
INTEL® HPC DEVELOPER CONFERENCE

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Visualization and Analysis of Biomolecular Complexes
on Upcoming KNL-based HPC Systems

John E. Stone
Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/Research/vmd/

Intel HPC Developer Conference, Sheraton Hotel

Sunday, Nov 13th, 2016, Salt Lake City, UT

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Electrons in
Vibrating Buckyball

Cellular Tomography
Cryo-electron Microscopy

Poliovirus

Ribosome Sequences

VMD – “Visual Molecular Dynamics”

Whole Cell Simulations

•  Visualization and analysis of:
–  molecular dynamics simulations
–  quantum chemistry calculations
–  particle systems and whole cells
–  sequence data

•  User extensible w/ scripting and plugins
•  http://www.ks.uiuc.edu/Research/vmd/

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Goal: A Computational Microscope
Study the molecular machines in living cells

Ribosome: target for antibiotics Poliovirus

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD 1.9.3 on New HPC Systems:
TACC Stampede-2 and ANL Theta

•  Enable large scale analysis and
viz. tasks in-place

•  Challenge: adaptations for MIC
architecture

•  Approach:
–  Incorporate OSPRay for ray

tracing on MIC
–  Change CPU threading for large

core counts
–  MIC optimizations for key viz/

analysis kernels

NSF: TACC Stampede-2

DOE: Argonne Theta

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Ray Tracing in VMD
•  Support for ray tracing of VMD

molecular scenes began in1995
•  Tachyon parallel RT engine

interfaced with VMD (1999)
•  Tachyon embedded as an internal

VMD rendering engine (2002)
•  Built-in support for large scale

parallel rendering (2012)
•  Refactoring of VMD to allow fully

interactive ray tracing as an
alternative to OpenGL (2014)

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Tachyon Ray Tracing Engine
•  Originally developed on Intel iPSC/860 hypercube (1994)
•  First support for MPI (1995)
•  Multithreading for Intel Paragon XP/S, large SGI and Sun

shared memory machines (1995)
•  In-situ CFD visualization (1996)
•  Support for OpenMP w/ Kuck and Associates KCC (1998)
•  Co-developed w/ VMD, 1998-present

Rendering of Numerical Flow Simulations Using MPI. John Stone and Mark Underwood.
Second MPI Developers Conference, pages 138-141, 1996.
An Efficient Library for Parallel Ray Tracing and Animation. John E. Stone
Master's Thesis, University of Missouri-Rolla, Department of Computer Science, April 1998.
Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters.
John E. Stone, Barry Isralewitz, and Klaus Schulten.. Extreme Scaling Workshop (XSW),
pp. 43-50, 2013.

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Biomolecular Visualization Challenges
•  Geometrically complex

scenes
•  Spatial relationships

important to see clearly:
fog, shadows, AO helpful

•  Often show a mix of
structural and spatial
properties

•  Time varying!

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Geometrically Complex Scenes
Ray tracing techniques well
matched to molecular viz. needs:
• Curved geometry, e.g. spheres,
cylinders, toroidal patches, easily
supported
• Greatly reduced memory footprint vs.
polygonalization
• Runtime scales only moderately with
increasing geometric complexity
• Occlusion culling is “free”, RT
acceleration algorithms do this and much
more

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Ray Tracing for Stereoscopic Planetarium
Dome Masters, Panoramic Displays

•  RT aptly suited to 360°
panoramic rendering

•  Single-pass rendering of stereo
pairs, spheremaps, cubemaps,
planetarium dome masters

•  Stereo panoramas require spherical
camera projection scheme that is
(very) poorly suited to rasterization

•  Easy to correct for VR headset lens
distortions, e.g. Oculus Rift,
Google Cardboard

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Ray Tracing Naturally Supports Advanced
Lighting and Shading Techniques

Two lights,
no shadows:

typical of OpenGL

Two lights,
hard shadows,

1 shadow ray per light

Two lights, shadows,
ambient occlusion w/

144 AO rays/hit

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Benefits of Advanced Lighting and
Shading Techniques

•  Exploit visual intuition
•  Spend computer time in

exchange for scientists’ time,
make images that are more
easily interpreted

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Ray Tracing Large Biomolecular Complexes:
Large Physical Memory Required (128GB)

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Ray Tracing Performance
•  Well suited to massively parallel hardware
•  Peak performance requires full exploitation of

SIMD/vectorization, multithreading, efficient
use of memory bandwidth

•  Traditional languages and compilers not
currently up to the task:
– Efficacy of compiler autovectorization for Tachyon

and other classical RT codes is very low…
– Core ray tracing kernels have to be explicitly

designed for the target hardware, SIMD, etc.

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Fast Ray Tracing Frameworks
•  Applications focus on higher level RT ops
•  SPMD-oriented languages and compilers

address the shortcomings of traditional tools
•  Intel RT frameworks provide performance-

critical algorithms on IA hardware:
– Embree: triangles only, basic kernels
– OSPRay: general RT framework, includes

complete renderer implementations

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Initial OSPRay support in VMD
•  Support researchers with allocations at

supercomputer centers with machines based on
Knights Landing or Intel® Xeon® processors

•  OSPRay functionality general enough for rendering
requirements of the majority of VMD scenes
–  Initial VMD-OSPRay development uses general purpose

OSPRay renderers not specific to VMD
–  OSPRay built-in renderers could be used by any

visualization tool
–  VMD compensates for currently-unimplemented

geometry types and mesh formats through automatic
internal conversion where possible

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMDDisplayList

DisplayDevice Tachyon

OSPRay

OpenGLDisplayDevice

Display Subsystem

Scene Graph

Molecular Structure Data and Global VMD State

User Interface
Subsystem

Tcl/Python Scripting

Mouse + Windows

VR Input “Tools”

Graphical
Representations

Non-Molecular
Geometry

DrawMolecule

Windowed OpenGL

OpenGL Pbuffer

FileRenderer

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Scene Graph in OSPRay

•  VMD 1.9.3: On-the-fly scene graph conversion:
–  VMD flattens internal scene graph
–  Transforms geom. to eye space
–  Maps to native OSPRay geom. and materials

•  Ongoing work:
–  Many opportunities for reduction of memory footprint,

avoiding data layout reformatting
–  Achieving closer or identical shading where possible
–  Streamlining implementation

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Scene Graph
and RT accel.

data structures

VMD-OSPRay Offline/Batch Mode

Ray Tracing Loop

Batch RT Rendering

ospRenderFrame(… OSP_FB_ACCUM)

ospMapFrameBuffer()
Write Image to Disk…

ospUnmapFrameBuffer() Write Output
Framebuffer

Loop until required antialiasing and
ambient occlusion lighting

samples have been accumulated

ospFrameBufferClear(OSP_FB_ACCUM)

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Scene Graph
and RT accel.

data structures

VMD-OSPRay Interactive Ray Tracing
with Progressive Refinement

RT Progressive
Refinement Loop

ospRenderFrame(… OSP_FB_ACCUM)

ospMapFrameBuffer()
Draw…

ospUnmapFrameBuffer() Draw Output
Framebuffer

Check for User Interface Inputs,
Update OSPRay Renderer State

ospFrameBufferClear(OSP_FB_ACCUM)

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Early OSPRay Renderings
with VMD 1.9.3

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DNA and Silicon Nanopore

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Polio Virus

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign Ribosome

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Satellite
Tobacco

Mosaic Virus

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Planar Photosynthetic Membrane Patch

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Early AVX-512 Kernels on KNL

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

•  Uses multi-core CPUs and GPU acceleration to enable smooth
real-time animation of MD trajectories

•  Linear-time algorithm, scales to millions of particles, as limited
by memory capacity

VMD “QuickSurf” Representation

Satellite Tobacco Mosaic Virus Lattice Cell Simulations

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Algorithm Overview
•  Build spatial acceleration

data structures, optimize
data for SIMD, GPUs

•  Compute 3-D density map,
3-D volumetric texture map:

•  Extract isosurface for a

user-defined density value

3-D density map lattice,
spatial acceleration grid,

and extracted surface

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Scatter Density Map Algorithm
•  Existing CPU algorithm targets small

4- to 8-core CPUs, with a scatter
algorithm: each atom loops over a
square region surrounding the atom,
accumulating densities into grid…

•  Output conflicts for independent CPU
threads resolved by privatization

•  For small CPU thread counts, say 16
or fewer, this approach was great..

•  For large (256) CPU thread counts,
e.g., KNL, this leaves much to be
desired, but it’s a starting point…

Atom and the
neighboring

density map lattice
points it

accumulates into

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padded + aligned array

Vectors of densities
are computed using
hardware SIMD
instructions

QuickSurf 3-D density map
decomposes into thin 3-D

slabs/slices

Padding:
Inactive SIMD
lanes or region
of discarded
output used to
guarantee
aligned vector
loads+stores

Each CPU
thread
computes
1, 4, 8, or 16
density map
lattice points
per loop
iteration:
C, SSE, AVX2
or AVX-512ER

SIMD lanes
producing
results that
are used

…
Chunk 2
Chunk 1
Chunk 0

Independent CPU
threads operate on
different planes

QuickSurf CPU Density Map
Parallel Decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Scatter Loop with
AVX512ER on Xeon Phi

// Use AVX512ER when we have a multiple-of-16 to compute

__m512 dy2dz2_16 = _mm512_set1_ps(dy2dz2);

__m512 dx_16 = _mm512_add_ps(_mm512_set1_ps(dx), _mm512_load_ps(&sxdelta16[0]));

for (; (x+15)<=xmax; x+=16,dx_16=_mm512_add_ps(dx_16, gridspacing16_16)) {

 __m512 r2 = _mm512_fmadd_ps(dx_16, dx_16, dy2dz2_16);

 // use fast exp2() approximation instruction, inputs already negated and in base 2

 y = _mm512_exp2a23_ps(_mm512_mul_ps(r2, arinv_16));

 float *ufptr = &densitymap[addr + x];

 d = _mm512_loadu_ps(ufptr);

 _mm512_storeu_ps(ufptr, _mm512_add_ps(d, y));

}

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Gather Density Map Algorithm
•  Ongoing work: adapt GPU gather

algorithm for Xeon Phi
•  Eliminate need for privatization of

large density map grids, scale to much
larger thread counts

•  Spatial acceleration grid cells are
sized to match the cutoff radius for
the exponential, beyond which density
contributions are negligible

•  Density map lattice points computed
by summing density contributions
from particles in 3x3x3 grid of
neighboring spatial acceleration cells

3-D density map
lattice point and
the neighboring

spatial acceleration
cells it references

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map Kernel Snippet…
for (zab=zabmin; zab<=zabmax; zab++) {

 for (yab=yabmin; yab<=yabmax; yab++) {

 for (xab=xabmin; xab<=xabmax; xab++) {

 int abcellidx = zab * acplanesz + yab * acncells.x + xab;

 uint2 atomstartend = cellStartEnd[abcellidx];

 if (atomstartend.x != GRID_CELL_EMPTY) {

 for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) {

 float4 atom = sorted_xyzr[atomid];

 float dx = coorx - atom.x; float dy = coory - atom.y; float dz = coorz - atom.z;

 float dxy2 = dx*dx + dy*dy;

 float r21 = (dxy2 + dz*dz) * atom.w;

 densityval1 += exp2f(r21);

 /// Loop unrolling and register tiling benefits begin here……

 float dz2 = dz + gridspacing;

 float r22 = (dxy2 + dz2*dz2) * atom.w;

 densityval2 += exp2f(r22);

 /// More loop unrolling ….

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Animating Molecular Orbitals
•  Animation of (classical

mechanics) molecular dynamics
trajectories provides insight into
simulation results

•  To do the same for QM or QM/
MM simulations one must
compute MOs at ~10 FPS or
more

•  Wide SIMD hardware with
fast exponential instructions
makes this possible
(GPUs and Xeon Phi)

High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-core
CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-

Purpose Computation on Graphics Processing Units (GPGPU-2), ACM International Conference
Proceeding Series, volume 383, pp. 9-18, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of
Worker Threads

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

 int prim_counter = atom_basis[at];

 calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

 for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

 int shell_type = shell_symmetry[shell_counter];

 for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

 float exponent = basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * expf(-exponent*dist2);

 prim_counter += 2;

 }

 for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

 int imax = shell_type - j;

 for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

 tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

 }

 value += tmpshell * contracted_gto;

 shell_counter++;

 }

} …..

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Traversal of Atom Type, Basis Set,
 Shell Type, and Wavefunction Coefficients

•  Loop iterations always access same or consecutive
array elements: yields good L1 cache performance

Monotonically increasing memory references

Strictly sequential memory references
Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO Kernel Snippet:
Unrolled Angular Momenta Loop

 /* multiply with the appropriate wavefunction coefficient */
 float tmpshell=0;
 switch (shelltype) {
 case S_SHELL:
 value += const_wave_f[ifunc++] * contracted_gto;
 break;
[… P_SHELL case …]
 case D_SHELL:
 tmpshell += const_wave_f[ifunc++] * xdist2;
 tmpshell += const_wave_f[ifunc++] * xdist * ydist;
 tmpshell += const_wave_f[ifunc++] * ydist2;
 tmpshell += const_wave_f[ifunc++] * xdist * zdist;
 tmpshell += const_wave_f[ifunc++] * ydist * zdist;
 tmpshell += const_wave_f[ifunc++] * zdist2;
 value += tmpshell * contracted_gto;
 break;
[... Other cases: F_SHELL, G_SHELL, etc …]
} // end switch

Loop unrolling:

• Saves registers

• Reduces loop control
overhead

• Increases arithmetic
intensity

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padded + aligned array

Vectors of
wavefunction
amplitudes are
computed using
hardware SIMD
instructions

MO 3-D lattice decomposes
into 2-D slices

Each CPU
thread
computes
1, 4, 8, or 16
MO lattice
points
per loop
iteration:
C, SSE, AVX2
or AVX-512ER

SIMD lanes
producing
results that
are used

…
Thread 2
Thread 1
Thread 0

Lattice
decomposed
across many
CPU threads

MO CPU Parallel Decomposition

Padding:
Inactive SIMD
lanes or region
of discarded
output used to
guarantee
aligned vector
loads+stores

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

AVX-512ER MO CGTO Loop
int maxprim = num_prim_per_shell[shell_counter];
int shelltype = shell_types[shell_counter];
for (prim=0; prim<maxprim; prim++) {
 float exponent = basis_array[prim_counter];
 float contract_coeff = basis_array[prim_counter + 1];

 // contracted_gto += contract_coeff * exp(exponent*dist2);
 __m512 expval = _mm512_mul_ps(_mm512_set1_ps(exponent * MLOG2EF), dist2);

 // expf() approximation required, use (base-2) AVX-512ER instructions…
 __m512 retval = _mm512_exp2a23_ps(expval);

 __m512 ctmp = _mm512_mul_ps(_mm512_set1_ps(contract_coeff), retval);
 contracted_gto = _mm512_add_ps(contracted_gto, ctmp);
 prim_counter += 2;
}

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

AVX-512ER MO Wavefunction Loop
 /* multiply with the appropriate wavefunction coefficient */
 __m512 ts = _mm512_set1_ps(0.0f);
 switch (shelltype) {
 case S_SHELL:
 value = _mm512_add_ps(value, _mm512_mul_ps(_mm512_set1_ps(wave_f[ifunc++]), cgto));
 break;

 case P_SHELL:
 ts = _mm512_add_ps(ts, _mm512_mul_ps(_mm512_set1_ps(wave_f[ifunc++]), xdist));
 ts = _mm512_add_ps(ts, _mm512_mul_ps(_mm512_set1_ps(wave_f[ifunc++]), ydist));
 ts = _mm512_add_ps(ts, _mm512_mul_ps(_mm512_set1_ps(wave_f[ifunc++]), zdist));
 value = _mm512_add_ps(value, _mm512_mul_ps(ts, cgto));
 break;

 case D_SHELL:
 ….

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

AVX-512ER+FMA
 MO Wavefunction Loop

 /* multiply with the appropriate wavefunction coefficient */
 __m512 ts = _mm512_set1_ps(0.0f);
 switch (shelltype) {
 // use FMADD instructions
 case S_SHELL:
 value = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), cgto, value);
 break;

 case P_SHELL:
 ts = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), xdist, ts);
 ts = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), ydist, ts);
 ts = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), zdist, ts);
 value = _mm512_fmadd_ps(ts, cgto, value);
 break;

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Performance of AVX-512ER
Instrinsics vs. Autovectorization on KNL

•  Intel C++ ‘15 autovectorization (fail): 220+ sec
•  Hand-coded SSE2 w/ existing thread scheme: 48.5 sec
•  Hand-coded AVX-512ER w/ existing thread scheme: 6.3 sec
•  Hand-coded AVX-512ER, refactoring thread pool: 0.2 sec
•  Hand-coded AVX-512ER tuned thread pool: 0.131 sec
•  Hand-coded AVX-512ER+FMA tweaks: 0.107 sec

Further improvement will require more attention to details of

cache behaviour and further tuning of low-level threading
constructs for Xeon Phi/KNL

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Future Work
•  Many more AVX-512 kernels…
•  Continue optimization of OSPRay

renderer class
•  Runtime loading of VMD-specific

OSPRay shader extension
modules

•  Interactive ray tracing of time-
varying molecular geometry

•  Support upcoming ANL Aurora
machine

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Acknowledgements
•  Theoretical and Computational Biophysics Group,

University of Illinois at Urbana-Champaign
•  Funding:

–  NSF OCI 07-25070
–  NSF PRAC “The Computational Microscope”
–  NIH support: 9P41GM104601, 5R01GM098243-02

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

INTEL® HPC DEVELOPER CONFERENCE

