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Electrons in 
Vibrating Buckyball 

Cellular Tomography     
Cryo-electron Microscopy 

Poliovirus 

Ribosome Sequences 

VMD – “Visual Molecular Dynamics” 

Whole Cell Simulations 

•  Visualization and analysis of: 
–  molecular dynamics simulations 
–  quantum chemistry calculations 
–  particle systems and whole cells 
–  sequence data 

•  User extensible w/ scripting and plugins 
•  http://www.ks.uiuc.edu/Research/vmd/ 
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Goal: A Computational Microscope 
Study the molecular machines in living cells 

Ribosome: target for antibiotics Poliovirus 
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VMD 1.9.3 on New HPC Systems: 
TACC Stampede-2 and ANL Theta 

•  Enable large scale analysis and 
viz. tasks in-place 

•  Challenge: adaptations for MIC 
architecture  

•  Approach: 
–  Incorporate OSPRay for ray 

tracing on MIC 
–  Change CPU threading for large 

core counts 
–  MIC optimizations for key viz/

analysis kernels 

NSF: TACC Stampede-2 

DOE: Argonne Theta 
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Ray Tracing in VMD 
•  Support for ray tracing of VMD 

molecular scenes began in1995 
•  Tachyon parallel RT engine 

interfaced with VMD  (1999) 
•  Tachyon embedded as an internal 

VMD rendering engine (2002) 
•  Built-in support for large scale 

parallel rendering (2012) 
•  Refactoring of VMD to allow fully 

interactive ray tracing as an 
alternative to OpenGL (2014) 
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Tachyon Ray Tracing Engine 
•  Originally developed on Intel iPSC/860 hypercube (1994) 
•  First support for MPI (1995) 
•  Multithreading for Intel Paragon XP/S, large SGI and Sun 

shared memory machines (1995) 
•  In-situ CFD visualization (1996) 
•  Support for OpenMP w/ Kuck and Associates KCC (1998) 
•  Co-developed w/ VMD, 1998-present 

Rendering of Numerical Flow Simulations Using MPI.  John Stone and Mark Underwood.    
Second MPI Developers Conference, pages 138-141, 1996. 
An Efficient Library for Parallel Ray Tracing and Animation. John E. Stone                       
Master's Thesis, University of Missouri-Rolla, Department of Computer Science, April 1998. 
Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters.  
John E. Stone, Barry Isralewitz, and Klaus Schulten..  Extreme Scaling Workshop (XSW),                 
pp. 43-50, 2013. 
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Biomolecular Visualization Challenges 
•  Geometrically complex 

scenes 
•  Spatial relationships 

important to see clearly: 
fog, shadows, AO helpful 

•  Often show a mix of 
structural and spatial 
properties  

•  Time varying! 
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Geometrically Complex Scenes 
Ray tracing techniques well 
matched to molecular viz. needs: 
• Curved geometry, e.g. spheres, 
cylinders, toroidal patches, easily 
supported 
• Greatly reduced memory footprint vs. 
polygonalization 
• Runtime scales only moderately with 
increasing geometric complexity 
• Occlusion culling is “free”, RT 
acceleration algorithms do this and much 
more 
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Ray Tracing for Stereoscopic Planetarium 
Dome Masters, Panoramic Displays 

•  RT aptly suited to 360° 
panoramic rendering 

•  Single-pass rendering of stereo 
pairs, spheremaps, cubemaps, 
planetarium dome masters 

•  Stereo panoramas require spherical 
camera projection scheme that is 
(very) poorly suited to rasterization 

•  Easy to correct for VR headset lens 
distortions, e.g. Oculus Rift, 
Google Cardboard 
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Ray Tracing Naturally Supports Advanced 
Lighting and Shading Techniques 

Two lights,         
no shadows:    

typical of OpenGL 

Two lights,              
hard shadows,           

1 shadow ray per light 

Two lights, shadows, 
ambient occlusion w/ 

144 AO rays/hit 
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Benefits of Advanced Lighting and 
Shading Techniques 

•  Exploit visual intuition 
•  Spend computer time in 

exchange for scientists’ time, 
make images that are more 
easily interpreted 
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Ray Tracing Large Biomolecular Complexes: 
Large Physical Memory Required (128GB) 
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Ray Tracing Performance 
•  Well suited to massively parallel hardware 
•  Peak performance requires full exploitation of 

SIMD/vectorization, multithreading, efficient 
use of memory bandwidth 

•  Traditional languages and compilers not 
currently up to the task: 
– Efficacy of compiler autovectorization for Tachyon 

and other classical RT codes is very low… 
– Core ray tracing kernels have to be explicitly 

designed for the target hardware, SIMD, etc. 
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Fast Ray Tracing Frameworks 
•  Applications focus on higher level RT ops 
•  SPMD-oriented languages and compilers 

address the shortcomings of traditional tools 
•  Intel RT frameworks provide performance-

critical algorithms on IA hardware: 
– Embree: triangles only, basic kernels 
– OSPRay: general RT framework, includes 

complete renderer implementations 
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Initial OSPRay support in VMD 
•  Support researchers with allocations at 

supercomputer centers with machines based on 
Knights Landing or Intel® Xeon® processors 

•  OSPRay functionality general enough for rendering 
requirements of the majority of VMD scenes 
–  Initial VMD-OSPRay development uses general purpose 

OSPRay renderers not specific to VMD 
–  OSPRay built-in renderers could be used by any 

visualization tool 
–  VMD compensates for currently-unimplemented 

geometry types and mesh formats through automatic 
internal conversion where possible 
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VMDDisplayList 

DisplayDevice Tachyon 

OSPRay 

OpenGLDisplayDevice 

Display Subsystem 

Scene Graph 

Molecular Structure Data and Global VMD State 

User Interface 
Subsystem 

Tcl/Python Scripting 

Mouse + Windows 

VR Input “Tools” 

Graphical  
Representations 

Non-Molecular 
Geometry 

DrawMolecule 

Windowed OpenGL 

OpenGL Pbuffer 

FileRenderer 
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VMD Scene Graph in OSPRay 

•  VMD 1.9.3: On-the-fly scene graph conversion: 
–  VMD flattens internal scene graph 
–  Transforms geom. to eye space 
–  Maps to native OSPRay geom. and materials  

•  Ongoing work:  
–  Many opportunities for reduction of memory footprint, 

avoiding data layout reformatting 
–  Achieving closer or identical shading where possible 
–  Streamlining implementation 
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Scene Graph 
and RT accel. 

data structures 

VMD-OSPRay Offline/Batch Mode  

Ray Tracing Loop 

Batch RT Rendering 

ospRenderFrame(… OSP_FB_ACCUM) 

ospMapFrameBuffer() 
Write Image to Disk… 

ospUnmapFrameBuffer() Write Output 
Framebuffer 

Loop until required antialiasing and  
ambient occlusion lighting 

samples have been accumulated 

ospFrameBufferClear(OSP_FB_ACCUM) 
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Scene Graph 
and RT accel. 

data structures 

VMD-OSPRay Interactive Ray Tracing             
with Progressive Refinement 

RT Progressive 
Refinement Loop 

ospRenderFrame(… OSP_FB_ACCUM) 

ospMapFrameBuffer() 
Draw… 

ospUnmapFrameBuffer() Draw Output 
Framebuffer 

Check for User Interface Inputs, 
Update OSPRay Renderer State 

ospFrameBufferClear(OSP_FB_ACCUM) 
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Early OSPRay Renderings 
with VMD 1.9.3 
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DNA and Silicon Nanopore 
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Polio Virus 
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Satellite 
Tobacco 

Mosaic Virus 
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Planar Photosynthetic Membrane Patch  
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Early AVX-512 Kernels on KNL 



NIH BTRC for Macromolecular Modeling and Bioinformatics 
http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

•  Uses multi-core CPUs and GPU acceleration to enable smooth 
real-time animation of MD trajectories  

•  Linear-time algorithm, scales to millions of particles, as limited 
by memory capacity 

VMD “QuickSurf” Representation 

Satellite Tobacco Mosaic Virus Lattice Cell Simulations 
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QuickSurf Algorithm Overview 
•  Build spatial acceleration 

data structures, optimize 
data for SIMD, GPUs 

•  Compute 3-D density map, 
3-D volumetric texture map: 

 
 
•  Extract isosurface for a 

user-defined density value 

3-D density map lattice, 
spatial acceleration grid, 

and extracted surface 



NIH BTRC for Macromolecular Modeling and Bioinformatics 
http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

QuickSurf Scatter Density Map Algorithm 
•  Existing CPU algorithm targets small 

4- to 8-core CPUs, with a scatter 
algorithm: each atom loops over a 
square region surrounding the atom, 
accumulating densities into grid… 

•  Output conflicts for independent CPU 
threads resolved by privatization 

•  For small CPU thread counts, say 16 
or fewer, this approach was great.. 

•  For large (256) CPU thread counts, 
e.g., KNL, this leaves much to be 
desired, but it’s a starting point… 

Atom and the 
neighboring  

density map lattice 
points it 

accumulates into  
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Padded + aligned array 

Vectors of densities 
are computed using 
hardware SIMD 
instructions 

              
QuickSurf 3-D density map 
decomposes into thin 3-D 

slabs/slices 

Padding: 
Inactive SIMD 
lanes or region 
of discarded 
output used to 
guarantee 
aligned vector 
loads+stores 

Each CPU 
thread 
computes       
1, 4, 8, or 16 
density map 
lattice points 
per loop 
iteration: 
C, SSE, AVX2 
or AVX-512ER 

SIMD lanes 
producing 
results that 
are used 

…  
Chunk 2 
Chunk 1 
Chunk 0 

Independent CPU 
threads operate on 
different planes 

QuickSurf  CPU Density Map  
Parallel Decomposition 



NIH BTRC for Macromolecular Modeling and Bioinformatics 
http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

QuickSurf Scatter Loop with 
AVX512ER on Xeon Phi 

// Use AVX512ER when we have a multiple-of-16 to compute  

__m512 dy2dz2_16 = _mm512_set1_ps(dy2dz2); 

__m512 dx_16 = _mm512_add_ps(_mm512_set1_ps(dx), _mm512_load_ps(&sxdelta16[0])); 

for (; (x+15)<=xmax; x+=16,dx_16=_mm512_add_ps(dx_16, gridspacing16_16)) {   

      __m512 r2 = _mm512_fmadd_ps(dx_16, dx_16, dy2dz2_16);  

      // use fast exp2() approximation instruction,  inputs already negated and in base 2  

      y = _mm512_exp2a23_ps(_mm512_mul_ps(r2, arinv_16)); 

      float *ufptr = &densitymap[addr + x];  

      d = _mm512_loadu_ps(ufptr);  

      _mm512_storeu_ps(ufptr, _mm512_add_ps(d, y));  

}  
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QuickSurf Gather Density Map Algorithm 
•  Ongoing work: adapt GPU gather 

algorithm for Xeon Phi 
•  Eliminate need for privatization of 

large density map grids, scale to much 
larger thread counts 

•  Spatial acceleration grid cells are 
sized to match the cutoff radius for  
the exponential, beyond which density 
contributions are negligible 

•  Density map lattice points computed 
by summing density contributions 
from particles in 3x3x3 grid of 
neighboring spatial acceleration cells 

3-D density map 
lattice point and 
the neighboring 

spatial acceleration 
cells it references 
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QuickSurf Density Map Kernel Snippet… 
for (zab=zabmin; zab<=zabmax; zab++) { 

    for (yab=yabmin; yab<=yabmax; yab++) { 

      for (xab=xabmin; xab<=xabmax; xab++) { 

        int abcellidx = zab * acplanesz + yab * acncells.x + xab; 

        uint2 atomstartend = cellStartEnd[abcellidx]; 

        if (atomstartend.x != GRID_CELL_EMPTY) { 

          for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) { 

            float4 atom = sorted_xyzr[atomid]; 

            float dx = coorx - atom.x;            float dy = coory - atom.y;         float dz = coorz - atom.z; 

            float dxy2 = dx*dx + dy*dy; 

            float r21 = (dxy2 + dz*dz) * atom.w; 

            densityval1 += exp2f(r21); 

             /// Loop unrolling and register tiling benefits begin here…… 

            float dz2 = dz + gridspacing; 

            float r22 = (dxy2 + dz2*dz2) * atom.w; 

            densityval2 += exp2f(r22); 

            /// More loop unrolling …. 
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Animating Molecular Orbitals 
•  Animation of (classical 

mechanics) molecular dynamics 
trajectories provides insight into 
simulation results 

•  To do the same for QM or QM/
MM simulations one must 
compute MOs at ~10 FPS or 
more 

•  Wide SIMD hardware with 
fast exponential instructions 
makes this possible             
(GPUs and Xeon Phi) 

High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-core 
CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,   2nd Workshop on General-

Purpose Computation on Graphics Processing Units (GPGPU-2), ACM International Conference 
Proceeding Series, volume 383, pp. 9-18, 2009. 
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Molecular Orbital Computation and Display Process 

Read QM simulation log file, trajectory 

Compute 3-D grid of MO wavefunction amplitudes 
Most performance-demanding step 

Extract isosurface mesh from 3-D MO grid  

Apply user coloring/texturing  
and render the resulting surface  

Preprocess MO coefficient data 
eliminate duplicates, sort by type, etc… 

For current frame and MO index,  
retrieve MO wavefunction coefficients   

One-time 
initialization 

For each trj frame, for   
each MO shown 

Initialize Pool of 
Worker Threads 
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MO Kernel for One Grid Point  (Naive C) 

Loop over atoms 

Loop over shells 

Loop over primitives: 
largest component of 
runtime, due to expf() 

Loop over angular 
momenta 

(unrolled in real code) 

…  

for (at=0; at<numatoms; at++) { 

    int prim_counter = atom_basis[at]; 

    calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv); 

    for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) { 

        int shell_type = shell_symmetry[shell_counter]; 

        for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) { 

            float exponent         = basis_array[prim_counter       ]; 

            float contract_coeff = basis_array[prim_counter + 1]; 

            contracted_gto += contract_coeff * expf(-exponent*dist2); 

            prim_counter += 2; 

        } 

        for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) { 

           int imax = shell_type - j;  

           for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) 

              tmpshell += wave_f[ifunc++] * xdp * ydp * zdp; 

        } 

        value += tmpshell * contracted_gto; 

        shell_counter++; 

   }  

} ….. 
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Traversal of Atom Type, Basis Set, 
 Shell Type, and Wavefunction Coefficients 

•  Loop iterations always access same or consecutive 
array elements: yields good L1 cache performance 

Monotonically increasing memory references 

Strictly sequential memory references 
Different at each 
timestep, and for   

each MO 

Constant for all MOs, 
all timesteps 
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MO Kernel Snippet: 
Unrolled Angular Momenta Loop 

      /* multiply with the appropriate wavefunction coefficient */ 
      float tmpshell=0; 
      switch (shelltype) { 
        case S_SHELL: 
          value += const_wave_f[ifunc++] * contracted_gto; 
          break; 
[… P_SHELL case …] 
        case D_SHELL: 
          tmpshell += const_wave_f[ifunc++] * xdist2; 
          tmpshell += const_wave_f[ifunc++] * xdist * ydist; 
          tmpshell += const_wave_f[ifunc++] * ydist2; 
          tmpshell += const_wave_f[ifunc++] * xdist * zdist; 
          tmpshell += const_wave_f[ifunc++] * ydist * zdist; 
          tmpshell += const_wave_f[ifunc++] * zdist2; 
          value += tmpshell * contracted_gto; 
          break; 
[... Other cases: F_SHELL, G_SHELL, etc …] 
} // end switch 

Loop unrolling: 

• Saves registers 

• Reduces loop control 
overhead 

• Increases arithmetic 
intensity 
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Padded + aligned array 

Vectors of 
wavefunction 
amplitudes are 
computed using 
hardware SIMD 
instructions 

              

MO 3-D lattice decomposes 
into 2-D slices 

Each CPU 
thread 
computes      
1, 4, 8, or 16 
MO lattice 
points 
per loop 
iteration: 
C, SSE, AVX2 
or AVX-512ER 

SIMD lanes 
producing 
results that 
are used 

…  
Thread 2 
Thread 1 
Thread 0 

Lattice 
decomposed 
across many 
CPU threads 

MO CPU Parallel Decomposition 

Padding: 
Inactive SIMD 
lanes or region 
of discarded 
output used to 
guarantee 
aligned vector 
loads+stores 
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AVX-512ER MO CGTO Loop 
int maxprim = num_prim_per_shell[shell_counter]; 
int shelltype = shell_types[shell_counter]; 
for (prim=0; prim<maxprim; prim++) { 
     float exponent         = basis_array[prim_counter      ]; 
     float contract_coeff = basis_array[prim_counter + 1]; 
 
     // contracted_gto += contract_coeff * exp(exponent*dist2); 
     __m512 expval = _mm512_mul_ps(_mm512_set1_ps(exponent * MLOG2EF), dist2); 
 
     // expf() approximation required, use (base-2) AVX-512ER instructions… 
     __m512 retval = _mm512_exp2a23_ps(expval); 
 
     __m512 ctmp = _mm512_mul_ps(_mm512_set1_ps(contract_coeff), retval); 
     contracted_gto = _mm512_add_ps(contracted_gto, ctmp); 
     prim_counter += 2; 
} 
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AVX-512ER MO Wavefunction Loop 
 /* multiply with the appropriate wavefunction coefficient */ 
 __m512 ts = _mm512_set1_ps(0.0f); 
 switch (shelltype) { 
   case S_SHELL: 
     value = _mm512_add_ps(value,  _mm512_mul_ps(_mm512_set1_ps(wave_f[ifunc++]), cgto)); 
          break; 
 
   case P_SHELL: 
     ts = _mm512_add_ps(ts, _mm512_mul_ps(_mm512_set1_ps(wave_f[ifunc++]),  xdist)); 
     ts = _mm512_add_ps(ts, _mm512_mul_ps(_mm512_set1_ps(wave_f[ifunc++]), ydist)); 
     ts = _mm512_add_ps(ts, _mm512_mul_ps(_mm512_set1_ps(wave_f[ifunc++]), zdist)); 
     value = _mm512_add_ps(value, _mm512_mul_ps(ts, cgto)); 
     break; 
 
   case D_SHELL: 
      …. 
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AVX-512ER+FMA 
 MO Wavefunction Loop 

 /* multiply with the appropriate wavefunction coefficient */ 
 __m512 ts = _mm512_set1_ps(0.0f); 
 switch (shelltype) { 
    // use FMADD instructions 
    case S_SHELL: 
       value = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), cgto, value); 
       break; 
 
    case P_SHELL: 
       ts = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), xdist, ts); 
       ts = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), ydist, ts); 
       ts = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), zdist, ts); 
       value = _mm512_fmadd_ps(ts, cgto, value); 
       break; 
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Performance of AVX-512ER    
Instrinsics vs. Autovectorization on KNL 

•  Intel C++ ‘15 autovectorization (fail):                        220+ sec 
•  Hand-coded SSE2 w/ existing thread scheme:             48.5 sec 
•  Hand-coded AVX-512ER w/ existing thread scheme:  6.3 sec 
•  Hand-coded AVX-512ER, refactoring thread pool:      0.2 sec 
•  Hand-coded AVX-512ER tuned thread pool:           0.131 sec 
•  Hand-coded AVX-512ER+FMA tweaks:                  0.107 sec 
 
Further improvement will require more attention to details of 

cache behaviour and further tuning of low-level threading 
constructs for Xeon Phi/KNL 
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Future Work 
•  Many more AVX-512 kernels… 
•  Continue optimization of OSPRay 

renderer class 
•  Runtime loading of VMD-specific 

OSPRay shader extension 
modules 

•  Interactive ray tracing of time-
varying molecular geometry   

•  Support upcoming ANL Aurora 
machine 
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