Intel® Data Center Manager
Data center IT agility and control
The Data Center Ecosystem
Why Data Center Management Is Key to An Efficient Data Center Ecosystem

50% of large data centers in North America will deploy some form of Data Center Infrastructure Management Software.¹

10% of global energy use will be attributed to global data centers, which comes to 91B KWH.³

70% of all workloads will be processed in cloud data centers this year.²

10-50X energy spent on data center per floor space of typical commercial office building.⁴

¹Gartner DCI Magic Quadrant, 2014; ²Cisco Cloud Index Report; ³NRDC, 2014; ⁴Energy.gov, 2009
Why Data Center Management Is Key to An Efficient Data Center Ecosystem

- **Data Use Growth**: 403ZB attributed to devices connected to the Internet of Everything (up from 113ZB in 2013).\(^5\)

- **Potential Reduction**: 18% reduction in peak electrical power usage by capping performance of high load server at 90 percent.\(^6\)

- **Reduction in Electrical Power Consumption of Servers**: 20% with high loads with Intel Data Center Manager.\(^7\)

- **Use of Power by Servers, Even While Idle**: 50% even while remaining idle.\(^8\)

\(^5\)Upsite; \(^6\)Intel White Paper; \(^7\)NTT White Paper; \(^8\)Intel, Klaus
The Forces Driving the Cycle

19B
Connected devices by 2016

$200B
Cloud services in 2016

2X
Annual growth in supercomputing FLOPS

300M
Facebook* photos per day

1Cisco® Visual Networking Index (VNI) Forecast (2011-2016)
2Gartner Worldwide IT Spending Forecast, 2Q12 Update
3Top 500 list: Top 10 change from November 2007 to November 2012
4Facebook public statements

*Other names and brands may be claimed as the property of others.
Increases in Data Center Power Consumption

2012-2013

Source: DCD Intelligence 2013 Census Report: Global Data Center Power 2013
Intel® DCM Delivers

- Real Time Power and Thermal Data for Racks/Blades
- Policy Based Power Capping for Racks/Blades
- IT Device Power (PDU, UPS, Network, Storage)
- Aggregated Control
- Historical Trending
- Cross Platform Support
Intel® DCM
A middleware with web service APIs for data center power and thermal management – easy to integrate in the Management Console

ISV Management Console

Intel® DCM Middleware (Web Service API)

<table>
<thead>
<tr>
<th>MONITOR</th>
<th>CONTROL</th>
<th>TREND</th>
<th>SCALABILITY</th>
<th>STANDARDS</th>
</tr>
</thead>
</table>

Hardware Protocols

<table>
<thead>
<tr>
<th>Node Manager</th>
<th>iDRAC</th>
<th>iLO/DCMI</th>
<th>IMM</th>
<th>CMC</th>
<th>OA</th>
<th>IMM</th>
<th>SNMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPMI</td>
<td>IPMI</td>
<td>IPMI</td>
<td>IPMI</td>
<td>HTTPS/WS-MAN</td>
<td>SSH/CLI</td>
<td>SSH/CLI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rack Servers</th>
<th>Blade Servers</th>
<th>PDU and UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPMI = Intelligent Platform Management Interface
IMM = Integrated Management Module
SNMP = Simple Network Management Protocol
WS-MAN = Web Services-Management

iDRAC = Integrated Dell Remote Access Controller
CMC = Chassis Management Controller
CLI = Command Line Interface
DCMI = Data Center Manageability Interface

iLO = Integrated Lights-out
OA = Onboard Administrator
SSH = Secure Shell
Storage and networking support today

Features today

- Monitor storage and networking devices SNMP and SSH using device MIB files
- Monitor server-based storage when based on standard servers with power monitoring (IPMI)
- Support Cisco Catalyst switches with EnergyWise monitoring
- Static power profiles include peak and typical power for a number of EMC and NetApp large scale storage devices. New device profiles can be added by DCM team or by ISV/OEM
- Unmanaged devices: end users can add static power values to any unspecified or unknown device, which lack monitoring capabilities

SSD Feature support

- SSD SMART includes: Wear and tear statistics incl. Power On Hours, Power cycle, SSD Temperature sensor
- SSD Usage: Total LBA Written and read, endurance Analyzer – Remaining SSD drive life
- Retrieve and control selected devices power governor mode settings
- ATA and NVMe max power settings
- Configuration en masse of SSDs

NetApp FAS220
Cisco Catalyst
Storage and networking support future potential

SSD Compliance:
Update SSD firmware, patching capabilities, wear and tear – proactive notification

Manageability:
Configuration options: Intel NVMe for encryption, RAID, caching

- Show capacity across a group of server
- Identify open PCIe – slots
- Power Capping of SSD drive subsystem
Intel® DCM Product Features

Monitoring
- Real-time monitoring of server actual power and inlet temp data aggregated to rack, row, room.
 - User-defined physical or logical groups.
- Receive alerts based on custom power and thermal events
- Power estimation engine for legacy servers lacking power monitoring
- Power Monitor Cisco Catalyst Energywise switches
- Display server asset tag and serial # for HP, IBM, Dell
- Cisco Rack and UCS Support
- Index on Server Cooling Effectiveness

Trending
- Log power & thermal data, query trend data using filters
- Saves one year of history data for capacity planning

Control
- Intelligent and patented group policy engine
- Supports multiple concurrent active power policy types at multiple hierarchy levels
- Accepts workload priority as policy directive
- Allow scheduling of policies including power capping, by time of day or/and day of week
- Maintains group power capping while dynamically adapting to changing server loads
- Intel Node Manager 2.0 support for memory power limiting and dynamic core allocation

Agent-less
- Does not require installation of any software agents on managed nodes

Easy Integration and Co-existence
- Device inventory pre-scan using IP ranges
- Exposes high level Web Services Description Language (WSDL) APIs
- Can reside on an independent server or co-exist with ISV product on same server
- Power/thermal-aware scheduling – airflow and outlet temp. modeling (OEM dependent)*
- Outlet temperature sensor (OEM dependent)*

Scalability
- Manages tens of thousands of servers

Security
- Secured APIs
- Secured communication with managed nodes
- Encryption of all sensitive data

Support
- 24/7 support for Intel® DCM is available
Intel® DCM Go-to-Market Options

<table>
<thead>
<tr>
<th>Intel® DCM Enabled via ISV</th>
</tr>
</thead>
<tbody>
<tr>
<td>- DCM is embedded in ISV solution and transparent to customer</td>
</tr>
<tr>
<td>- Customer buys power management solution directly from the ISV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intel® DCM Enabled via OEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Educate customer IT team on OEM product versions that support monitoring via DCM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intel® DCM Direct via Customer-Developed Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>- DCM can be integrated to home grown console with minimal investment from customer</td>
</tr>
<tr>
<td>- Intel licenses DCM to the customer and provides support</td>
</tr>
</tbody>
</table>

ISV Console

- Schneider Electric
- iTRACS
- nlyte.Software

OEM Console

- DELL
- lenovo
- SUPERMICRO
- sgi

Home Grown Console

- Direct

ISVs

- OEMs
Intel® DCM Deployment Options for End User
What Can You Do with Intel® DCM?

Power and Thermal Knobs in Data Centers

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace expensive smart power strips</td>
</tr>
<tr>
<td>Capacity planning</td>
</tr>
<tr>
<td>Identify dead and under-utilized servers</td>
</tr>
<tr>
<td>Measure energy usage by device</td>
</tr>
<tr>
<td>Identify power/thermal failure situations</td>
</tr>
<tr>
<td>Power-aware VM migration</td>
</tr>
<tr>
<td>Power-aware job scheduling</td>
</tr>
<tr>
<td>Continued operation in the presence of power outages</td>
</tr>
<tr>
<td>Improve thermal profile in the data center</td>
</tr>
<tr>
<td>Application power optimization</td>
</tr>
</tbody>
</table>
Intel® DCM Case Studies

<table>
<thead>
<tr>
<th>Use</th>
<th>Power Monitoring</th>
<th>Increase Rack Density</th>
<th>Ghost Server Identification</th>
<th>Identify Power/Thermal Failure</th>
<th>Improve Thermal Profile</th>
<th>Power Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cloud dynamics</td>
<td>Reduced monthly data center electricity bill while peak power demand kept increasing</td>
<td>Allowed customers to increase rack density by 71% by implementing Intel DCM</td>
<td>Identified 10 – 15% of underutilized servers and virtualized those systems</td>
<td>UPS uptime can be extended up to 15% with limited performance impact during power outage</td>
<td>Thermal data collection allows users to see 2D heat maps of the data center</td>
<td>Decreased power by 18% of KWh with little/no impact on performance</td>
</tr>
<tr>
<td>Baidu百度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring capabilities and power consumption ceilings allowed up to a 60% increase in rack density.</td>
<td>$630k can be saved in 3 years for a 10k data center by consolidating low utilization servers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large PRC IPDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced monthly data center electricity bill while peak power demand kept increasing</td>
<td>Allowed customers to increase rack density by 71% by implementing Intel DCM</td>
<td>Identified 10 – 15% of underutilized servers and virtualized those systems</td>
<td>UPS uptime can be extended up to 15% with limited performance impact during power outage</td>
<td>Thermal data collection allows users to see 2D heat maps of the data center</td>
<td>Decreased power by 18% of KWh with little/no impact on performance</td>
<td></td>
</tr>
<tr>
<td>Top Japan Online Retailer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring capabilities and power consumption ceilings allowed up to a 60% increase in rack density.</td>
<td>$630k can be saved in 3 years for a 10k data center by consolidating low utilization servers</td>
<td>Existing alert infrastructure sped up market launch of new product</td>
<td>4°C increase expected to save 32% in power consumption for cooling</td>
<td>25% savings on power consumption with DCM and Node Manager</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power Management Call-to-Action

Make Sure “Power Sensitive” Customers Are Aware of the Real-time Monitoring Capabilities

- Learn more:
 Intel® Data Center Manager
 www.intel.com/datacentermanager

- Contact Us:
 dcmsales@intel.com
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life-saving, life-sustaining, critical control or safety systems, or in nuclear facility applications.

Intel products may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel may make changes to dates, specifications, product descriptions, and plans referenced in this document at any time, without notice.

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

This document contains information on products in the design phase of development.

This document may contain information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Wireless connectivity and some features may require you to purchase additional software, services or external hardware.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2015 Intel Corporation. All rights reserved.