler
return code with the value EFI_HANDLER_SOURCE_QUIESCED. If none are received, the SMM
Dispatcher should reinvoke the handlers in case there are multiple pending sources. This re-scan
strategy is used to revisit the handlers to avoid the latency involved in reinvoking the main SMI
handler multiple times.

For native-mode handlers, the handler initialization might return a pointer to the actual handler. As
such, the functional prototype (see SMM Infrastructure Code and Dispatcher) of the IA-32 16-bit
handlers’ initialization entry point will also be their call entry point. This dual nature means that
there is no equivalent of a constructor for these service routines. The lowest address in the 16-bit
handler is also the entry point that is always invoked.

System Management Mode
Core Interface Specification (SMM CIS)

72 September 2003 Version 0.9

NOTE
The SMM handlers should be stored in firmware files as DXE drivers. The entry point behavior of
the driver will distinguish these drivers from other boot service DXE and runtime drivers. If the
latter file type is used, then the standard DXE EFI_DEPEX can be used to ensure that the driver is
not dispatched until the appropriate time. The GUIDs in this dependency expression will be those
of the other needed services. They are PE32+ images that have their subsystem type marked as
Runtime Driver for purposes of construction. The reason that these drivers need to be put into
special firmware files is to keep the DXE Dispatcher from attempting to load them autonomously.

Related Definitions
//***
//EFI SMM Handler Return Code
//***
#define EFI_HANDLER_SUCCESS 0x0000
#define EFI_HANDLER_CRITICAL_EXIT 0x0001
#define EFI_HANDLER_SOURCE_QUIESCED 0x0002
#define EFI_HANDLER_SOURCE_PENDING 0x0003

Status Codes Returned
EFI_SUCCESS The operation was successful.

EFI_OUT_OF_RESOURCES There were no additional SMRAM resources to load the handler.

EFI_UNSUPPORTED This platform does not support 16-bit handlers.

EFI_UNSUPPORTED In runtime.

EFI_INVALID_PARAMETER The handler was not the correct image type.

SMM Protocols

Version 0.9 September 2003 73

EFI_SMM_BASE_PROTOCOL.UnRegister()

Summary
Removes a handler from execution within SMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_UNREGISTER_HANDLER) (

IN struct _EFI_SMM_BASE_PROTOCOL *This,
IN EFI_HANDLE ImageHandle
)

Parameters
This

The EFI_SMM_BASE_PROTOCOL instance.

ImageHandle

The handler to be removed. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This function unloads the image from SMRAM.

Status Codes Returned
EFI_SUCCESS The operation was successful.

EFI_INVALID_PARAMETER The handler did not exist.

EFI_UNSUPPORTED In runtime.

System Management Mode
Core Interface Specification (SMM CIS)

74 September 2003 Version 0.9

EFI_SMM_BASE_PROTOCOL.Communicate()

Summary
Communicates with a registered handler

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_COMMUNICATE) (

IN struct _EFI_SMM_BASE_PROTOCOL *This,
IN EFI_HANDLE ImageHandle,
IN OUT VOID *CommunicationBuffer,
IN OUT UINTN *SourceSize
)

Parameters
This

The EFI_SMM_BASE_PROTOCOL instance.

ImageHandle

The handle of the registered driver. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

CommunicationBuffer

Pointer to the buffer to convey into SMRAM.

SourceSize

The size of the data buffer being passed in. On exit, the size of data being returned.
Zero if the handler does not wish to reply with any data.

Description
This function provides a service to send and receive messages from a registered EFI service. The
EFI_SMM_BASE_PROTOCOL driver is responsible for doing any of the copies such that the data
lives in boot-service-accessible RAM.

A given implementation of the EFI_SMM_BASE_PROTOCOL may choose to use the
EFI_SMM_CONTROL_PROTOCOL for effecting the mode transition, or it may use some processor
protocol SMI/PMI Interprocessor Interrupt (IPI) protocol service.

The agent invoking the communication interface at runtime may be virtually mapped. The SMM
infrastructure code and handlers, on the other hand, execute in physical mode. As a result, the non-
SMM agent, which may be executing in the virtual-mode OS context (as a result of an OS
invocation of the EFI 1.10 SetVirtualAddressMap() service), should use a contiguous
memory buffer with a physical address before invoking this service. If the virtual address of the
buffer is used, the SMM driver will not know how to do the appropriate virtual-to-physical
conversion.

SMM Protocols

Version 0.9 September 2003 75

To avoid confusion in interpreting frames, the CommunicateBuffer parameter should always
begin with EFI_SMM_COMMUNICATE_HEADER, which is defined in “Related Definitions”
below. The header data is mandatory for messages sent into the SMM agent.

Related Definitions
//**
// EFI_SMM_COMMUNICATE_HEADER
//**
#define SMM_COMMUNICATE_HEADER_GUID \
{F328E36C-23B6-4a95-854B-32E19534CD75}

typedef struct {
EFI_GUID HeaderGuid;
UINTN MessageLength;
UINT8 Data[1];

} EFI_SMM_COMMUNICATE_HEADER;

HeaderGuid

Allows for disambiguation of the message format. See above for the definition of
SMM_COMMUNICATE_HEADER_GUID. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

MessageLength

Describes the size of the message, not including the header.

Data

Designates an array of bytes that is MessageLength in size.

Status Codes Returned
EFI_SUCCESS The message was successfully posted

EFI_INVALID_PARAMETER The buffer was NULL.

System Management Mode
Core Interface Specification (SMM CIS)

76 September 2003 Version 0.9

EFI_SMM_BASE_PROTOCOL.RegisterCallback()

Summary
Registers a callback to execute within SMM. This allows receipt of messages created with
EFI_SMM_BASE_PROTOCOL.Communicate().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_CALLBACK_SERVICE) (

IN struct _EFI_SMM_BASE_PROTOCOL *This,
IN EFI_HANDLE SmmImageHandle,
IN EFI_SMM_CALLBACK_ENTRY_POINT CallbackAddress,
IN BOOLEAN MakeLast OPTIONAL,
IN BOOLEAN FloatingPointSave OPTIONAL
)

Parameters
This

The EFI_SMM_BASE_PROTOCOL instance.

SmmImageHandle

Handle of the callback service. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

CallbackAddress

Address of the callback service. Type EFI_SMM_CALLBACK_ENTRY_POINT is
defined in "Related Definitions" below.

MakeLast

If present, will stipulate that the handler is posted to be executed last in the dispatch
table.

FloatingPointSave

An optional parameter that informs the EFI_SMM_ACCESS_PROTOCOL driver if it
needs to save the floating point register state. If any of the handlers require this
option, then the state will be saved for all of the handlers.

Description
This service allows the registration of a callback interface from within SMM. Calling this service
from boot-services mode will result in an error. The purpose is to allow the handler to do the
following:

• Operate in response to an SMI activation
• Receive a message from a non-SMM agent

The callback should have the EFI_SMM_CALLBACK_ENTRY_POINT interface defined; see
“Related Definitions” below for its definition.

SMM Protocols

Version 0.9 September 2003 77

Each handler with the MakeLast flag should be sorted to the end of the list. In an IA-32
implementation, there is a separate queue for the 16-bit handlers that are dispatched prior to the
queue for the native 32-bit handlers. The scope of the flags is for each queue.

There can be at most one first and one last. The expectation is that the first might be a dispatcher
for child services, such as trap-register maintenance, and that the last would quiesce the source,
such as setting the End of SMI (EOS) bit in the ICH.

Related Definitions
//***
// EFI_SMM_CALLBACK_ENTRY_POINT
//***

typedef
EFI_STATUS
(EFIAPI *EFI_SMM_CALLBACK_ENTRY_POINT) (

IN EFI_HANDLE SmmImageHandle,
IN OUT VOID *CommunicationBuffer OPTIONAL,
IN OUT UINTN *SourceSize OPTIONAL
);

SmmImageHandle

A handle allocated by the SMM infrastructure code to uniquely designate a specific
DXE SMM driver. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

CommunicationBuffer

A pointer to a collection of data in memory that will be conveyed from a non-SMM
environment into an SMM environment. The buffer must be contiguous, physically
mapped, and be a physical address.

SourceSize

The size of the CommunicationBuffer.

Status Codes Returned
EFI_SUCCESS The operation was successful

EFI_OUT_OF_RESOURCES There was not enough space in the dispatch queue.

EFI_UNSUPPORTED In runtime.

EFI_UNSUPPORTED The caller is not in SMM.

System Management Mode
Core Interface Specification (SMM CIS)

78 September 2003 Version 0.9

EFI_SMM_BASE_PROTOCOL.InSmm()

Summary
Service to indicate whether the caller is already in SMM or not.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_INSIDE_OUT) (

IN struct _EFI_SMM_BASE_PROTOCOL *This,
OUT BOOLEAN *InSmm
)

Parameters
This

The EFI_SMM_BASE_PROTOCOL instance.

Boolean

Pointer to a Boolean. For IA-32, TRUE indicates that the caller is inside SMM. For
the Itanium® processor family, TRUE indicates that the caller is servicing a PMI;
FALSE if it is not.

Description
This service returns TRUE if the caller is inside SMM for IA-32 or servicing a PMI for the Itanium
processor family. This function is useful because it allows the same constructor in the SMM driver
to have the following two control paths:

• InSmm == FALSE: Can use boot services and allocate conventional memory.
• InSmm == TRUE: Can allocate SMRAM and perform other services.

Status Codes Returned
EFI_SUCCESS The call returned successfully.

EFI_INVALID_PARAMETER InSmm was NULL.

 SMM Protocols

Version 0.9 September 2003 79

EFI_SMM_BASE_PROTOCOL.SmmAllocatePool()

Summary
Allocates pool memory from SMRAM for IA-32 or runtime memory for the Itanium® processor
family.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_ALLOCATE_POOL) (

IN struct _EFI_SMM_BASE_PROTOCOL *This,
IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size,
OUT VOID **Buffer
)

Parameters
This

The EFI_SMM_BASE_PROTOCOL instance.

PoolType

The type of pool to allocate. The only supported type is
EfiRuntimeServicesData; the interface will internally map this runtime
request to SMRAM for IA-32 and leave as this type for the Itanium processor family.
Other types can be ignored. Type EFI_MEMORY_TYPE is defined in
AllocatePages() in the EFI 1.10 Specification.

Size

The number of bytes to allocate from the pool.

Buffer

A pointer to a pointer to the allocated buffer if the call succeeds; undefined
otherwise.

Description
This function allocates a memory region of Size bytes from memory of type PoolType and
returns the address of the allocated memory in the location that is referenced by Buffer. This
function allocates pages from EFI SMRAM memory for IA-32 as needed to grow the requested
pool type. All allocations are 8-byte aligned.

PoolType can be ignored in that the type will always be SMRAM for IA-32 and runtime memory
for the Itanium processor family.

The allocated pool memory is returned to the available pool with the SmmFreePool() function.

System Management Mode
Core Interface Specification (SMM CIS)

80 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_UNSUPPORTED In runtime.

SMM Protocols

Version 0.9 September 2003 81

EFI_SMM_BASE_PROTOCOL.SmmFreePool()

Summary
Returns pool memory to the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_FREE_POOL) (

IN struct _EFI_SMM_BASE_PROTOCOL *This,
IN VOID *Buffer
)

Parameters
This

The EFI_SMM_BASE_PROTOCOL instance.

Buffer

Pointer to the buffer to free.

Description
This function returns the memory specified by Buffer to the system. On return, the memory’s
type is EFI SMRAM memory. The Buffer that is freed must have been allocated by
SmmAllocatePool().

Status Codes Returned
EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.

EFI_UNSUPPORTED In runtime.

System Management Mode
Core Interface Specification (SMM CIS)

82 September 2003 Version 0.9

EFI_SMM_BASE_PROTOCOL.GetSmstLocation()

Summary
Returns the location of the System Management Service Table (SMST).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_GET_SMST_LOCATION) (

IN struct _EFI_SMM_BASE_PROTOCOL *This,
IN OUT EFI_SMM_SYSTEM_TABLE **Smst
)

Parameters
This

The EFI_SMM_BASE_PROTOCOL instance.

Smst

Pointer to the SMST.

Description
This function returns the location of the System Management Service Table (SMST). The use of
the API is such that a driver can discover the location of the SMST in its entry point and then cache
it in some driver global variable so that the SMST can be invoked in subsequent callbacks.

Status Codes Returned
EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Smst was invalid.

EFI_UNSUPPORTED Not in SMM.

SMM Protocols

Version 0.9 September 2003 83

SMM Access Protocol

EFI_SMM_ACCESS_PROTOCOL

Summary
This protocol is used to control the visibility of the SMRAM on the platform. The expectation is
that the north bridge or memory controller would publish this protocol. For example, the Memory
Controller Hub (MCH) has the hardware provision for this type of control. Because of the
protected, distinguished class of memory for IA-32 systems, the expectation is that this protocol
would be supported only on IA-32 systems.

GUID
#define EFI_SMM_ACCESS_PROTOCOL_GUID \

{ 0x3792095a, 0xe309, 0x4c1e, 0xaa, 0x01, 0x85, 0xf5, 0x65,
0x5a, 0x17, 0xf1 }

Protocol Interface Structure
typedef struct _EFI_SMM_ACCESS_PROTOCOL {

EFI_SMM_OPEN Open;
EFI_SMM_CLOSE Close;
EFI_SMM_LOCK Lock;
EFI_SMM_CAPABILITIES GetCapabilities;
BOOLEAN LockState;
BOOLEAN OpenState;

} EFI_SMM_ACCESS_PROTOCOL;

Parameters
Open

Opens the SMRAM. See the Open() function description.

Close

Closes the SMRAM. See the Close() function description.

Lock

Locks the SMRAM. See the Lock() function description.

GetCapabilities

Gets information on possible SMRAM regions. See the GetCapabilities()
function description.

LockState

Indicates the current state of the SMRAM. Set to TRUE if any region is locked.

OpenState

Indicates the current state of the SMRAM. Set to TRUE if any region is open.

System Management Mode
Core Interface Specification (SMM CIS)

84 September 2003 Version 0.9

Description
The EFI_SMM_ACCESS_PROTOCOL is used on the platform chipset device. It is a required
protocol for a platform chipset. This protocol is useable only in boot-service mode. There is no
analogous runtime protocol.

The principal role of this protocol interface is to provide an abstraction for the memory controller
manipulation of SMRAM. This type of capability is available only on IA-32 platforms, where the
SMRAM is an actual processor mode with bus cycles that allow the chipset to generate special
SMRAM decodes. This being said, the principal functionality found in the memory controller
includes the following:

• Exposing the SMRAM to all non-SMM agents, or the "open" state
• Shrouding the SMRAM to all but the SMM agents, or the "closed" state
• Preserving the system integrity, or "locking" the SMRAM, such that the settings cannot be

perturbed by either boot service or runtime agents

This protocol will be published in the same fashion as other non-EFI Driver Model EFI drivers. It
will not have a binding protocol. Instead, the driver should be stored in a firmware file as any other
EFI driver.

SMM Protocols

Version 0.9 September 2003 85

EFI_SMM_ACCESS_PROTOCOL.Open()

Summary
Opens the SMRAM area to be accessible by a boot-service driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_OPEN) (

IN struct _EFI_SMM_ACCESS_PROTOCOL *This,
UINTN DescriptorIndex
);

Parameters
This

The EFI_SMM_ACCESS_PROTOCOL instance.

DescriptorIndex

Indicates that the driver wishes to open the memory tagged by this index.
DescriptorIndex is an offset into the list of EFI_SMRAM_DESCRIPTOR data
structures that describe the possible SMRAM mappings. Type
EFI_SMRAM_DESCRIPTOR is defined in
EFI_SMM_ACCESS_PROTOCOL.GetCapabilities().

Description
This function enables access to the SMRAM region for purposes of copying handlers. This service
is an abstraction of a programmatic access to some hardware that enables decode of the SMRAM
from the boot service space.

Status Codes Returned
EFI_SUCCESS The operation was successful.

EFI_INVALID_PARAMETER The given DescriptorIndex is not supported.

EFI_NOT_STARTED The SMM base service has not been initialized.

System Management Mode
Core Interface Specification (SMM CIS)

86 September 2003 Version 0.9

EFI_SMM_ACCESS_PROTOCOL.Close()

Summary
Inhibits access to the SMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_CLOSE) (

IN struct _EFI_SMM_ACCESS_PROTOCOL *This,
UINTN DescriptorIndex
);

Parameters
This

The EFI_SMM_ACCESS_PROTOCOL instance.

DescriptorIndex

Indicates that the driver wishes to open the memory tagged by this index.
DescriptorIndex is an offset into the list of EFI_SMRAM_DESCRIPTOR data
structures that describe the possible SMRAM mappings. Type
EFI_SMRAM_DESCRIPTOR is defined in
EFI_SMM_ACCESS_PROTOCOL.GetCapabilities().

Related Definitions
This function disables access to the SMRAM region for purposes of copying handlers. This service
is an abstraction of a programmatic access to some hardware that disables decode of the SMRAM
from the boot service space.

Status Codes Returned
EFI_SUCCESS The operation was successful.

EFI_DEVICE_ERROR The given DescriptorIndex is not open.

EFI_INVALID_PARAMETER The given DescriptorIndex is not supported.

EFI_NOT_STARTED The SMM base service has not been initialized.

SMM Protocols

Version 0.9 September 2003 87

EFI_SMM_ACCESS_PROTOCOL.Lock()

Summary
Inhibits access to the SMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_LOCK) (

IN struct _EFI_SMM_ACCESS_PROTOCOL *This,
UINTN DescriptorIndex
);

Parameters
This

The EFI_SMM_ACCESS_PROTOCOL instance.

DescriptorIndex

Indicates that the driver wishes to open the memory tagged by this
index. DescriptorIndex is an offset into the list of
EFI_SMRAM_DESCRIPTOR data structures that describe the possible SMRAM
mappings. Type EFI_SMRAM_DESCRIPTOR is defined in
EFI_SMM_ACCESS_PROTOCOL.GetCapabilities().

Related Definitions
This function prohibits access to the SMRAM region. This function is usually implemented such
that it is a write-once operation. An implementation of the EFI_SMM_ACCESS_PROTOCOL
should register a notification on ExitBootServices() to at least lock the system at this point,
if it was not already locked by an earlier agent.

Status Codes Returned
EFI_SUCCESS The device was successfully locked.

EFI_DEVICE_ERROR The given DescriptorIndex is not open.

EFI_INVALID_PARAMETER The given DescriptorIndex is not supported.

EFI_NOT_STARTED The SMM base service has not been initialized.

System Management Mode
Core Interface Specification (SMM CIS)

88 September 2003 Version 0.9

EFI_SMM_ACCESS_PROTOCOL.GetCapabilities()

Summary
Queries the memory controller for the possible regions that will support SMRAM. This protocol is
optional for Itanium®-based systems but mandatory for IA-32.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_CAPABILITIES) (

IN struct _EFI_SMM_ACCESS_PROTOCOL *This,
IN OUT UINTN *SmramMapSize,
IN OUT EFI_SMRAM_DESCRIPTOR *SmramMap
);

Parameters
This

The EFI_SMM_ACCESS_PROTOCOL instance.

SmramMapSize

A pointer to the size, in bytes, of the SmramMemoryMap buffer. On input, this value
is the size of the buffer that is allocated by the caller. On output, it is the size of the
buffer that was returned by the firmware if the buffer was large enough, or, if the
buffer was too small, the size of the buffer that is needed to contain the map.

SmramMap

A pointer to the buffer in which firmware places the current memory map. The map
is an array of EFI_SMRAM_DESCRIPTORs. Type EFI_SMRAM_DESCRIPTOR is
defined in “Related Definitions” below.

Description
This function enables access to the SMRAM region for purposes of copying handlers.

This data structure forms the contract between the SMM_ACCESS and SMM_BASE drivers. There is
an ambiguity when any SMRAM region is remapped. For example, on some chipsets, H-SEG can
be initialized at physical address 0xA0000–0xBFFFFh but is later accessed at the processor address
0xFEEA00000–0xFEEBFFFFF. There is currently no way for the SMM_BASE driver to know that
it must use two different addresses depending on what it is trying to do. As a result, initial
configuration and loading can use the physical address PhysicalStart while in non-SMM,
boot services mode. However, once the region has been opened and needs to be accessed by agents
in SMM, the CpuStart address must be used.

This protocol publishes the available memory that the chipset can shroud for the use of installing
code. This API is not useful for Itanium-based systems in that there is no distinguished bus cycle
from code running after a PMI is invoked, so in this case just runtime memory allocation should
suffice. For IA-32, however, there are chipset provisions for providing SMRAM capability near the
top of the physical memory or in locations such as behind the legacy frame buffer.

SMM Protocols

Version 0.9 September 2003 89

These regions serve the dual purpose of describing which regions have been open, closed, or
locked. In addition, these regions may include overlapping memory ranges, depending on the
chipset implementation. The latter might include a chipset that supports T-SEG, where memory
near the top of the physical DRAM can be allocated for SMRAM too.

The key thing to note is that the regions that are described by the protocol are a subset of the
capabilities of the hardware. The subset of the regions that are exposed include those that are
conveyed in the platform-specific implementation of this driver or using the HOB handoff from a
platform PEIM into a portable version of this driver. In the latter case, the HOB is defined in
PEI Support.

Related Definitions
//***
//EFI_SMRAM_STATE
//***
#define EFI_SMRAM_OPEN 0x00000001
#define EFI_SMRAM_CLOSED 0x00000002
#define EFI_SMRAM_LOCKED 0x00000004
#define EFI_CACHEABLE 0x00000008
#define EFI_ALLOCATED 0x00000010

//***
// EFI_SMRAM_DESCRIPTOR
//***
typedef struct _EFI_SMRAM_DESCRIPTOR {

EFI_PHYSICAL_ADDRESS PhysicalStart;
EFI_PHYSICAL_ADDRESS CpuStart;
UINT64 PhysicalSize;
UINT64 RegionState;

} EFI_SMRAM_DESCRIPTOR;

PhysicalStart

Designates the physical address of the SMRAM in memory. This view of memory is
the same as seen by I/O-based agents, for example, but it may not be the address seen
by the processors. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the EFI 1.10 Specification.

CpuStart

Designates the address of the SMRAM, as seen by software executing on the
processors. This address may or may not match PhysicalStart.

PhysicalSize

Describes the number of bytes in the SMRAM region.

RegionState

Describes the accessibility attributes of the SMRAM.

System Management Mode
Core Interface Specification (SMM CIS)

90 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The chipset supported the given resource.

EFI_BUFFER_TOO_SMALL The SmramMap parameter was too small. The current buffer size
needed to hold the memory map is returned in SmramMapSize.

SMM Protocols

Version 0.9 September 2003 91

SMM Control Protocol

EFI_SMM_CONTROL_PROTOCOL

Summary
This protocol is used initiate SMI/PMI activations. This protocol could be published by either of
the following:

• A processor driver to abstract the SMI/PMI IPI
• The driver that abstracts the ASIC that is supporting the APM port, such as the ICH in an

Intel® chipset

Because of the possibility of performing SMI or PMI IPI transactions, the ability to generate this
event from a platform chipset agent is an optional capability for both IA-32 and Itanium®-based
systems.

GUID
#define EFI_SMM_CONTROL_PROTOCOL_GUID \

{ 0x8d12e231, 0xc667, 0x4fd1, 0x98, 0xf2, 0x24, 0x49, 0xa7,
0xe7, 0xb2, 0xe5 }

Protocol Interface Structure
typedef struct _EFI_SMM_CONTROL_PROTOCOL {

EFI_SMM_ACTIVATE Trigger;
EFI_SMM_DEACTIVATE Clear;
EFI_SMM_GET_REGISTER_INFO GetRegisterInfo;
UINTN MinimumTriggerPeriod;

} EFI_SMM_CONTROL_PROTOCOL;

Parameters
Trigger

Initiates the SMI/PMI activation. See the Trigger() function description.

Clear

Quiesces the SMI/PMI activation. See the Clear() function description.

GetRegisterInfo

Provides data on the register used as the source of the SMI. See the
GetRegisterInfo() function description.

MinimumTriggerPeriod

Minimum interval at which the platform can set the period. A maximum is not
specified in that the SMM infrastructure code can emulate a maximum interval that is
greater than the hardware capabilities by using software emulation in the SMM
infrastructure code. Type EFI_SMM_PERIOD is defined in "Related Definitions"
below.

System Management Mode
Core Interface Specification (SMM CIS)

92 September 2003 Version 0.9

Description
The EFI_SMM_CONTROL_PROTOCOL is used by the platform chipset or processor driver. This
protocol is useable both in boot services and runtime. The runtime aspect is so that an
implementation of EFI_SMM_BASE_PROTOCOL.Communicate() can layer upon this service
and provide an SMI callback from a general EFI runtime driver.

The purpose of this protocol is to provide an abstraction to the platform hardware that generates an
SMI or PMI. There are often I/O ports that, when accessed, will engender the SMI or PMI. Also,
this hardware optionally supports the periodic generation of these signals.

Related Definitions
//**
// EFI_SMM_PERIOD
//**
typedef EFI_SMM_PERIOD UINTN

The period is in increments of 10 ns.

SMM Protocols

Version 0.9 September 2003 93

EFI_SMM_CONTROL_PROTOCOL.Trigger()

Summary
Invokes SMI activation from either the preboot or runtime environment.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_ACTIVATE) (

IN struct _EFI_SMM_CONTROL_PROTOCOL *This,
IN OUT INT8 *ArgumentBuffer OPTIONAL,
IN OUT UINTN *ArgumentBufferSize

OPTIONAL,
IN BOOLEAN Periodic OPTIONAL,
IN UINTN ActivationInterval

OPTIONAL
);

Parameters
This

The EFI_SMM_CONTROL_PROTOCOL instance.

ArgumentBuffer

Optional sized data to pass into the protocol activation. This data might be a value
written to an APM port, for example.

ArgumentBufferSize

Optional size of the data.

Periodic

Optional mechanism to engender a periodic stream.

ActivationInterval

Optional parameter to repeat at this period one time or, if the Periodic Boolean is
set, periodically.

Description
This function engenders the PMI/SMI activation.

Status Codes Returned
EFI_SUCCESS The SMI/PMI has been engendered.

EFI_DEVICE_ERROR The timing is unsupported.

EFI_INVALID_PARAMETER The activation period is unsupported.

EFI_NOT_STARTED The SMM base service has not been initialized.

System Management Mode
Core Interface Specification (SMM CIS)

94 September 2003 Version 0.9

EFI_SMM_CONTROL_PROTOCOL.Clear()

Summary
Clears any system state that was created in response to the Trigger() call.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_DEACTIVATE) (

IN struct _EFI_SMM_CONTROL_PROTOCOL *This,
IN BOOLEAN Periodic OPTIONAL
);

Parameters
This

The EFI_SMM_CONTROL_PROTOCOL instance.

Periodic

Optional parameter to repeat at this period one time or, if the Periodic Boolean is
set, periodically.

Description
This function acknowledges and causes the deassertion of the PMI/SMI activation source.

Status Codes Returned
EFI_SUCCESS The SMI/PMI has been engendered.

EFI_DEVICE_ERROR The source could not be cleared.

EFI_INVALID_PARAMETER The service did not support the Periodic input argument.

SMM Protocols

Version 0.9 September 2003 95

EFI_SMM_CONTROL_PROTOCOL.GetRegisterInfo()

Summary
Provides information on the source register used to generate the SMI.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_GET_REGISTER_INFO) (

IN EFI_SMM_CONTROL_PROTOCOL *This,
IN OUT EFI_SMM_CONTROL_REGISTER *SmiRegister

);

Parameters
This

Pointer to the EFI_SMM_CONTROL_PROTOCOL instance.

SmiRegister

Pointer to the SMI register description structure. Type
EFI_SMM_CONTROL_REGISTER is defined in "Related Definitions" below.

Description
The GetRegisterInfo() function provides information on the state of the activation
mechanism that is used for a synchronous SMI. Specifically, there are two types of SMI
generation:

• Synchronous
• Asynchronous

The former would include Trigger() activations, and the latter would include periodic or I/O
traps. See EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL for more information on
periodic traps.

This service can be used by a processor-specific driver that publishes the
EFI_SMM_BASE_PROTOCOL to discriminate between synchronous and asynchronous sources.

Related Definitions
//***
// EFI_SMM_CONTROL_REGISTER
//***

typedef struct {
UINT8 SmiTriggerRegister;
UINT8 SmiDataRegister;

} EFI_SMM_CONTROL_REGISTER

System Management Mode
Core Interface Specification (SMM CIS)

96 September 2003 Version 0.9

SmiTriggerRegister

Describes the I/O location of the particular port that engendered the synchronous
SMI. For example, this location can include but is not limited to the traditional PC-
AT* APM port of 0B2h.

SmiDataRegister

Describes the value that was written to the respective activation port.

Status Codes Returned
EFI_SUCCESS The register structure has been returned.

Version 0.9 September 2003 97

7
SMM Child Dispatch Protocols

Introduction
The services described in this chapter describe a series of protocols that abstract installation of
handlers for a chipset-specific SMM design. As opposed to the
EFI_SMM_BASE_PROTOCOL.Register() service, these services are called from the SMM
driver constructors while in SMM. As such, these services are all scoped to be usable only from
within SMRAM.

The following protocols are defined in this chapter:

• EFI_SMM_SW_DISPATCH_PROTOCOL

• EFI_SMM_SX_DISPATCH_PROTOCOL

• EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL

• EFI_SMM_USB_DISPATCH_PROTOCOL

• EFI_SMM_GPI_DISPATCH_PROTOCOL

• EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL

• EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL

SMM Software Dispatch Protocol

EFI_SMM_SW_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for a given SMI source generator.

GUID
#define EFI_SMM_SW_DISPATCH_PROTOCOL_GUID \

{ 0xe541b773, 0xdd11, 0x420c, 0xb0, 0x26, 0xdf, 0x99, 0x36, 0x53,
0xf8, 0xbf }

Protocol Interface Structure
typedef struct _EFI_SMM_ICHN_DISPATCH_PROTOCOL {

EFI_SMM_SW_REGISTER Register;
EFI_SMM_SW_UNREGISTER UnRegister;
UINTN MaximumSwiValue;

} EFI_SMM_ICHN_DISPATCH_PROTOCOL;

System Management Mode
Core Interface Specification (SMM CIS)

98 September 2003 Version 0.9

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

MaximumSwiValue

A read-only field that describes the maximum value that can be used in the
EFI_SMM_SW_DISPATCH_PROTOCOL.Register() service.

Description
The EFI_SMM_SW_DISPATCH_PROTOCOL provides the ability to install child handlers for the
given software. These handlers will respond to software interrupts, and the maximum software
interrupt in the EFI_SMM_SW_DISPATCH_CONTEXT is denoted by MaximumSwiValue.

SMM Child Dispatch Protocols

Version 0.9 September 2003 99

EFI_SMM_SW_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_SW_REGISTER) (

IN struct _EFI_SMM_SW_DISPATCH_PROTOCOL *This,
IN EFI_SMM_SW_DISPATCH DispatchFunction,
IN EFI_SMM_SW_DISPATCH_CONTEXT *DispatchContext,
OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_SW_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to install. Type EFI_SMM_SW_DISPATCH is defined in "Related
Definitions" below.

DispatchContext

Pointer to the dispatch function’s context. The caller fills in this context before
calling the Register() function to indicate to the Register() function the
software SMI input value for which the dispatch function should be invoked. Type
EFI_SMM_SW_DISPATCH_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

Description
This service registers a given instance of the given source.

System Management Mode
Core Interface Specification (SMM CIS)

100 September 2003 Version 0.9

Related Definitions
//**
// EFI_SMM_SW_DISPATCH
//**
typedef
VOID
(EFIAPI *EFI_SMM_SW_DISPATCH) (

IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SW_DISPATCH_CONTEXT *DispatchContext
);

DispatchHandle

Handle of this dispatch function. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DispatchContext

Pointer to the dispatch function’s context. The DispatchContext fields are filled
in by the software dispatching driver prior to invoking this dispatch function. The
dispatch function will only be called for input values for which it is registered. Type
EFI_SMM_SW_DISPATCH_CONTEXT is defined below.

//**
// EFI_SMM_SW_DISPATCH_CONTEXT
//**
//
// A particular chipset may not support all possible software SMI
// input values. For example, the ICH supports only values 00h to
// 0FFh. The parent only allows a single child registration for
// each SwSmiInputValue.
//
typedef struct {

UINTN SwSmiInputValue;
} EFI_SMM_SW_DISPATCH_CONTEXT;

SwSmiInputValue

A number that is used during the registration process to tell the dispatcher which
software input value to use to invoke the given handler.

SMM Child Dispatch Protocols

Version 0.9 September 2003 101

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER DispatchContext is invalid. The SW SMI input value is
not within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.

System Management Mode
Core Interface Specification (SMM CIS)

102 September 2003 Version 0.9

EFI_SMM_SW_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a software service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_SW_UNREGISTER) (

IN struct _EFI_SMM_SW_DISPATCH_PROTOCOL *This,
IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_SW_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service will remove a handler.

Status Codes Returned
EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

SMM Child Dispatch Protocols

Version 0.9 September 2003 103

SMM Sx Dispatch Protocol

EFI_SMM_SX_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for a given Sx-state source generator.

GUID
#define EFI_SMM_SX_DISPATCH_PROTOCOL_GUID \

{ 0x14fc52be, 0x1dc, 0x426c, 0x91, 0xae, 0xa2, 0x3c, 0x3e,
0x22, 0xa, 0xe8 }

Protocol Interface Structure
typedef struct _EFI_SMM_SX_DISPATCH_PROTOCOL {

EFI_SMM_SX_REGISTER Register;
EFI_SMM_SX_UNREGISTER UnRegister;

} EFI_SMM_SX_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_SMM_SX_DISPATCH_PROTOCOL provides the ability to install child handlers for the
given event types.

System Management Mode
Core Interface Specification (SMM CIS)

104 September 2003 Version 0.9

EFI_SMM_SX_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given Sx source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_SX_REGISTER) (

IN struct _EFI_SMM_SX_DISPATCH_PROTOCOL *This,
IN EFI_SMM_SX_DISPATCH DispatchFunction,
IN EFI_SMM_SX_DISPATCH_CONTEXT *DispatchContext,
OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_SX_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to install. Type EFI_SMM_SX_DISPATCH is defined in "Related
Definitions" below.

DispatchContext

Pointer to the dispatch function's context. The caller in fills this context before calling
the Register() function to indicate to the Register() function on which Sx
state type and phase the caller wishes to be called back. For this interface, the Sx
driver will call the registered handlers for all Sx type and phases, so the Sx state
handler(s) must check the Type and Phase field of
EFI_SMM_SX_DISPATCH_CONTEXT and act accordingly.

DispatchHandle

Handle of the dispatch function, for when interfacing with the parent Sx state SMM
driver. Type EFI_HANDLE is defined in InstallProtocolInterface() in
the EFI 1.10 Specification.

Description
This service registers a given instance of the given source.

SMM Child Dispatch Protocols

Version 0.9 September 2003 105

Related Definitions
//**
// EFI_SMM_SX_DISPATCH
//**
typedef
VOID
(EFIAPI *EFI_SMM_SX_DISPATCH) (

IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SX_DISPATCH_CONTEXT *DispatchContext
);

DispatchHandle

Handle of this dispatch function. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DispatchContext

Pointer to the dispatch function’s context. The Type and Phase fields are filled in
by the Sx dispatch driver prior to invoking this dispatch function. For this interface,
the Sx driver will call the dispatch function for all Sx type and phases, so the Sx state
handler(s) must check the Type and Phase field of
EFI_SMM_SX_DISPATCH_CONTEXT and act accordingly. Type
EFI_SMM_SX_DISPATCH_CONTEXT is defined below.

//**
// EFI_SMM_SX_DISPATCH_CONTEXT
//**
typedef struct {

EFI_SLEEP_TYPE Type;
EFI_SLEEP_PHASE Phase;

} EFI_SMM_SX_DISPATCH_CONTEXT;

//**
// EFI_SLEEP_TYPE
//**
typedef enum {

SxS0,
SxS1,
SxS2,
SxS3,
SxS4,
SxS5,
EfiMaximumSleepType

} EFI_SLEEP_TYPE;

System Management Mode
Core Interface Specification (SMM CIS)

106 September 2003 Version 0.9

//**
// EFI_SLEEP_PHASE
//**
typedef enum {

SxEntry,
SxExit,
EfiMaximumPhase

} EFI_SLEEP_PHASE;

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_UNSUPPORTED The Sx driver or hardware does not support that Sx
Type/Phase.

EFI_DEVICE_ERROR The Sx driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER DispatchContext is invalid. The ICHN input value is not
within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.

SMM Child Dispatch Protocols

Version 0.9 September 2003 107

EFI_SMM_SX_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters an Sx-state service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_SX_UNREGISTER) (

IN struct _EFI_SMM_SX_DISPATCH_PROTOCOL *This,
IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_SX_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service removes a handler.

Status Codes Returned
EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

System Management Mode
Core Interface Specification (SMM CIS)

108 September 2003 Version 0.9

SMM Periodic Timer Dispatch Protocol

EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the periodical timer SMI source generator.

GUID
#define EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL_GUID \

{ 0x9cca03fc, 0x4c9e, 0x4a19, 0x9b, 0x6, 0xed, 0x7b, 0x47, 0x9b,
0xde, 0x55 }

Protocol Interface Structure
typedef struct _EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL {

EFI_SMM_PERIODIC_TIMER_REGISTER Register;
EFI_SMM_PERIODIC_TIMER_UNREGISTER UnRegister;
EFI_SMM_PERIODIC_TIMER_INTERVAL GetNextShorterInterval;

} EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

GetNextShorterInterval

Returns the next SMI tick period that is supported by the chipset. See the
GetNextShorterInterval() function description.

Description
The EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL provides the ability to install child
handlers for the given event types.

SMM Child Dispatch Protocols

Version 0.9 September 2003 109

EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_PERIODIC_TIMER_REGISTER) (

IN struct _EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL *This,
IN EFI_SMM_PERIODIC_TIMER_DISPATCH

DispatchFunction,
IN EFI_SMM_PERIODIC_TIMER_DISPATCH_CONTEXT

*DispatchContext,
OUT EFI_HANDLE

*DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to install. Type EFI_SMM_PERIODIC_TIMER_DISPATCH is defined in
"Related Definitions" below.

DispatchContext

Pointer to the dispatch function's context. The caller fills this context in before calling
the Register() function to indicate to the Register() function the period at
which the dispatch function should be invoked. Type
EFI_SMM_PERIODIC_TIMER_DISPATCH_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

Description
This service registers a given instance of the given source.

System Management Mode
Core Interface Specification (SMM CIS)

110 September 2003 Version 0.9

Related Definitions
//***
// EFI_SMM_PERIODIC_TIMER_DISPATCH
//***

typedef
VOID
(EFIAPI *EFI_SMM_PERIODIC_TIMER_DISPATCH) (

IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_PERIODIC_TIMER_DISPATCH_CONTEXT *DispatchContext
);

DispatchHandle

Handle of this dispatch function. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DispatchContext

Pointer to the dispatch function’s context. The DispatchContext fields are filled
in by the dispatching driver prior to invoking this dispatch function. Type
EFI_SMM_PERIODIC_TIMER_DISPATCH_CONTEXT is defined in "Related
Definitions" below.

//***
// EFI_SMM_PERIODIC_TIMER_DISPATCH_CONTEXT
//***

typedef struct {
UINT64 Period;
UINT64 SmiTickInterval;
UINT64 ElapsedTime;

} EFI_SMM_PERIODIC_TIMER_DISPATCH_CONTEXT;

Period

The minimum period of time in 100 nanosecond units that the child gets called. The
child will be called back after a time greater than the time Period.

SmiTickInterval

The period of time interval between SMIs. Children of this interface should use this
field when registering for periodic timer intervals when a finer granularity periodic
SMI is desired.

SMM Child Dispatch Protocols

Version 0.9 September 2003 111

Example: A chipset supports periodic SMIs on every 64 ms or 2 seconds. A child
wishes to schedule a periodic SMI to fire on a period of 3 seconds. There are several
ways to approach the problem:

• The child may accept a 4 second periodic rate, in which case it registers with the
following:
Period = 40000
SmiTickInterval = 20000

The resulting SMI will occur every 2 seconds with the child called back on every
second SMI.

NOTE
The same result would occur if the child set SmiTickInterval = 0.

• The child may choose the finer granularity SMI (64 ms):
Period = 30000
SmiTickInterval = 640

The resulting SMI will occur every 64 ms with the child called back on every 47th
SMI.

NOTE
The child driver should be aware that this will result in more SMIs occurring during
system runtime, which can negatively impact system performance.

ElapsedTime

The actual time in 100 nanosecond units elapsed since last called. A value of 0
indicates an unknown amount of time.

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER DispatchContext is invalid. The ICHN input value is not
within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.

System Management Mode
Core Interface Specification (SMM CIS)

112 September 2003 Version 0.9

EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a periodic timer service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_PERIODIC_TIMER_UNREGISTER) (

IN struct _EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL *This,
IN EFI_HANDLE

DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service removes a handler.

Status Codes Returned
EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

SMM Child Dispatch Protocols

Version 0.9 September 2003 113

EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL.
GetNextShorterInterval()

Summary
Returns the next SMI tick period that is supported by the chipset.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_PERIODIC_TIMER_INTERVAL) (

IN struct _EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL *This,
IN OUT UINT64

**SmiTickInterval
);

Parameters
This

Pointer to the EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL instance.

SmiTickInterval

Pointer to pointer of the next shorter SMI interval period that is supported by the
child. This parameter works as a get-first, get-next field. The first time that this
function is called, *SmiTickInterval should be set to NULL to get the longest
SMI interval. The returned *SmiTickInterval should be passed in on
subsequent calls to get the next shorter interval period until
*SmiTickInterval = NULL.

Description
This services returns the next SMI tick period that is supported by the chipset. The order returned
is from longest to shortest interval period.

Status Codes Returned
EFI_SUCCESS The service returned successfully.

System Management Mode
Core Interface Specification (SMM CIS)

114 September 2003 Version 0.9

SMM USB Dispatch Protocol

EFI_SMM_USB_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the USB SMI source generator.

GUID
#define EFI_SMM_USB_DISPATCH_PROTOCOL_GUID \

{ 0xa05b6ffd, 0x87af, 0x4e42, 0x95, 0xc9, 0x62, 0x28, 0xb6, 0x3c,
0xf3, 0xf3 }

Protocol Interface Structure
typedef struct _EFI_SMM_USB_DISPATCH_PROTOCOL {

EFI_SMM_USB_REGISTER Register;
EFI_SMM_USB_UNREGISTER UnRegister;

} EFI_SMM_USB_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_SMM_USB_DISPATCH_PROTOCOL provides the ability to install child handlers for the
given event types.

SMM Child Dispatch Protocols

Version 0.9 September 2003 115

EFI_SMM_USB_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for the USB SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_USB_REGISTER) (

IN struct _EFI_SMM_USB_DISPATCH_PROTOCOL *This,
IN EFI_SMM_USB_DISPATCH DispatchFunction,
IN EFI_SMM_USB_DISPATCH_CONTEXT *DispatchContext,
OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_USB_DISPATCH_PROTOCOL instance.

DispatchFunction

Pointer to dispatch function to be invoked for this SMI source. Type
EFI_SMM_USB_DISPATCH is defined in "Related Definitions" below.

DispatchContext

Pointer to the dispatch function’s context. The caller fills this context in before
calling the Register() function to indicate to the Register() function the
USB SMI source for which the dispatch function should be invoked. Type
EFI_SMM_USB_DISPATCH_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

Description
This service registers a given instance of the given source.

System Management Mode
Core Interface Specification (SMM CIS)

116 September 2003 Version 0.9

Related Definitions
//**
// EFI_SMM_USB_DISPATCH
//**

typedef
VOID
(EFIAPI *EFI_SMM_USB_DISPATCH) (

IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_USB_DISPATCH_CONTEXT *DispatchContext
);

DispatchHandle

Handle of this dispatch function. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DispatchContext

Pointer to the dispatch function’s context. The DispatchContext fields are filled
in by the dispatching driver prior to invoking this dispatch function. Type
EFI_SMM_USB_DISPATCH_CONTEXT is defined below.

//**
// EFI_SMM_USB_DISPATCH_CONTEXT
//**

typedef struct {
EFI_USB_SMI_TYPE Type;
EFI_DEVICE_PATH_PROTOCOL *Device;

} EFI_SMM_USB_DISPATCH_CONTEXT;

Type

Describes whether this child handler will be invoked in response to a USB legacy
emulation event, such as port-trap on the PS/2* keyboard control registers, or to a
USB wake event, such as resumption from a sleep state. Type
EFI_USB_SMI_TYPE is defined below.

Device

The device path is part of the context structure and describes the location of the
particular USB host controller in the system for which this register event will occur.
This location is important because of the possible integration of several USB host
controllers in a system. Type EFI_DEVICE_PATH is defined in the EFI 1.10
Specification.

SMM Child Dispatch Protocols

Version 0.9 September 2003 117

//**
// EFI_USB_SMI_TYPE
//**
typedef enum {

UsbLegacy,
UsbWake

} EFI_USB_SMI_TYPE;

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully registered and the SMI

source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER DispatchContext is invalid. The ICHN input value is not
within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this child.

System Management Mode
Core Interface Specification (SMM CIS)

118 September 2003 Version 0.9

EFI_SMM_USB_DISPATCH_PROTOCOL. UnRegister()

Summary
Unregisters a USB service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_USB_UNREGISTER) (

IN struct _EFI_SMM_USB_DISPATCH_PROTOCOL *This,
IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_USB_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service removes a handler.

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully unregistered and the

SMI source has been disabled, if there are no other registered child
dispatch functions for this SMI source.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

SMM Child Dispatch Protocols

Version 0.9 September 2003 119

SMM General Purpose Input (GPI) Dispatch Protocol

EFI_SMM_GPI_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the General Purpose Input (GPI) SMI source generator.

GUID
#define EFI_SMM_GPI_DISPATCH_PROTOCOL_GUID \

{ 0xe0744b81, 0x9513, 0x49cd, 0x8c, 0xea, 0xe9, 0x24, 0x5e, 0x70,
0x39, 0xda }

Protocol Interface Structure
typedef struct _EFI_SMM_GPI_DISPATCH_PROTOCOL {

EFI_SMM_GPI_REGISTER Register;
EFI_SMM_GPI_UNREGISTER UnRegister;
UINTN NumSupportedGpis;

} EFI_SMM_GPI_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

NumSupportedGpis

Denotes the maximum value of inputs that can have handlers attached.

Description
The EFI_SMM_GPI_DISPATCH_PROTOCOL provides the ability to install child handlers for the
given event types. Several inputs can be enabled. This purpose of this interface is to generate an
SMI in response to any of these inputs having a true value provided.

System Management Mode
Core Interface Specification (SMM CIS)

120 September 2003 Version 0.9

EFI_SMM_GPI_DISPATCH_PROTOCOL.Register()

Summary
Registers a child SMI source dispatch function with a parent SMM driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_GPI_REGISTER) (

IN struct _EFI_SMM_GPI_DISPATCH_PROTOCOL *This,
IN EFI_SMM_GPI_DISPATCH DispatchFunction,
IN EFI_SMM_GPI_DISPATCH_CONTEXT *DispatchContext,
OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_GPI_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to install. Type EFI_SMM_GPI_DISPATCH is defined in "Related
Definitions" below.

DispatchContext

Pointer to the dispatch function’s context. The caller fills in this context before
calling the Register() function to indicate to the Register() function the GPI
SMI source for which the dispatch function should be invoked. Type
EFI_SMM_GPI_DISPATCH_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

Description
This service registers a given instance of the given source.

SMM Child Dispatch Protocols

Version 0.9 September 2003 121

Related Definitions
//**
// EFI_SMM_GPI_DISPATCH
//**

typedef
VOID
(EFIAPI *EFI_SMM_GPI_DISPATCH) (

IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_GPI_DISPATCH_CONTEXT *DispatchContext
);

DispatchHandle

Handle of this dispatch function. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DispatchContext

Pointer to the dispatch function’s context. The DispatchContext fields are filled
in by the dispatching driver prior to invoking this dispatch function. Type
EFI_SMM_GPI_DISPATCH_CONTEXT is defined in "Related Definitions" below.

//**
// EFI_SMM_GPI_DISPATCH_CONTEXT
//**

typedef struct {
UINTN GpiNum;

} EFI_SMM_GPI_DISPATCH_CONTEXT;

GpiNum

A bit mask of 32 possible GPIs that can generate an SMI. Bit 0 corresponds to
logical GPI[0], 1 corresponds to logical GPI[1], and so on.

The logical GPI index to a physical pin on the device is described by the GPI device
name found on the same handle as the EFI_SMM_GPI_DISPATCH_PROTOCOl.
The GPI device name is defined as protocol with a GUID name and NULL protocol
pointer.

System Management Mode
Core Interface Specification (SMM CIS)

122 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER DispatchContext is invalid. The GPI input value is not
within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.

SMM Child Dispatch Protocols

Version 0.9 September 2003 123

EFI_SMM_GPI_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a General Purpose Input (GPI) service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_GPI_UNREGISTER) (

IN struct _EFI_SMM_GPI_DISPATCH_PROTOCOL *This,
IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_GPI_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service removes a handler.

Status Codes Returned
EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

System Management Mode
Core Interface Specification (SMM CIS)

124 September 2003 Version 0.9

SMM Standby Button Dispatch Protocol

EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the standby button SMI source generator.

GUID
#define EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL_GUID \

{ 0x78965b98, 0xb0bf, 0x449e, 0x8b, 0x22, 0xd2, 0x91, 0x4e, 0x49,
0x8a, 0x98 }

Protocol Interface Structure
typedef struct _EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL {

EFI_SMM_STANDBY_BUTTON_REGISTER Register;
EFI_SMM_STANDBY_BUTTON_UNREGISTER UnRegister;

} EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL provides the ability to install child
handlers for the given event types.

SMM Child Dispatch Protocols

Version 0.9 September 2003 125

EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_STANDBY_BUTTON_REGISTER) (

IN struct _EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL *This,
IN EFI_SMM_STANDBY_BUTTON_DISPATCH

DispatchFunction,
IN EFI_SMM_STANDBY_BUTTON_DISPATCH_CONTEXT

*DispatchContext,
OUT EFI_HANDLE

*DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to install. Type EFI_SMM_STANDBY_BUTTON_DISPATCH is defined in
"Related Definitions" below.

DispatchContext

Pointer to the dispatch function’s context. The caller fills in this context before
calling the register function to indicate to the register function the standby button
SMI source for which the dispatch function should be invoked. Type
EFI_SMM_STANDBY_BUTTON_DISPATCH_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

Description
This service registers a given instance of the given source.

System Management Mode
Core Interface Specification (SMM CIS)

126 September 2003 Version 0.9

Related Definitions
//***
// EFI_SMM_STANDBY_BUTTON_DISPATCH
//***
typedef
VOID
(EFIAPI *EFI_SMM_STANDBY_BUTTON_DISPATCH) (

IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_STANDBY_BUTTON_DISPATCH_CONTEXT *DispatchContext
);

DispatchHandle

Handle of this dispatch function. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DispatchContext

Pointer to the dispatch function's context. The DispatchContext fields are filled
in by the dispatching driver prior to invoking this dispatch function. Type
EFI_SMM_STANDBY_BUTTON_DISPATCH_CONTEXT is defined below.

//***
// EFI_SMM_STANDBY_BUTTON_DISPATCH_CONTEXT
//***
typedef struct {

EFI_STANDBY_BUTTON_PHASE Phase;
} EFI_SMM_STANDBY_BUTTON_DISPATCH_CONTEXT;

Phase

Describes whether the child handler should be invoked upon the entry to the button
activation or upon exit (i.e., upon receipt of the button press event or upon release of
the event). This differentiation allows for workarounds or maintenance in each of
these execution regimes. Type EFI_STANDBY_BUTTON_PHASE is defined below.

//***
// EFI_STANDBY_BUTTON_PHASE;
//***
typedef enum {

Entry,
Exit

} EFI_STANDBY_BUTTON_PHASE;

SMM Child Dispatch Protocols

Version 0.9 September 2003 127

//
// Standby Button. Example, Use for changing LEDs before ACPI OS
// is on.
// - DXE/BDS Phase
// - OS Install Phase
//

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER DispatchContext is invalid. The standby button input value
is not within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.

System Management Mode
Core Interface Specification (SMM CIS)

128 September 2003 Version 0.9

EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a child SMI source dispatch function with a parent SMM driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_STANDBY_BUTTON_UNREGISTER) (

IN struct _EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL *This,
IN EFI_HANDLE

*DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service removes a handler.

Status Codes Returned
EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

SMM Child Dispatch Protocols

Version 0.9 September 2003 129

SMM Power Button Dispatch Protocol

EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the power button SMI source generator.

GUID
#define EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL_GUID \

{ 0xb709efa0, 0x47a6, 0x4b41, 0xb9, 0x31, 0x12, 0xec, 0xe7, 0xa8,
0xee, 0x56 }

Protocol Interface Structure
typedef struct _EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL {

EFI_SMM_POWER_BUTTON_REGISTER Register;
EFI_SMM_POWER_BUTTON_UNREGISTER UnRegister;

} EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service that was dispatched by this protocol. See the
UnRegister() function description.

Description
The EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL provides the ability to install child
handlers for the given event types.

System Management Mode
Core Interface Specification (SMM CIS)

130 September 2003 Version 0.9

EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL. Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_POWER_BUTTON_REGISTER) (

IN struct _EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL *This,
IN EFI_SMM_POWER_BUTTON_DISPATCH

DispatchFunction,
IN EFI_SMM_POWER_BUTTON_DISPATCH_CONTEXT

*DispatchContext,
OUT EFI_HANDLE

*DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to install. Type EFI_SMM_POWER_BUTTON_DISPATCH is defined in
"Related Definitions" below.

DispatchContext

Pointer to the dispatch function’s context. The caller fills in this context before
calling the Register() function to indicate to the Register() function the
power button SMI phase for which the dispatch function should be invoked. Type
EFI_SMM_POWER_BUTTON_DISPATCH_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

Description
This service registers a given instance of the given source.

SMM Child Dispatch Protocols

Version 0.9 September 2003 131

Related Definitions
//**
// EFI_SMM_POWER_BUTTON_DISPATCH
//**
typedef
VOID
(EFIAPI *EFI_SMM_POWER_BUTTON_DISPATCH) (

IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_POWER_BUTTON_DISPATCH_CONTEXT *DispatchContext
);

DispatchHandle

Handle of this dispatch function. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DispatchContext

Pointer to the dispatch function's context. The DispatchContext fields are filled
in by the dispatching driver prior to invoking this dispatch function. Type
EFI_SMM_POWER_BUTTON_DISPATCH_CONTEXT is defined below.

//**
// EFI_SMM_POWER_BUTTON_DISPATCH_CONTEXT
//**
typedef struct {

EFI_POWER_BUTTON_PHASE Phase;
} EFI_SMM_POWER_BUTTON_DISPATCH_CONTEXT;

Phase

Designates whether this handler should be invoked upon entry or exit. Type
EFI_POWER_BUTTON_PHASE is defined in "Related Definitions" below.

//**
// EFI_POWER_BUTTON_PHASE
//**
typedef enum {

PowerButtonEntry,
PowerButtonExit

} EFI_POWER_BUTTON_PHASE;

// Power Button. Example, Use for changing LEDs before ACPI OS is
// on.
// - DXE/BDS Phase
// - OS Install Phase

System Management Mode
Core Interface Specification (SMM CIS)

132 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER DispatchContext is invalid. The power button input value
is not within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.

SMM Child Dispatch Protocols

Version 0.9 September 2003 133

EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL. UnRegister()

Summary
Unregisters a power-button service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_POWER_BUTTON_UNREGISTER) (

IN struct _EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL *This,
IN EFI_HANDLE

DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service removes a handler.

Status Codes Returned
EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

System Management Mode
Core Interface Specification (SMM CIS)

134 September 2003 Version 0.9

Version 0.9 September 2003 135

8
Interactions with PEI, DXE, and BDS

Introduction
This chapter describes issues related to image verification and interactions between SMM and other
Framework phases, including Hand-Off Blocks (HOBs) that describe the SMRAM regions to use.

Verification (Security)

Introduction
The SMM phase must preserve the chain of trust initiated in the previous phase. To do so, it must
validate the modules that it loads for the subsequent dispatcher.

Execution
Once the final SMM handler has been loaded and before the system enters the Boot Device
Selection (BDS) phase, the SMRAM must be locked down if possible on the platform.

SMM Chain of Trust
The current mechanism that is proposed for validating SMM images is using a Hashed Message
Authentication Code (HMAC). This mechanism is reasonably secure and has the advantage that it
does not require much memory.

See FAQ Question 2.1.7 on the RSA Security web site for more information (see References for
the URL).

PEI Support

Introduction
To support T-SEG, H-SEG, and other memory decode mechanisms on IA-32 systems, there needs
to be a PEIM that does the following:

• Updates the EFI_HOB_SMRAM_DESCRIPTOR_BLOCK, which describes the memory map
while in SMM

• Exports policy information

This policy includes reservation of a given memory range at the top of physical memory for T-
SEG, whether to use AB-SEG or H-SEG, and so on.

System Management Mode
Core Interface Specification (SMM CIS)

136 September 2003 Version 0.9

EFI_HOB_SMRAM_DESCRIPTOR_BLOCK

Summary
To convey the existence of the T-SEG reservation and H-SEG usage, there shall be a GUIDed
Hand-Off Block (HOB) with GUID listed below. See the Intel® Platform Innovation Framework
for EFI Hand-Off Block (HOB) Specification for more information on HOBs.

GUID
#define EFI_SMM_PEI_SMRAM_MEMORY_RESERVE \

{ 0x6dadf1d1, 0xd4cc, 0x4910, 0xbb, 0x6e, 0x82, 0xb1, 0xfd, 0x80,
0xff, 0x3d }

Prototype
typedef struct _EFI_HOB_SMRAM_HOB_DESCRIPTOR_BLOCK {

UINTN NumberOfSmmReservedRegions;
EFI_SMRAM_DESCRIPTOR Descriptor[1];

} EFI_HOB_SMRAM_DESCRIPTOR_BLOCK;

Parameters
NumberOfSmmReservedRegions

Designates the number of possible regions in the system that can be usable for
SMRAM. This value can be greater than one in that the processor-chipset complex
may expose several options for SMRAM support. The multiplicity of options is
embodied in the possibly greater than one EFI_SMRAM_DESCRIPTOR data
structures. Type EFI_SMRAM_DESCRIPTOR is defined in
EFI_SMM_ACCESS_PROTOCOL.GetCapabilities().

Descriptor

Used throughout this protocol to describe the candidate regions for SMRAM that are
supported by this platform. Type EFI_SMRAM_DESCRIPTOR is defined in
EFI_SMM_ACCESS_PROTOCOL.GetCapabilities().

Interactions with PEI, DXE, and BDS

Version 0.9 September 2003 137

Description
This data structure will be created by a platform PEIM during the PEI phase of execution. The
PEIM is also responsible for ensuring that the physical memory description is consistent with the
capability of the chipset. If T-SEG is desired, for example, the memory range shall do one of the
following:

• Be removed from the HOBs that were created by the memory controller
• Be marked as Firmware Reserved using a memory allocation

The EFI_HOB_SMRAM_DESCRIPTOR_BLOCK will be consumed by the implementation of the
EFI_SMM_ACCESS_PROTOCOL during the DXE phase of execution. The DXE driver that
abstracts the memory controller SMRAM capabilities will search through the HOB list that is
referenced from the GUID/pointer pair in the EFI System Table. The memory that is described in
this descriptor-set EFI_HOB_SMRAM_DESCRIPTOR_BLOCK is invisible to DXE for purposes of
memory management and will not appear in the EFI memory map at all. This aspect of being
outside of the DXE/EFI memory map is the uniqueness of this capability for IA-32, whereas for the
Itanium® processor family, memory for PMI handlers can be firmware reserved.

The EFI_HOB_SMRAM_DESCRIPTOR_BLOCK HOB must exist and it is expected that the DXE
driver that publishes the SMM_ACCESS driver will publish all of the SMRAM modality of the
controller that is described therein.

Also, any region among the possible regions that are decoded by the hardware will be described in
this data structure. For example, a chipset that had a cacheable high region and uncacheable high
region might only describe the latter as being available because of the desire to trade performance
for security concerns. These various capabilities cannot be understood by the SMM_BASE driver
implementation via policy defaults; instead, the SMM_ACCESS driver constrains the possible ranges
that the former can request.

See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
more information on HOBs.

System Management Mode
Core Interface Specification (SMM CIS)

138 September 2003 Version 0.9

SMM and DXE

SMM-to-DXE/EFI Communication
During the boot service phase of DXE/EFI, there will be a messaging mechanism between SMM
and DXE drivers. This mechanism will allow a gradual state evolution of the SMM handlers during
the boot phase.

The purpose of the DXE/EFI communication is to allow interfaces from either runtime or boot
services to be proxied into SMM. For example, a vendor may choose to implement their EFI
Variable Services in SMM. The motivation to do so would include a design in which the SMM
code performed error logging by writing data to an EFI variable in flash. The error generation
would be asynchronous with respect to the foreground operating system (OS). A problem is that the
OS could be writing an EFI variable when the error condition, such as a Single-Bit Error (SBE) that
was generated from main memory, occurred. To avoid two agents—SMM and EFI Runtime—both
trying to write to flash at the same time, the runtime implementation of the SetVariable() EFI
call would simply be an invocation of the EFI_SMM_BASE_PROTOCOL.Communicate()
interface. Then, the SMM code would internally serialize the error logging flash write request and
the OS SetVariable() request.

See the EFI_SMM_BASE_PROTOCOL.Communicate() service for more information on this
interface.

Version 0.9 September 2003 139

9
Appendix

Introduction
This section provides the following supplemental information:

• An additional child dispatch protocol, the SMM ICHn Dispatch Protocol.
• Processor-specific information

The SMM ICHn Dispatch Protocol is not included with the architectural protocols listed in SMM
Child Dispatch Protocols because the ICHn and its respective child sources are based on a given set
of SMI activation sources in a particular platform implementation. The other protocols listed in
SMM Child Dispatch Protocols represent a more generic set of capabilities, such as S-state
transition and software-source generation. For this reason, the expectation is that the SMM ICHn
Dispatch Protocol will serve as an interface to be used in today's platforms and as a model for
future proliferations of this interface.

The processor-specific information in this appendix includes a discussion of multiprocessor issues
and register summaries for IA-32 and Itanium® processors.

SMM ICHn Dispatch Protocol

SMM ICHn Dispatch Protocol
The architectural dispatch protocols that are defined in the SMM Child Dispatch Protocols chapter
describe a class of system transitions, including power state transitions, periodic activations, and so
on.

Beyond these more generic transitions, however, there are a collection of chipset-specific SMI
activations that do not lend themselves to a simple abstraction. As such, there should be an
additional dispatch protocol that supports a collection of these chipset-specific activations, such as
watchdog timeout and ECC memory error signaling. This final class of errors will be contained in
the context field for this dispatch protocol.

The EFI_SMM_ICHN_DISPATCH_PROTOCOL describes an example of this class of interface.
The heterogeneous class of activation types are described in the enumeration
EFI_SMM_ICHN_SMI_TYPE.

System Management Mode
Core Interface Specification (SMM CIS)

140 September 2003 Version 0.9

EFI_SMM_ICHN_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for a given SMI source generator.

GUID
#define EFI_SMM_ICHN_DISPATCH_PROTOCOL_GUID \

{ 0xc50b323e, 0x9075, 0x4f2a, 0xac, 0x8e, 0xd2, 0x59, 0x6a, 0x10,
0x85, 0xcc }

Protocol Interface Structure
typedef struct _EFI_SMM_ICHN_DISPATCH_PROTOCOL {

EFI_SMM_ICHN_REGISTER Register;
EFI_SMM_ICHN_UNREGISTER UnRegister;

} EFI_SMM_ICHN_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_SMM_ICHN_DISPATCH_PROTOCOL provides the ability to install child handlers for
the given event types.

Appendix

Version 0.9 September 2003 141

EFI_SMM_ICHN_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_ICHN_REGISTER) (

IN struct _EFI_SMM_ICHN_DISPATCH_PROTOCOL *This,
IN EFI_SMM_ICHN_DISPATCH DispatchFunction,
IN EFI_SMM_ICHN_DISPATCH_CONTEXT *DispatchContext,
OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_ICHN_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to install. Type EFI_SMM_ICHN_DISPATCH is defined in "Related
Definitions" below.

DispatchContext

Pointer to the dispatch function's context. The caller fills in this context before calling
the Register() function to indicate to the Register() function the ICHN SMI
source for which the dispatch function should be invoked. Type
EFI_SMM_ICHN_DISPATCH_CONTEXT is defined in "Related Definitions"
below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

Description
This service registers a given instance of the given source.

System Management Mode
Core Interface Specification (SMM CIS)

142 September 2003 Version 0.9

Related Definitions
//***
// EFI_SMM_ICHN_DISPATCH
//***

typedef
VOID
(EFIAPI *EFI_SMM_ICHN_DISPATCH) (

IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_ICHN_DISPATCH_CONTEXT *DispatchContext
);

DispatchHandle

Handle of this dispatch function. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DispatchContext

Pointer to the dispatch function's context. The DispatchContext fields are filled
in by the dispatching driver prior to invoking this dispatch function. Type
EFI_SMM_ICHN_DISPATCH_CONTEXT is defined below.

//***
// EFI_SMM_ICHN_DISPATCH_CONTEXT
//***

typedef struct {
EFI_SMM_ICHN_SMI_TYPE Type;

} EFI_SMM_ICHN_DISPATCH_CONTEXT;

Type

ICHN-specific SMIs. These are miscellaneous SMI sources that are supported by the
ICHN-specific SMI implementation. These may change over time. The trap number
is valid only if the Type is trap. Type EFI_SMM_ICHN_SMI_TYPE is defined
below.

Appendix

Version 0.9 September 2003 143

//***
// EFI_SMM_ICHN_SMI_TYPE
//***
typedef enum {

// NOTE: NEVER delete items from this list/enumeration!
// Doing so will prevent other versions of the code
// from compiling. If the ICH version for which your driver
// is written does not support some of these SMIs, then
// simply return EFI_UNSUPPORTED when a child/client tries
// to register for them.
IchnMch,
IchnPme,
IchnRtcAlarm,
IchnRingIndicate,
IchnAc97Wake,
IchnSerialIrq,
IchnY2KRollover,
IchnTcoTimeout,
IchnOsTco,
IchnNmi,
IchnIntruderDetect,
IchnBiosWp,
IchnMcSmi,
IchnPmeB0,
IchnThrmSts,
IchnSmBus,
IchnIntelUsb2,
IchnMonSmi7,
IchnMonSmi6,
IchnMonSmi5,
IchnMonSmi4,
IchnDevTrap13,
IchnDevTrap12,
IchnDevTrap11,
IchnDevTrap10,
IchnDevTrap9,
IchnDevTrap8,
IchnDevTrap7,
IchnDevTrap6,
IchnDevTrap5,
IchnDevTrap3,
IchnDevTrap2,
IchnDevTrap1,
IchnDevTrap0,
// INSERT NEW ITEMS JUST BEFORE THIS LINE
NUM_ICHN_TYPES // the number of items in this enumeration

} EFI_SMM_ICHN_SMI_TYPE;

System Management Mode
Core Interface Specification (SMM CIS)

144 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER DispatchContext is invalid. The ICHN input value is not
within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.

Appendix

Version 0.9 September 2003 145

EFI_SMM_ICHN_DISPATCH_PROTOCOL. UnRegister()

Summary
Unregisters a child SMI source dispatch function with a parent SMM driver.

Prototype
typedef

EFIAPI
(EFIAPI *EFI_SMM_ICHN_UNREGISTER) (
IN struct _EFI_SMM_ICHN_DISPATCH_PROTOCOL *This,
IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_ICHN_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This function unregisters a child SMI source dispatch function with a parent SMM driver.

Status Codes Returned
EFI_SUCCESS The dispatch function has been successfully unregistered and the

SMI source has been disabled, if there are no other registered child
dispatch functions for this SMI source.

EFI_INVALID_PARAMETER The DispatchHandle is invalid.

System Management Mode
Core Interface Specification (SMM CIS)

146 September 2003 Version 0.9

Processor-Specific Information

Introduction
The sections in this chapter discusses multiprocessor issues and provides register summaries for IA-
32 and Itanium® processors.

For information on processor save-state information, see the SMM CPU Information Records
section in Services - SMM. This information is important in that the SMM drivers may need to
ascertain the state of the processor before invoking the SMI or PMI, respectively.

Multiprocessor Issues
The design of the SMM infrastructure is such that the bulk of the SMM infrastructure code and the
dispatched SMM drivers will all execute in a single-processor, single-threaded environment. This
execution is in contrast to the initiation of the SMI or PMI hardware event, which is visible to all
processors. Because of the multiprocessor nature of the hardware activation, this prescription for
single-threaded execution is enforced by preamble software in the SMM infrastructure.
Specifically, during any SMI/PMI activation, all of the application processors (APs) will
rendezvous while the boot-strap processor (BSP) services the SMI-initiated event.

The SMM design assumes that there is a preamble set of code that receives the machine state of the
PMI or SMI activation in native mode. The code herein will rendezvous all of the processors using
some atomic instructions on a semaphore. This election processor will only allow one processor to
execute all of the handlers. When this single processor finishes executing all of the handlers, it will
release the APs from this synchronization variable.

A future instance of this specification may speak to the concurrent, parallel dispatch of handlers.
However, for this protocol suite, the dispatch will be serial.

Register Summaries

IA-32

IA-32 Register Summary
IA-32 architecture provides a limited number of registers that are visible to the programmer, as
follows:

• 8 general purpose registers
• 6 segment registers
• 2 status and control registers
• 8 MMX registers (only processors that support Intel® MMX™ technology)
• 8 SIMD floating-point registers (only processors with streaming Single Instruction, Multiple

Data (SIMD) extension support)

Appendix

Version 0.9 September 2003 147

The table below lists the IA-32 architecture registers and provides more detailed information on
each register type. See the IA-32 Intel® Architecture Software Developer’s Manual for a more
detailed description of the registers available with the IA-32 architecture. See the figures in General
IA-32 Register Usage and SMM IA-32 Register Usage for how the IA-32 register sets are used in
the SMM environment.

Table 9-1. IA-32 Register Summary

Register Description Size Quantity Description

General Purpose registers

EAX, EBX, ECX, EDX,
ESI, EDI, EBP, ESP

32-bit 8
registers
total

Each register is referred to by a mnemonic (for
example, EAX and EBX) that corresponds to the
register set found in 16-bit Intel® processors such as
the Intel® 8086 and 80286 processors. During normal
operation, each register performs the following
functions:

EAX: Accumulator for operands and results data

EBX: Pointer to data in the DS segment register

ECX: Counter for string and loop operations

EDX: I/O pointer

ESI: Pointer to data in the segment pointed to by the
DS register; source pointer for string operations

EDI: Pointer to data (or destination) in the segment
pointed to by the ES register; destination pointer for
string operations

EBP: Pointer to data on the stack (in the SS segment
register)

ESP: Stack pointer (in the SS segment register)

Segment registers

CS, DS, SS, ES, FS, GS

16-bit 6
registers
total

Normally hold 16-bit segment selectors that point to a
segment in memory.

Status and Control registers

EFLAGS, EIP

32-bit 2
registers
total

EFLAGS register: Normally contains a group of status,
control, and system flags.

EIP (instruction pointer) register: Normally contains
the offset in the current code segment for the next
instruction to be executed.

MMX registers (MM0 – MM7) 64-bit 8
registers
total

Newer Intel® Pentium® processors with MMX
technology have an additional eight 64-bit registers that
can be used during the SMM phase.

SIMD floating-point registers
(XMM0 – XMM7)

128-bit 8
registers
total

Processors that support streaming SIMD extensions
have an additional eight 128-bit registers over those
with earlier MMX technology.

System Management Mode
Core Interface Specification (SMM CIS)

148 September 2003 Version 0.9

General IA-32 Register Usage
The figure below shows the general usage of the IA-32 register sets.

EAX

EBX

EDX

ESI

MMX0

MMX1

MMX2

MMX3

MMX4

MMX5

MMX6

XMM0

EDI

EBP

ECX

128 96 64 32 0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

Level 2 32bit
Return Address

Level 1 32bit
Return Address

Level 0 32bit
Return Address

Figure 9-1. General IA-32 Register Usage

Appendix

Version 0.9 September 2003 149

SMM IA-32 Register Usage
The figure below shows how the IA-32 register sets are used in the SMM environment.

MMX0 - MMX7

DS

ES

FS

GS

SS

32bit Flat Mode
Data

Descriptors

32bit Flat Mode
Stack

Descriptors

128 96 64 32 0

Figure 9-2. SMM IA-32 Register Usage

Itanium® Processor Family

Itanium® Processor Family Register Summary
Itanium® architecture provides several register files that are visible to the programmer, as follows:

• 128 general registers
• 128 floating-point registers
• 64 predicate registers
• 8 branch registers
• 128 application registers
• 1 instruction pointer (IP) register

Registers are referred to by a mnemonic denoting the register type and a number. For example,
general register 32 is named gr32. The table below lists the Itanium architecture registers; see the
following topics for more detailed information on each register type.

Table 9-2. Itanium® Processor Family Register Summary

Register Name Size Quantity

General registers (gr0 – gr127) 64-bit 32 static and global

96 stacked

128 registers total

Floating-point registers (fr0 – fr127) 82-bit 32 static and global

96 rotating (SW pipelining)

128 registers total

continued

System Management Mode
Core Interface Specification (SMM CIS)

150 September 2003 Version 0.9

Table 9-2. Itanium® Processor Family Register Summary (continued)

Register Name Size Quantity

Predicate registers (pr0 – pr63) 1-bit 16 static

48 rotating (SW pipeline control)

64 registers total

Branch registers (br0 – br7) 64-bit 8 registers total

Application registers (ar0 – ar127) 64-bit 128 registers total

Instruction pointer (IP) register 64-bit One register, not directly accessible, that is always 16-byte
aligned.

Itanium® Processor Family: General Registers
(gr0 – gr127)

Itanium® architecture provides 128 64-bit general purpose registers for all integer and multimedia
computation.

Register gr0 is a read-only register and is always zero (0). The first 32 registers are static and
global to the process. The remaining 96 registers are stacked. These registers are for argument
passing and local register stack frame. A portion of these registers can also be used for software
pipelining.

Each register has an associated Not a Thing (NaT) bit, indicating whether the value stored in the
register is valid.

Itanium® Processor Family: General Register Stack
(gr32 – gr127)

There are 96 general registers, starting at gr32, that are used to pass parameters to the called
procedure and store local variables for the currently executing procedure.

Itanium® Processor Family: Floating-Point Registers
(fr0 – fr127)

Itanium® architecture provides 128 82-bit floating-point registers, for floating-point computations.
All floating-point registers are globally accessible within the process. The floating-point registers
are broken up as follows:

• 32 static floating-point registers
• 96 rotating floating-point registers, for software pipelining

The first two registers (fr0 and fr1) are read-only:

• fr0 is read as +0.0
• fr1 is read as +1.0

Each register contains the following three fields:

• 64-bit significand field
• 17-bit exponent field
• 1-bit sign field

Appendix

Version 0.9 September 2003 151

Itanium® Processor Family: Predicate Registers
(pr0 – pr63)

There are 64 1-bit predicate registers to enable controlling the execution of instructions. When the
value of a predicate register is true (1), the instruction is executed. The predicate registers enable
the following:

• Validating/invalidating instructions
• Eliminating branches in if/then/else logic blocks

The predicate registers are broken up as follows:

• 16 static predicate registers
• 48 rotating predicate registers for controlling software pipelining

Instructions that are not explicitly preceded by a predicate default to the first predicate register, pr0,
which is read-only and is always true (1).

Itanium® Processor Family: Branch Registers
(br0 – br7)

Eight 64-bit branch registers are used to specify the branch target addresses for indirect branches.

The branch registers streamline call/return branching.

Itanium® Processor Family: Application Registers
(ar0 – ar127)

There are 128 64-bit special purpose registers that are used for various functions. Some of the more
commonly used application registers have assembler aliases. For example, ar66 is used as the
Epilogue Counter (EC) and is called ar.ec.

Itanium® Processor Family: Instruction Pointer (IP) Register
The 64-bit instruction pointer (IP) holds the address of the bundle of the currently executing
instruction. The IP cannot be directly read or written; it increments as instructions are
executed. Branch instructions set the IP to a new value. The IP is always 16-byte aligned.

	Intel® Platform Innovation Framework for EFI System Management Mode Core Interface Specification (SMM CIS)
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Rationale
	Organization of the SMM CIS
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Overview
	Definition of Terms
	System Management Mode (SMM)
	SMM on the Itanium® Processor Family
	System Management System Table (SMST)
	SMM Services
	SMM and Available Services
	SMM Services
	SMM Library (SMLib) Services

	SMM Drivers
	Loading Drivers into SMM
	IA-32 SMM Drivers
	Itanium® Processor Family SMM Drivers

	SMM Protocols
	SMM Protocols
	SMM Protocols for IA-32
	SMM Protocols for Itanium®-Based Systems

	SMM Infrastructure Code and Dispatcher
	SMM Infrastructure Code and Dispatcher

	Initializing the SMM Phase
	Initializing the SMM Phase
	Processor Execution Mode
	Access to Platform Resources

	3. System Management System Table (SMST)
	Introduction
	SMM Handler Entry Point
	EFI_SMM_HANDLER_ENTRY_POINT

	EFI Table Header
	EFI_TABLE_HEADER

	System Management System Table (SMST)
	EFI_SMM_SYSTEM_TABLE

	SMM Configuration Table
	EFI_CONFIGURATION_TABLE

	4. Services - SMM
	Introduction
	SMM Install Configuration Table
	SmmInstallConfigurationTable()

	SMM I/O Services
	SMM CPU I/O Overview
	SmmIo()
	EFI_SMM_CPU_IO_INTERFACE.Mem()
	EFI_SMM_CPU_IO_INTERFACE.Io()

	SMM Runtime Memory Services
	SmmAllocatePool()
	SmmFreePool()
	SmmAllocatePages()
	SmmFreePages()

	SMM CPU Information Records
	SMM CPU Information Records Introduction
	EFI_SMM_CPU_SAVE_STATE
	EFI_SMU_CPU_SAVE_STATE
	IA-32
	EFI_SMI_CPU_SAVE_STATE

	Itanium® Processor Family
	EFI_PMI_SYSTEM_CONTEXT

	EFI_SMM_OPTIONAL_FP_SAVE_STATE
	EFI_SMM_FLOATING_POINT_SAVE_STATE
	IA-32
	EFI_SMI_OPTIONAL_FPSAVE_STATE

	Itanium® Processor Family
	EFI_PMI_OPTIONAL_FLOATING_POINT_CONTEXT

	5. Services - SMM Library (SMLib)
	Introduction
	Status Codes Services
	EFI_SMM_STATUS_CODE_PROTOCOL
	EFI_SMM_STATUS_CODE_PROTOCOL.ReportStatusCode()

	6. SMM Protocols
	Introduction
	EFI SMM Base Protocol
	EFI_SMM_BASE_PROTOCOL
	EFI_SMM_BASE_PROTOCOL.Register()€
	EFI_SMM_BASE_PROTOCOL.UnRegister()€
	EFI_SMM_BASE_PROTOCOL.Communicate()€
	EFI_SMM_BASE_PROTOCOL.RegisterCallback()€
	EFI_SMM_BASE_PROTOCOL.InSmm()€
	EFI_SMM_BASE_PROTOCOL.SmmAllocatePool()
	EFI_SMM_BASE_PROTOCOL.SmmFreePool()€
	EFI_SMM_BASE_PROTOCOL.GetSmstLocation()

	SMM Access Protocol
	EFI_SMM_ACCESS_PROTOCOL
	EFI_SMM_ACCESS_PROTOCOL.Open()
	EFI_SMM_ACCESS_PROTOCOL.Close()
	EFI_SMM_ACCESS_PROTOCOL.Lock()
	EFI_SMM_ACCESS_PROTOCOL.GetCapabilities()

	SMM Control Protocol
	EFI_SMM_CONTROL_PROTOCOL
	€EFI_SMM_CONTROL_PROTOCOL.Trigger()
	EFI_SMM_CONTROL_PROTOCOL.Clear()€
	EFI_SMM_CONTROL_PROTOCOL.GetRegisterInfo()

	7. SMM Child Dispatch Protocols
	Introduction
	SMM Software Dispatch Protocol
	EFI_SMM_SW_DISPATCH_PROTOCOL€
	EFI_SMM_SW_DISPATCH_PROTOCOL.Register()€
	EFI_SMM_SW_DISPATCH_PROTOCOL.UnRegister()€

	SMM Sx Dispatch Protocol
	EFI_SMM_SX_DISPATCH_PROTOCOL€
	EFI_SMM_SX_DISPATCH_PROTOCOL.Register()€
	EFI_SMM_SX_DISPATCH_PROTOCOL.UnRegister()€

	SMM Periodic Timer Dispatch Protocol
	EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL€
	EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL.Register()€
	EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL.UnRegister()€
	EFI_SMM_PERIODIC_TIMER_DISPATCH_PROTOCOL.�GetNextShorterInterval()

	SMM USB Dispatch Protocol
	EFI_SMM_USB_DISPATCH_PROTOCOL€
	EFI_SMM_USB_DISPATCH_PROTOCOL.Register()€
	EFI_SMM_USB_DISPATCH_PROTOCOL. UnRegister()€

	SMM General Purpose Input (GPI) Dispatch Protocol
	EFI_SMM_GPI_DISPATCH_PROTOCOL
	EFI_SMM_GPI_DISPATCH_PROTOCOL.Register()
	EFI_SMM_GPI_DISPATCH_PROTOCOL.UnRegister()€

	SMM Standby Button Dispatch Protocol
	EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL
	EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL.Register()€
	EFI_SMM_STANDBY_BUTTON_DISPATCH_PROTOCOL.UnRegister()€

	SMM Power Button Dispatch Protocol
	EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL
	EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL. Register()€
	EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL. UnRegister()€

	8. Interactions with PEI, DXE, and BDS
	Introduction
	Verification (Security)
	Introduction
	Execution
	SMM Chain of Trust

	PEI Support
	Introduction
	EFI_HOB_SMRAM_DESCRIPTOR_BLOCK

	SMM and DXE
	SMM-to-DXE/EFI Communication

	9. Appendix
	Introduction
	SMM ICHn Dispatch Protocol
	SMM ICHn Dispatch Protocol
	EFI_SMM_ICHN_DISPATCH_PROTOCOL
	EFI_SMM_ICHN_DISPATCH_PROTOCOL.Register()€
	EFI_SMM_ICHN_DISPATCH_PROTOCOL. UnRegister()

	Processor-Specific Information
	Introduction
	Multiprocessor Issues
	Register Summaries
	IA-32
	IA-32 Register Summary
	General IA-32 Register Usage
	SMM IA-32 Register Usage

	Itanium® Processor Family
	Itanium® Processor Family Register Summary
	Itanium® Processor Family: General Registers�(gr0€–€gr127)
	Itanium® Processor Family: General Register Stack�(gr32€–€gr127)
	Itanium® Processor Family: Floating-Point Registers�(fr0€–€fr127)
	Itanium® Processor Family: Predicate Registers�(pr0€–€pr63)
	Itanium® Processor Family: Branch Registers�(br0€–€br7)
	Itanium® Processor Family: Application Registers�(ar0€–€ar127)
	Itanium® Processor Family: Instruction Pointer (IP) Register

