Intel® IXP400 Digital Signal
Processing (DSP) Software

Version 2.4

API| Reference Manual

January 2004

Document Number: 273811-005

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® IXP400 DSP Software v.2.4 may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,
ETOX, FlashFile, i386, 486, 1960, iCOMP, InstantlP, Intel, Intel logo, Intel386, Intel486, Intel740, InteIDX2, IntelDX4, IntelSX2, Intel Create & Share,
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

Copyright © Intel Corporation, 2004
*Other names and brands may be claimed as the property of others.

2 API Reference Manual

|]
|nte|® Contents

cContents

1.0 INTFOAUCTION L.t 7
1.1 GNEBIAL .. et a e e e e e e 7
1.2 ST oTe] o1 T PP P P PO PUPPPPTP 7
1.3 AUAIBNCE ..ottt et e e e e e e e e e aeeeaeaae s 7
1.4 F ol £0] 1)/ 1 4 = T TP 7
15 Related DOCUMENTATIONueiiiiiiiiee et 8
2.0 ArChItECTUIE OVEIVIBWcoiiiiiiiceeee s 9
3.0 Media-Processing Resource COmpoNents........ccccccvvvennrnicciecennns 10
3.1 Network-Endpoint Resource COmMPONENT.........cooviiiiiiiiiiiieie et 11
3.2 Decoder Resource COMPONENT........ooiuuuuiiiiiiieeaaae et ee e e e e e e e e seeeeees 12
3.3 Encoder Resource COMPONENT.........cuuuuiiiiiiiiaeaaae ittt e e 13
3.4 Tone-Generation Resource COMPONENLccuuuiiiiiiiieieeee i e e e 13
3.5 Tone-Detection Resource COMPONENT.........cccuuiiiiiiiiiieee e eeeaee e 14
3.6 Audio Player Resource COMPONENTccuiiiiieiiiiiiiiiiiieie et e e e 15
3.7 Audio Mixer Resource COMPONENTuuuiiiiiiieiiaiiiiiiiieiieeee e 16
3.8 T.38 Fax Resource COMPONENTcooiiiiiiiiiiiiiiiiii e e e e e e e e aeaeaeeeeeeeenes 16
3.9 Message Agent Resource COMPONENTooooviiiiiiiiiiiiiieiiieieeee s 17
4.0 Message Format and Delivery Mechanism..........cccccoovinnnnncenne 18
4.1 MESSAJE FUNCHIONSueiiiiiiiiic e et s e e e e e e s e eees 18
4.2 Message Header FOrMat........ccvveeiii i 19
4.3 MESSAGE TYPE LISt ..ttt e e e 20
5.0 Common CoNtrol MESSAQE.......ccccceiiiiiiecccce e 21
5.1 RESEE IMESSAQE ... ccieieiiiiie ettt e e e e e e e e e e e e e e n———————— 21
5.2 Y2 LY =TS T Vo T 21
5.3 0] &I [ST Y= Vo T 22
5.4 PiNG MESSAQE. . uiiiiiiieie ittt e e e s e a e e 22
5.5 Set-Parameter MESSAQEuuuuuiiiieieieie i e eee ettt e e e e e e e s 22
5.6 Set-Multiple-Parameter MEeSSAQE..........cccurrriiiiriieee e eeee e e e e 23
5.7 Get-Parameter MESSAQJEuuuuuuieiiiiii e e e e e e eeete e et eeee et a e e e e e e e eeeeeees 24
5.8 Get-Parameter-Acknowledge MESSAQEuuueeieiiieeeeiiiii e e e e 24
5.9 Get-All-Parameters MESSAQEuuuiieeieee i i ettt e e e e e e s ss s ssirerrrere e e e e e e snnnns 24
5.10 Get-All-Parameters-Acknowledge MESSAJEuuevvveeeeriiiiiiiiiiiieineeeeeeeeeenanne 25
5.11 General-Acknowledge MESSAQEuuuriiiieeeeeiiiiiiiie e e e e e e e s e s aeee e e e e e e e 25
LN I (o] g\ [T ST= o =P 26
5,13 EVENT MESSAQE. ...ciuiiieiuieiiiiiiiie et et et e eeeeee et ettt eeeeeee et s asaseeaeeeaeaeaeeeeeeeeeanes 26
6.0 Resource-Specific Control MeSSage.........ccccceeveiviviviiiecececeeee e 27
6.1 CODECQC STAlt MESSAQE ..vvvuveretiaa e e e e e e e e ee e e e e eeeeaeeeres bbb e e e e e aeaaas 27
6.2 CODEC Stop-Acknowledgement MESSAge......ccuuuiieaaaiiiiiiiiiiieeeeaa e e 27
6.3 Tone-Generator-Play MESSAQEuuuiiiiiiiiiiiiiiiiie et 28
6.4 Tone-Generator-Play-FSK MESSAge.......ccouiiiiuiiiiiiiiieee et 28
6.5 Tone-Generator-Play-Completed MeSSageuueeeeieieriiiiiiiiiiiiiee e 29
6.6 Tone-Detector-Receive-Digit MeSSageoovcuiiviiiiiiiiieee e 29

API Reference Manual 3

|]
Contents |nte|®

6.7 Tone-Detector-Receive-Completed MeSSage.........occuuvviiieiiieiieeeienieiiiiee 30
6.8 Tone-Detector-Receive-FSK MESSAQEuuvieiiiiaiiiiiiiiiiiiiiieee e 30
6.9 Tone-Detector-FSK-Receive-Completed MeSsage..........ueveeveveeeeiiiiiiiiiiiinneen. 31
6.10 Player-Start MESSAQgE.ccuuueiiiiiiiiaiee ettt e e e e e e e e s e et e e e e e e e e e e s e annaees 31
6.11 Player-Play-Completed MEeSSAge.........cccuuuruiiiiiieieaaeae ittt e e 32
6.12 Get-Jitter-Buffer-StatisticsS MESSAQEuuuiiiiiiiiiiiiiiei e 33
6.13 Complete Message of Getting Jitter Buffer StatistiCs...........cccveevieiiiiiiiiiiinns 33
7.0 Packet Data INterface...........cccociiiiiicecceee e 34
7.1 PaCKEt FOIMALScuveieiiiei et 34
7.2 Packet Delivery MeChaniSMuuuviiiiieiiiiiiiciieec e 35
8.0 Configuration and InitializatioNcccccceeiviiiiiiiiceecee e, 36
8.1 System CoNfIQUIALIONeeiiiiie e e e 36
8.2 Adding Tones t0 TONE GENEIALON.........ccceevieeiiiiiie e e e ee e er e e e e e e 37
8.3 Adding Tones t0 TONE DELECIONccceeiiei it e e r e e e 38
8.4 Getting DSP Resource Configuration and Routing Information 39
9.0 Complementary FUNCLIONS ..o 41
9.1 DireCt Parameter ACCESScccueiieiiieiiiee ettt e et e e e e e e e e e e e 41
9.2 Flash HOOK DEtECHIONcoiiiiiiiieee e 41
9.3 Cache Prompt RegiStrationoccuuuuiiiiiiiiiaaiee e 42
10.0 CONSTANT DALAottt 43
O Y 4 o g ©o o [P ET TR 43
10.2 EVENE COUBS. ..o iiiiiiieeitete ettt ettt et ettt e e e e e e e e e e e nbbebreeeeaas 43
O RC T o] o <N 1 5 1 TP PP PP T PR PRPRRRR 44
10.3.1 DTMF TONE IDS..cciuiiiiiiiieiiiie i ettt et e e e sbe e sene e 44
10.3.2 FAX-TONE IDS ...eeuiiiee e e 44
10.3.3 Call-ProgreSSion IDScciiiiiiaaiiiiiieeie e 45
10.4 Other CONSIANTSt e e e e e e e e e e e beabeeeee s 46
Figures
1 Intel® IXP400 DSP Software v.2.4 ArChiteCtUIecvcveeeeeeeeeeeeeeeeeeeen 9
2 Resource-Component Identifiers ... 10
Tables
None.

4 API Reference Manual

intel.

Revision History

Contents

Date Revision Description
®
January 2004 005 Updz_ates for the release of Intel™ IXP400 DSP Software
Version 2.4
September 2003 004 fCIarlf_led input for XSt at us_t xMsgRecei ve message
unction.
®
September 2003 003 Updates for the release of Intel™ IXP400 DSP Software
Version 2.3
Added minor updates to represent features of Intel® 1XP400
March 2003 002 DSP Software Version 1.1.
January 2003 001 First release of this document.

API Reference Manual

|]
Contents |nte|®

6 API Reference Manual

intel.

1.0

1.1

1.2

1.3

1.4

API Reference Manual

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

Introduction

Intel® 1XP400 DSP Software is a software module that provides the basic voice-processing
functionalities for Voice-over-Internet-Protocol (MolP) residential gateway applications. It can be
viewed as a complete, media-processing layer with control and data interfaces as its API.

This document defines the API specifications.

General

Intel® 1XP400 DSP Software is a software module for media processing, targeted for next-
generation Integrated Access Devices (IADs) — such as Consumer Premise Equipment (CPE),
specifically, to perform audio encoding/decoding, echo cancellation, tone processing and jitter
control — as required in any IP media gateway or real-time, media-streaming functionalities.

This document is intended to describe the control and data interfaces for a third-party developer to
incorporate the module into a media gateway or server system. It provides sufficient details about
the interfaces so that users can fully configure and control the operations and services.

This document also describes the data interface and format as well as message and data-delivery
mechanisms.

Scope

The interface of DSP software is a set of functions, macros, messages, and packet formats that
determines how the applications access the media-processing resource components.

Audience

This document is intended for the following audiences
¢ Firmware engineers who are responsible for the development of DSP resources
¢ Third-party software engineers who are building gateway or server applications
¢ System architects and engineers
* Project development managers

Acronyms

AGC Automatic Gain Control for voice data towards IP network
ALC Automatic Level Control

CPE Consumer Premise Equipment

EC Echo Cancellation

FSK Frequency Shift Keying

IP Internet Protocol

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

1.5

ISR Interrupt Service Routine

NLP Non-linear Processing (for EC)
SP Signal Processing

VAD Voice Activity Detection

Related Documentation

Document Number

Intel® IXP400 Software Programmer’s Guide

Title
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Programmer’s
- 252725
Guide
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Release Notes N/A
252539

API Reference Manual

u
Intel ® Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

2.0 Architecture Overview

Intel® 1XP400 DSP Software is implemented as an independent module having its own tasks and
runtime environment. The software architecture is of a two-layer hierarchy — a control layer that
provides the control interface and control logic and a data processing layer where the media data
streams are processed by appropriate algorithms. Figure 1 shows the decomposition of the module.

In this architecture, a group of media resource (MPR) components forms a channel for full-duplex
media processing. They are the addressable entities that can be controlled individually by the
applications.

Figure 1. Intel® IXP400 DSP Software v.2.4 Architecture

Intel® IXP400 DSP Software Client

A A User-Defined
Control Replies and Control
Messages Events Messages
v and Replies v

Intel® IXP400 DSP User-Defined
Software Control Interface Control Interface

!

Common Control Logic and Message
Generic Control Engine Agent

Network Decoder Tone Tone Audio Audio
Endpoint Generator Detector Player Mixer

Control Layer

Data-Processing Layer

Encoded
Packets

Data-Processing
Algorithms and
Functions

PCM
Data
Interface

SLIC
Interface

Packet
Interface

[Real-Time Execution Environment]

B2546-02

API Reference Manual 9

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

intel.

3.0 Media-Processing Resource Components
As shown in Figure 1, the addressable control entities of the DSP software are media-processing
resource (MPR) components similar to those defined in many Intel® Dialogic® computer-
telephony system architecture.
There are nine resource components, working together to provide all media processing needed by a
gateway or server channel. Each resource component has a unique identifier as shown below. In the
following, we will refer to each of these eight media-processing entities as either a resource or a
resource component.
Figure 2. Resource-Component Identifiers
typedef enunf

XMPR_ANY=0, /* Any resource, not supported in */

XMPR_NET, /* Network Endpoint resource */

XMPR_DEC, /* Decoder resource */

XMPR_ENC, /* Encoder resource */

XMPR_TNGEN, /* Tone generator resource */

XMPR_TNDET, /* Tone detector resource */

XMPR_PLY, /* Audi o player resource */

XMPR_M X, /* Audio m xer resource */

XMPR _T38, /* T38 fax resource */

XMPR_MA /* Message Agent resource */

} XMPResource t;
Each resource contains a particular set of algorithms to perform a specific set of media-processing
functions. For example, the Network Endpoint resource consists of echo cancellation, high-pass
filter and PCM data conversion algorithms to perform TDM front-end processing. Each resource,
therefore, has a unique set of parameters associated with the particular set of algorithms it contains.
Communications of control information to these resource components are through messages
defined in this document. Some messages are common to all resources while others are unique only
to a particular resource.
The following sections describe each resource in terms of their identifiers, media-processing
functions, parameters, and control messages. The resource parameters can be read or modified by
the messages or direct function calls. Some of the parameters can only be set though the messages
because they can only be updated by the internal control task.
10 APl Reference Manual

3.1

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

Network-Endpoint Resource Component
Resource Type XMPR_NET
Media Processing Functions Resource-Specific Control Messages
¢ A-law or p-law compression and decompression None
¢ High-Pass Filter
« Echo Cancellation (EC)
« Supplementary functions (timer and flash hook detection)
Parameters
Identifier Description, Values Attr Direct
' " | Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
The L-Port stream ID. Default: the stream assigned to the
XPARMID_NET_LP_STREAM IP termination’s T-Port of the same channel if exist, R/W N
otherwise —1.
PCM data format on HSS TDM bus. XPARM_NET_ALAW
XPARMID_NET_LAW or XPARM NET_MULAW Default: XPARM NET_MULAW RW | N
XPARMID NET ECENABLE EC enabling flag, XPARM_ON or XPARM_OFF. RIW v
- - Default: XPARM_ON
XPARMID NET ECTAIL EC tail length (2, 4, 6, 8,...up to 64 in l ms unit). Default: 6. RIW N
- = The resource must be reset after setting the parameter.
EC NLP and suppress flag, XPARM_OFF,
XPARMID_NET_ECNLP XPARM _EC_NLP_ONor XPARM EC_NLP_SUP_ON. R/W N
Default: XPARM_OFF
EC freezing flag, XPARM_ON (freeze) or XPARM_OFF
XPARMID_NET_ECFREEZE (adaptive). Typically, freeze is used only in debug R/W N
situations. Default: XPARM_OFF
EC delay compensation (0 ~ 240 in 0.125 ms unit). Default:
XPARMID_NET_DELAYCOMP 20 (or 2.5 ms delay compensation) RIW Y
The window of flash hook detection (in 10-ms unit)
XPARMID_NET_FLASH_HK R/W Y
Default: 100
Timer counter (in 10-ms units). This timer can be used for
XPARMID_NET_TIMER timing that is synchronized to the TDM clock. Default: 0 RIW Y
Input gain of HSS interface (+15 ~ —40 in 1-dB units)
XPARMID_NET_GAIN_RX R/W N
- - - Default: 0
Output gain of HSS interface (+15 ~ —40 in 1-dB units)
XPARMID_NET_GAIN_TX R/W N
Default: 0
YPARMID NET HSS BYPASS TDM short bypass flag, XPARM_ON or XPARM_OFF. RV N
- - = Default: XPARM_OFF
Events
XEVT_NET_HOOK_STATE - Hook state change detected.
EVT_NET_TI MER - Timer expired.
APl Reference Manual 11

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 In

®
3.2 Decoder Resource Component
Resource Type XMPR_DEC
Media Processing Functions Resource-Specific Control Messages
¢ Decoding
¢ Automatic level control and/or volume control ¢ XMSG_CODER_START (inbound)
¢ Comfort noise generation ¢ XMSG_CODER_STOP_ACK (outbound)
e Jitter compensation
Parameters
Identifier Description, Values Attr Direct
' © | Write
XPARMID_RES_STATE Current state (0O: idle, 1: active) R N
XPARMID_DEC_VOL CI?ecoder volume adjustment; +15 ~—30 in 1 dB unit. Default: RIW N
ALC enable flag. XPARM_ON or XPARM CFF. Default:
XPARMID_DEC_ALC XPARM ON R/W N
CNG enable flag. XPARM_ON or XPARM_OFF. Default:
XPARMID_DEC_CNG XPARM OFF R/W Y

Coder type. Currently supported types are
XCODER _TYPE_G711MJ_10MNS,
XPARMID_DEC_CTYPE XCODER TYPE _G711A 10ME, RW | N

XCODER_TYPE_G729A,0r XCODE_TYPE_G723.
Default: XCODER_TYPE_G711MJ_10MS

Report bad and lost packet, caused by the jitter buffer unable

to provide packets to the decoder. XPARM ON or
XPARMID_DEC_EVT_PKT XPARM OFF. - RW | Y

Default: XPARM_OFF

Report RTP payload type change. XPARM_ON or
XPARMID_DEC_EVT_PKTCHNG XPARM_GFF. RIW Y
Default: XPARM_ON.

Auto-Switch mask bits. This specifies which coder types are
allowed to be auto-switched based on input RTP payload

XPARMID_DEC_AUTOSW type. Y
Default: XPARM_DEC_AUTOSW ALL

XPARMID_DEC._JB_MAXDLY %létgr buffer maximum delay (0 ~ 500 in 1-ms unit). Default: RIW N

XPARMID_DEC_JB_PLR Jitter buffer packet loss rate in 0.1% unit. Default: 1 R/W N

Events

XEVT_LOST_PACKET — Bad or lost packet.
XEVT_DEC_PACKET_CHNG — RTP payload type changed.

12 API Reference Manual

In ® Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

3.3 Encoder Resource Component
Resource Type XMPR_ENC
Media Processing Functions Resource-Specific Control Messages
¢ Encoding

¢ XMSG_CODER_START (inbound)
¢ XMSG_CODER_STOP_ACK (outbound)

¢ Automatic Gain Control
« Voice-Activity Detection

Parameters
Identifier Description, Values Attr Dir_ect
’ " | Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
XPARMID ENC LP STREAM L-Po_rt st_ree’1m ID. Default: the stream ass_lgne_d to the TI_DM RIW N
- - = termination’s T-Port of the same channel if exist, otherwise —1.
AGC enable flag. XPARM_ON or XPARM_OFF. Default:
XPARMID_ENC_AGC XPARM OFF R/IW N
VAD enable flag. XPARM_ON or XPARM_OFF. Default:
XPARMID_ENC_VAD XPARM OFF R/IW N

Coder type. Currently supported types are
XCODER_TYPE_G711MU_10MS,

XPARMID ENC CTYPE XCODER_TYPE_G711A_10MS, XCODER_TYPE_G729A or | R/W N
- - XCODE_TYPE_G723.

Default: XCODER _TYPE_G711MJ_10MS

Number of frames per packet. Supported range is 1~6 for
XPARMID_ENC_MFPP G.711, 1~8 for G.723 and 1~24 for G.729. RIW N

Default: 1.
Enable packet lost event. XPARM_ON or XPARM_OFF.

XPARMID_ENC_EVT_PKT Default: XPARM OFF R/IW Y
Events
XEVT_LOST_PACKET - Bad packet
3.4 Tone-Generation Resource Component
Resource Type XMPR_TNGEN (Sheet 1 of 2)
Media Processing Functions Resource-Specific Control Messages

« XMSG_TG_PLAY (inbound)
« XMSG_TG_PLAY_FSK (inbound)
« XMSG TG PLAY_CMPLT (outbound)

« Generating multiple-frequency tone signals
« Generating call-progress tones

Parameters
- _— Direct
Identifier Description, Values Attr. Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R/W N
XPARMID_TNGEN_VOL Ec;r;:u(ﬁggerator s volume adjustment, +15 ~—20 in 1dB unit. RIW v

API Reference Manual 13

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

Resource Type XMPR_TNGEN (Sheet 2 of 2)

FSK modulator mode. XPARM TNGEN_FSK V23 or
XPARM TNGEN FSK_B202.
XPARMID_TNGEN_FSK_MOD Default: XPARM TNGEN_FSK_B202 if country code set | RIW | Y
to COUNTRY_CODE_US or COUNTRY_CODE_PRC,
otherwise XPARM TNGEN_FSK_V23

CS bit length of FSK modulator (in bit unit).
XPARMID_TNGEN_FSK_CS Default: 300 if country code set to COUNTRY_CODE_USor | RIW | Y
COUNTRY_CCODE_PRC, otherwise 0.

Mark bit length of FSK modulator (in bit unit).
XPARMID_TNGEN_FSK_MARK Default: 180 if country code set to COUNTRY_CODE_USor | RIW | Y
COUNTRY_CCDE_PRC, otherwise 100.

FSK modulator baud rate (XPARM_TNGEN_FSK_R1200,
XPARM TNGEN_FSK_R600,
XPARM TNGEN_FSK_R300,
XPARMID_TNGEN_FSK_RATE XPARM TNGEN FSK_R150, or R/W N
XPARM TNGEN_FSK_R75).

Default: XPARM_TNGEN_FSK_R1200, i.e., 1200 bps
RFC2833 enable flag. XPARM_ON or XPARM_OFF.

XPARMID_TNGEN_RFC2833 R/W N
- - Default: XPARM_ON
Events
None
3.5 Tone-Detection Resource Component
Resource Type XMPR_TNDET (Sheet 1 of 2)
Media Processing Functions Resource-Specific Control Messages
*« XMSG_TD_RCV (inbound)
« Receiving DTMF digits « XMBG TD_RCV_FSK (inbound)
- Detecting individual tone event « XMBG TD RCV_CMPLT (outbound)
« XMBG TD RCV_FSK _CMPLT (outbound)
Parameters
Identifier Description, Values Attr Direct
p ’ “| Write
XPARMID_RES_STATE Current state (O: idle, 1: active) R N
L-Port stream ID. Default: the stream assigned to the DTM
XPARMID_TD_LP_STREAM termination’s T-Port of the same channel if exist, otherwise —1. RIW N
Tone Clamping enable flag. XPARM_ON or XPARM_OFF.
XPARMID_TD_TC Default: XPARM_OFF RIW\ Y
XPARMID_TD_TC_FRAMES Tone Clamping buffer size. 0 ~ 3 in 10 ms unit. Default: 3 R/W N
Tone event enable flag. XPARM_OFF,
XPARM TD_RPT_TONE_ON,
XPARMID_TD_RPT_EVENTS XPARM TD RPT_TONE_OFF or RW | Y
XPARM TD_RPT_TONE_ON_OFF.
Default: XPARM_OFF

14 API Reference Manual

In Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

Resource Type XMPR_TNDET (Sheet 2 of 2)
XPARMID TD RFC2833E ENABLE RFC2833 event enable flag. XPARM_ON or XPARM_OFF. rwl vy
- - - Default: XPARM_OFF
XPARMID_TD_RFC2833E_UPDATERATE RFC2833 packet rate in 10 ms unit, ie., the period betweerj the RIW N
packets generated when a tone event is detected. Default: 5
XPARMID_TD_RFC2833E_NUMEOE Redundancy of end-of-event packet. Range 0-255. Default: 3 | R/IW
XPARMID_TD_RFC2833E_NUMBOE Redundancy of begin-of-event packet. Range 0-255. Default: 0 | R/W
Flag of audio encoding suppression when event detected.
XPARMID_TD_RFC2833E_AUDIOSUPRESS | XPARM_ON or XPARM_COFF. RW /| N
Default: XPARM_ON
XPARMID_TD_RFC2833E_PAYLOADTYPE RFC2833 Payload type, Range .|s in the RTP dynamic payload RIW v
type range of 96 to 127. Default: 0x65.
Minimum CS-bit length required by FSK receiver. Default: 200
XPARMID _TD_FSK_CS if country code set to COUNTRY_CODE_US or R/W Y
COUNTRY_CODE_PRC, otherwise 0.
Minimum mark-bit length required by FSK receiver. Default:
XPARMID_TD_FSK_MARK 100 if country code set to COUNTRY_CODE_US or R/W Y
COUNTRY_CODE_PRC, otherwise 60.
Extra stop bits allowed between data.
XPARMID_TD_FSK_STOP R/W Y
-~ - Default: 20
XPARMID TD ESK RATE Baud rate of FSK receiver. (Reserved for future, currently only RIW v
- = — support 1200 bps rate).
Events
XEVT_CODE_TD_TONEON — Tone-on event for an individual tone
XEVT_CODE_TD_TONEOFF — Tone-off event for an individual tone
NOTE: Eventdat al gives the tone ID and dat a2 gives the time stamp in 10-ms unit.
3.6 Audio Player Resource Component
Resource Type XMPR_PLY
Media Processing Functions Resource-Specific Control Messages
) e XMSG_PLY_START (inbound)
¢ Play back recorded audio data.
e XMSG_PLY_CMPLT (outbound)
Parameters
Identifier Description, Values Attr Direct
P ' " | Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
XPARMID_PLY_VOL Volume adjustment (+15 ~ —30 in 1dB unit), Default: 0 R/IW N
Events
None
APl Reference Manual 15

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 In ®
3.7 Audio Mixer Resource Component
Resource Type XMPR_MIX
Media Processing Functions Resource-Specific Control Messages
¢ Mixing multiple audio streams for 3-way call or small audio
conference. The maximum number of parties to the mixer is * None.
currently 5.
Parameters
Identifier Description, Values Attr Direct
’ " Write
XPARMID_RES_STATE Current state (0O: idle, 1: active) R N
XPARMID_MIX_LP_STREAM The first L-Port stream ID. Default: -1 R/W N
XPARMID_MIX_LP_STREAM+1 The 2nd L-Port stream ID. Default: —1 R/W N
XPARMID_MIX_LP_STREAM+n-1 The nth L-Port stream ID. Default: —1 R/W N
Events
None.
3.8 T.38 Fax Resource Component
Resource Type XMPR_T38
Media Processing Functions Resource-Specific Control Messages
« time fax gateway between TDM interface and IP network. ¢ None.
Parameters
Identifier Description, Values Attr Direct
P ’ " Write
XPARMID_RES_STATE Current state (O: idle, 1: active) R N
Flag of enabling ellipsis. XPARM_ON or XPARM_OFF.
XPARMID_T38_ELLIPSIS Default: XPARM_OFF R/W N
Flag of enabling FEC. XPARM _ON or XPARM OFF.
XPARMID_T38_FEC Default: XPARM_OFF R/W N
Redundancy level, (0~ 7)
XPARMID_T38_REDUNDANCY R/W N
Default: 0
Method of modem rate negotiation.
XPARM T38_ RATE_NEG LOCAL or
XPARMID_T38 RATE_NEG XP 1. T38_RATE_NEG_RE E. RIW N
- - - Default:XPARM _T38_RATE_NEG REMOTE if packet
transferred over UDP, otherwise
XPARM T38_RATE_NEG_LOCAL
TCEF error threshold (in percentage). R/W
XPARAID_T38 _TCF_THRSHLD Default: 5 N

16 API Reference Manual

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

Resource Type XMPR_T38
Protocol used to transfer T.38 packets over IP network.
XPARM D_T38_TRANS_UDP or R/W
XPARMID_T38_TRANSPORT XPARM D T38 TRANS TCP. N
Default: XPARM D_T38_TRANS_UDP
Special mode, XPARM T38_MCODE | TU or RIW
XPARMID_T38_MODE XPARM T38_MCODE_CHI NA. N
Default: XPARM T38_MODE | TU
Events
XEVT_T38_END - End of the T.38 session. Event Dat al gives the reason of the termination
3.9 Message Agent Resource Component
Resource Type MPR_MA
Media Processing Functions Resource-Specific Control Messages
« No media processing function.
« Converting the user-defined messages and executing the * None
control accordingly.
Parameters
Identifier Description, Values Attr Direct
' "| Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
Enable trace during processing user's messages. XPARM_ON
XPARMID_MA_DEBUG or XPARM_OFF RW| Y
Default: XPARM_OFF
Events
None
APl Reference Manual 17

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 In

4.0

4.1

18

Message Format and Delivery Mechanism

There are two message queues (in-bound and out-bound) for the user application to send control
messages and to receive response and event messages respectively. The message queues are
created from pre-allocated memory buffers in consideration of maximum message size and total
number of messages.

The entire message header and content are copied to/from the buffers in the message queue during
message transmitting and receiving. The memory used for messaging is not shared between the
message sender and the receiver.

Message Functions

Three functions are provided to send and receive messages.

XStatus_t xMsgSend (void *pMsgBuf);

Description Sends a control message to the in-bound message queue

Input pMsgBuf — Pointer to the message buffer.

Output None

* XSUCC — If successful

Return
* XERROR — If errors
Caution Message buffer requires 4-byte alignment.
Note Message buffer can be used for any other purpose after sending.

XStatus_t xMsgReceive (void *pMsgBuf, UINT16 channel, int timeout);

Description Receives acknowledgement or event from the outbound message queue.

* pMsgBuf — Pointer to the message buffer

« channel — Channel number. (Reserved for future extension)

Input « timeout —waiting flag

— XWAI T_NONE — If return immediately

— XWAI T_FOREVER— If never time out (no other values are valid.)

Output None
Return * XSUCC — If successful

« XERROR— If errors
Caution Message buffer requires 4-byte alignment. The receiving buffer must fit the maximum

message size. Cannot be called from ISR.

XStatus_t xMsgWrite (void *pMsgBuf); (Sheet 1 of 2)

Description post a message (e.g. an user defined external event message) to the out-bound queue so
P that it can be retrieved by XMsgRecei ve() .

Input pMsgBuf — Pointer to the message buffer.

Output None

API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

XStatus_t xMsgWrite (void *pMsgBuf); (Sheet 2 of 2)
Return e XSUCC — If successful
« XERROR — If errors
Caution Message buffer requires 4-byte alignment.
Note The message buffer can be used for any other purpose, after posting.

4.2 Message Header Format
typedef struct{
Ul NT32 transacti onl d; /* used by apps to track the nmessage */
Ul NT16 i nst ance; /* instance ID (1-Oxffff), O:reserved */
Ul NT8 resource; /* MPR resource type */
Format Ul NT8 reserved, /* reserved for future */
Ul NT16 si ze; /* total size in bytes */
Ul NT8 type; /* message type */
Ul NT8 attri bute; /* attribute, reserved for future */
} XMsgHdr _t, *XMsgRef t t;
Caution | Message content must follow the header in contiguous memory.
#def i ne XMSG_MAKE_HEAD(pMsg, trans, res, inst, sz, typ, attr) \
((XMsgRef _t)(pMsg))->transactionld = trans;\
((XMsgRef _t)(pMsg))->i nstance = inst;\
" ((XMsgRef _t) (pMsg))->resource = res;\
acros
((XMsgRef _t) (pMsg))->reserved = 0;\
((XMsgRef _t)(pMsQ))->si ze = sz;\
((XMsgRef _t) (pMsg)) - >t ype = typ;\
((XMsgRef _t)(pMsg))->attribute = attr;

API Reference Manual

19

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

4.3 Message Type List
All message types are pre-defined as:

Typedef enun{
XMSG BEG N =0, /* Begin list */
XMSG_RESET, /* reset a SP resource */
XVMSG_START, /* start nedia processing a SP resource */
XMSG_STOP, /* stop a current action on a SP resource */
XMSG_PI NG, /* ping a SP resource */
XVMSG_SET_PARM /* set a paraneter on a SP resource */
XVSG_SET_MPARMS, /* set multiple paraneters on a SP resource */
XMSG_GET_PARM /* get a paraneter froma SP resource */
XMBG_GET_PARM ACK, /* acknow edgenent to get paraneter nessage */
XVBG_GET_ALLPARNVS, /* get all parameters froma SP resource */
XMSG_GET_ALLPARMS_ACK, /* acknow edgenent to get all paraneter nessage */
XVSG_ACK, /* general acknow edgenent nessage */
XVM5G_ERROR, /* error nessage from SP resource */
XMSG_EVENT, /* event nessage from SP resource */
XMBG_CODER_START, /* start a codec resource */
XMSG_CODER_STOP_ACK, /* acknow edgenent to stop nessage */
XMBG _TG_PLAY, /* play a digit string on a TG instance */
XMBG TG _PLAY_FSK, /* play FSK nodul ated data */
XMBG TG _PLAY_CMPLT, [* play-conmpleted message froma TG i nstance */
XMBG_TD_RCV, /* receive a digit string on a TD instance */
XMBG _TD_RCV_CMPLT, /* receive-conpl eted nessage froma channel */
XMBG _TD_RCV_FSK, /* receive a FSK signal on a TD i nstance */
XMBG TD_RCV_FSK_CMPLT, /* receive-conpl eted nessage from TD i nstance */
XMBG _PLY_START, [* start playing audio on a Player instance */
XMBG_GET_JBSTAT, /* get jitter buffer statistics fromDec */
XMBG_GET_JBSTAT_CMPLT, /* response to the get-JB-statistics nsg */
XMBG _PLY_CMPLT, /* play-conpl eted nessage from Pl ayer */
XVMBG_END /* end of list */

} XMsgType_t;

20

API Reference Manual

intel.

5.0

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

Common Control Message

This section defines the control messages that can be applied to all the resources.

5.1 Reset Message
Type XMSG_RESET
Direction Inbound
Description Stops the current action and resets the resource to idle state.
typedef struct{
Format XVsgHdr _t head; /* message header */
} XMsgReset _t;
#defi ne XMSG_MAKE _RESET(pMsg, trans, res, inst) \
{\
Macro XMBG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgReset t),\
XMSG_RESET, 0)\
}
« General acknowledgement message (XMSG_ACK)
Response .
e Error message (XM5G_ERROR) if error.
Caution Any intermediate results are discarded.
5.2 Start Message
Type XMSG_Start
Direction Inbound
Description Generic start message. Starts the media-processing functions on a resource.
typedef struct{
Format XMsgHdr _t head; /* message header */
} XMsgStart _t;
#defi ne XMSG_MAKE_START(pMsg, trans, res, inst) \
{\
Macro XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgStart t),\
XMSG_START, 0)\
}
¢ General acknowledgement message (XMSG_ACK)
Response)
« Error message (XMSG_ERROR) if error.
Caution Currently only the Network Endpoint and Tone Detector resources support the start message.

API Reference Manual

21

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

5.3 Stop Message
Type XMSG_STOP
Direction Inbound

Description Stops the current action.

typedef struct{

Format XMsgHdr _t head; /* nessage header */
} XMsgStop_t;
#def i ne XMSG_MAKE_STOP(pMsg, trans, res, inst)\
{\
Macro XMBG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgStop_t),\
XMBG_STOP, 0)\
}
Response Resource returns the processing results or states, if any, depending on the resources and current actions.
54 Ping Message
Type XMSG_PING
Direction Inbound

Description Verifies if the resource is alive.

typedef struct{

Format XMsgHdr _t head; /* nessage header */
} XMsgPing_t;
#defi ne XMSG_MAKE_PI NG pMsg, trans, res, inst) \
{\
Macro XMBG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgPing_t),\
XMBG _PING 0)\
}
¢ General acknowledgement message (XMSG_ACK)
Response .
¢ Error message (XMSG_ERROR) if error.
5.5 Set-Parameter Message
Type XMSG_SET_PARM (Sheet 1 of 2)
Direction Inbound

Description | Sets a parameter to a resource.

22 API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

Type XMSG_SET_PARM (Sheet 2 of 2)
t ypedef struct{
XMvsgHdr _t head; /* message header */
Format Ul NT16 parm d; /* paranmeter id */
Ul NT16 val ue; /* paraneter value */
} XMsgSet Parmt;
#defi ne XMSG_MAKE_SET_PARM pMsg, trans, res, inst, id, val) \
{\
XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgSetParmt),\
Macro XMBG_SET_PARM 0)\
((XMsgSetParmt *)(pMsg))->parnd =id;\
((XMsgSetParmt *)(pMsg))->val ue = val;\
}
« General acknowledgement message (XMSG_ACK)
Response .
« Error message (XMSG_ERROR) if error.
5.6 Set-Multiple-Parameter Message
Type XMSG_SET_MPARMS
Direction Inbound
Description Set multiple parameters to a resource
t ypedef struct{
XMsgHdr _t head; /* nmessage header */
Format Ul NT16 nunPar ns; /* nunber of paraneters */
Ul NT16 par m Ds[XMAX_PARMS] ; /* paraneter id */
Ul NT16 val ues[XMAX_PARMS] ; /* paraneter value */
} XMsgSet xPar ms_t ;
#def i ne XMSG_MAKE_SET_MPARMS(pMsg, trans, res, inst, num \
{\
XMBG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgSetnParns_t),\
XMBG_SET_MPARMS, 0)\
((XMsgSetmParns_t *) (pMsg))->nunParns = num \
Macro }
#defi ne XMSG_FI ELD_SET_MPARMS(pMsg, plDs, pVals) \
{\
plDs = ((XMsgSetnParms_t *)(pMsg))->parm Ds; \
pVals = ((XMsgSetnParms_t *)(pMsg))->val ues;\
}
« General acknowledgement message (XMSG_ACK)
Response .
« Error message (XMSG_ERROR) if error.

API Reference Manual 23

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

5.7 Get-Parameter Message

Type XMSG_GET_PARM
Direction Inbound
Description Gets a parameter from a resource.

typedef struct{
Format XMsgHdr _t head; /* message header */

Ul NT16 parnm d; [* paraneter id */

} XMsgGet Parm t;

#defi ne XMSG_MAKE_GET_PARM pMsg, trans, res, inst, id) \

{\
Macro XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgGetParmt),\

XMSG_GET_PARM 0)\
((XMsgGetParmt *)(pMsg))->parmd=id;\
}
« Specific acknowledgement message (XMSG_GET_PARM_ACK)
Response)
« Error message (XMSG_ERROR) if error.
5.8 Get-Parameter-Acknowledge Message

Type XMSG_GET_PARM_ACK
Direction Outbound

Description Resource returns the parameter enquired.

typedef struct{

XMsgHdr _t head; /* message header */
Format Ul NT16 parnm d; [* parameter id */
Ul NT16 val ue; [* paranmeter val ue */

} XMsgGet Par mAck _t;
#defi ne XMSG_FI ELD_GET_PARM ACK(pMsg, id, val)\

{\
Macro id = ((XMsgGet ParmAck_t *) (pMsg))->parmd;\
val = ((XMsgGet Par mAck_t *) (pMsg))->val ue;\
}
5.9 Get-All-Parameters Message
Type XMSG_GET_ALLPARMS
Direction Inbound

Description Gets all parameters from a resource.

24 API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

Type XMSG_GET_ALLPARMS
typedef struct{
Format XMvsgHdr _t head; /* message header */
} XMsgGet Al | Parms_t;
#defi ne XMSG_MAKE _GET_ALLPARMS(pMsg, trans, res, inst) \
{\
Macro XMS5G_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgGetAllParnms_t),\
XMSG_GET_ALLPARMS, 0)\
}
Response Specific acknowledgement message (XMSG_GET_ALLPARMS_ACK)
5.10 Get-All-Parameters-Acknowledge Message
Type XMSG_GET_ALLPARMS_ACK
Direction Outbound
Description Resource returns the parameter inquired.
typedef struct{
XVsgHdr _t head; /* message header */
Format Ul NT16 nunPar ns; [* nunber of paraneters */
Ul NT16 par m Ds[XMAX_PARMS _CGET];/* array of paraneter |Ds */
Ul NT16 val ues[XMAX_PARMS GET]; /* array of paraneter values */
} XMsgGet Al | Par msAck_t ;
#defi ne XMSG_FI ELD_GET_ALLPARMS_ACK(pMsg, num plDs, pVals)\
{\
Macro num = ((XMsgGet Al | ParnsAck_t *) (pMsg)) - >nunPar is; \
pl Ds = ((XMsgGet Al | ParmsAck_t *)(pMsg))->parmn Ds; \
pVal s = ((XMsgGet Al | Par nsAck_t *) (pMsg))->val ues;\
}
5.11 General-Acknowledge Message
Type XMSG_ACK
Direction Outbound
Description Resource indicates the control message has been processed successfully.
typedef struct{
Format XMvsgHdr _t head; /* message header */
} XMsgAck_t;

API Reference Manual 25

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

intel.

5.12 Error Message
Type XMSG_ERROR
Direction Outbound
Description Resource reports an error condition. (See constant data section for error codes.)
typedef struct{
XMsgHdr _t head; /* message header */
Format Ul NT32 code; /* error code */
Ul NT32 dat al; /* error datal */
Ul NT32 dat a2; /* error data2 */
} XMsgError_t;
#defi ne XMSG_FI ELD_ERROR(pMsg, c, dl1, d2)\
{\
Macro ¢ = ((XMsgError_t *)(pMsg))->code;\
dl = ((XMsgError_t *)(pMsg))->datal;\
d2 = ((XMsgError_t *)(pMsg))->data2;\
}
5.13 Event Message
Type XMSG_EVENT
Direction Outbound
Description Resource reports an event condition. (See constant data section for error codes.)
typedef struct{
XVsgHdr _t head; /* message header */
Format Ul NT32 code; /* event code */
Ul NT32 dat al; /* event datal */
Ul NT32 dat a2; /* event data2 */
} XMsgEvent _t;
#defi ne XMSG_FI ELD_EVENT(pMsg, c, dl1, d2)\
{\
Macro ¢ = ((XMsgEvent _t *)(pMsg))->code;\
dl = ((XMsgEvent_t *)(pMsg))->datal;\
d2 = ((XMsgEvent _t *)(pMsg))->data2;\
}

26

API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

6.0 Resource-Specific Control Message
This section defines the resource-specific messages.
6.1 CODEC Start Message
Type XMSG_CODER_START
Direction Inbound
Description Starts a decoder or encoder.
typedef struct{
XVsgHdr _t head; /* nmessage header */
Format Ul NT16 codecType; /* codec type */
Ul NT16 f r msPer Pkt ; /* nunber of frames per packet */
} XMsgCoder Start _t;
#def i ne XMSG_MAKE_CODER_START(pMsg, trans, res, inst, cType, fpp)\
{\
XVMBG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgCoderStart_t),\
Macro XMBG_CODER_START, 0)\
((XMsgCoder Start _t *)(pMsg))->codecType = cType;\
((XMsgCoder Start _t *)(pMsg))->frnsPer Pkt = fpp;\
}
¢ General acknowledgement message (XMSG_ACK)
Response .
¢ Error message (XMSG_ERROR) if error.
6.2 CODEC Stop-Acknowledgement Message
Type XMSG_CODER_STOP_ACK
Direction Outbound
Description Decoder or encoder resource acknowledges the XM5G_STOP message
typedef struct{
XMsgHdr _t head; /* message header */
Format Ul NT32 nunfr anes; /* total nunber of frames processed */
Ul NT32 nunmBadFr anes; /* nunber of bad frames */
} XMsgCoder St opAck_t;
#def i ne XMSG_FI ELD_EVENT(pMsg, num nunBad)\
{\
Macro num = ((XMsgCoder St opAck_t *) (pMsg)) - >nunfranes; \
nunBad = ((XMsgCoder St opAck_t *)(pMsg))->nunBadFr anes;\
}

API Reference Manual 27

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 In

tel.

6.3 Tone-Generator-Play Message
Type XMSG_TG_PLAY
Direction Inbound

Description |Requires Tone Generator to play a tone string. (Tone ID’s are listed in the constant data section.)

typedef struct{

} XMsgTGPl ay_t;

XMsgHdr _t head; /* nmessage header */
Format Ul NT8 nunfTones; /* nunber of tones to play */
Ul NT8 t onel d[XMAX_TONEBUFSI ZE]; /* tone ID string */

#defi ne XMSG_MAKE TG PLAY(pMsg, trans, inst, num\

#defi ne XMSG_FI ELD_TG PLAY(pMsg, pTonel D) \

{\
XMSG_MAKE_HEAD(pMsg, trans, XMPR TNGEN, inst, sizeof(XMsgTGPlay_t),\
XMSG_TG_PLAY, 0)\
((XMsgTGPl ay_t *)(pMsg)) - >nunTones = num\
Macro }

{\
pTonelD = ((XMsgTGPlay_t *)(pMsg))->toneld;\
}
6.4 Tone-Generator-Play-FSK Message
Type MSG_TG_PLAY_FSK

Direction Inbound

Description |Require Tone Generator to play a FSK modulated data

typedef struct{

} XMsgTGPl ayFSK_t ;

XMsgHdr _t head; /* message header */
Format Ul NT8 nunByt es; /* nunber of bytes to play */
I NT8 dat a[XMAX_FSKDATASI ZE] ; /* data string */

#defi ne XMSG_MAKE TG PLAY_FSK(pMsg, trans, inst, num\

#define XVMSG FI ELD TG PLAY FSK(pMsg, pData) \
{\

}

pData = ((XMsgTGPl ayFSK t *)(pMsgQ))->data;\

{\
XMSG_MAKE_HEAD(pMsg, trans, XMPR TNGEN, inst, sizeof(XMsgTGPl ayFSK t),\
XMS5G_ TG _PLAY_FSK, 0)\
((XMsgTGPl ayFSK_ t *) (pMsg)) - >nunmBytes = num\
Macro }

Response | ¢ Tone Generator Play-Completed message (XMSG_TG_PLAY_CMPLT)

28 API Reference Manual

u
Intel ® Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

6.5 Tone-Generator-Play-Completed Message
Type XMSG_TG_PLAY_CMPLT
Direction Outbound

Description Tone Generator indicates the completion of playing tones.

t ypedef struct{

XVsgHdr _t head; /* nmessage header */
Ul NT16 reason; /* the reason of conpletion: */
Format /* XMBG_STOP_REASON_USER (1) */
/* XMBG_STOP_REASON _ECD (2) */
Ul NT8 nunTones; /* nunber of tones played. 0 if FSK data */

} XMsgTGPl ayCnpl t _t;

#define XMSG_FI ELD_TG PLAY_CMPLT(pMsg, rsn, num\

{\
Macro reason = ((XMsgTGPl ayCnpl t _t *) (pMsg)) - >reason; \
num = ((XMsgTGPl ayCmpl t _t *) (pMsg)) - >nuniTones; \
}
6.6 Tone-Detector-Receive-Digit Message
Type XMSG_TD_RCV
Direction Inbound
Description Require Tone Detector to receive a tone string.
t ypedef struct{
XMsgHdr _t head; /* message header */
U NT16 tot al Ti meout ; /* total tine out (in 10 nms unit) */
Format Ul NT16 firstDigitTineout; /* first digit tinme out (10 nms uint)*/
Ul NT16 interDigitTinmeout; /* inter digit time out (10 ns unit)*/
U NT16 termDigit; /* ORd terminate digit bits */
Ul NT8 nunDi gits; /* nunber of digits to receive */
} XMsgTDRcv_t;
#def i ne XM5G_MAKE_TD _RCV(pMsg, trans, inst, num term tm fstTm intTm\
{\
XMS5G_MAKE_HEAD(pMsg, trans, XMPR_TNDET, inst,\
si zeof (XMsgTDRcv_t), XMSG TD _RCV, 0)\
Macro ((XMsgTDRcv_t *) (pMsg))->nunmDigits = num\
((XMsgTDRcv_t *)(pMsg))->ternDigit = term)\
((XMsgTDRcv_t *) (pMsg))->total Ti meout = tm\
((XMsgTDRcv_t *) (pMsg))->firstDigitTi meout = fstTm\
((XMsgTDRcv_t *)(pMsg))->interDigitTi meout = intTm\
}
Response Tone detector receives completed message (XMSG_TD_RCV_CMPLT)

API Reference Manual 29

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

6.7 Tone-Detector-Receive-Completed Message
Type XMSG_TD_RCV_CMPLT
Direction Outbound
Description Tone detector indicates the completion of receiving DTMF tones.
typedef struct{
XMsgHdr _t head; /* message header */
Ul NT16 reason; /* the reason of conpletion */
Ul NT8 nunDi gits; /* nunber of tones received */
Ul NT8 di gi ts[XMAX_DI G TBUFSI ZE]; /* received tone IDs */
Format } XMsgTDRcvCnplt _t;
where the reason may be:
#def i ne XMBG_STOP_REASON_ECD 2
#defi ne XMBG_STOP_REASON TERM 3
#defi ne XMBG_STOP_REASON_TI MEQUT 4
#defi ne XMSG_FI ELD TD RCV_CWPLT(pMsg, rsn, num pBuf)\
{\
Macro rsn = ((XMsgTDRcvCnplt _t *) (pMsg))->reason;\
num = ((XMsgTDRcvCnplt _t *) (pMsg))->nunDigits;\
pBuf = ((XMsgTDRcvCnplt _t *)(pMsg))->digits;\
}
6.8 Tone-Detector-Receive-FSK Message
Type MSG_TD_RCV_FSK
Direction Inbound
Description Require Tone Detector to receive FSK data
typedef struct{
Format XMsgHdr _t head; /* message header */
Ul NT16 ti meout; /* total time out (in 10 ns unit) */
} XMBQTDRCVFSK t;
#defi ne XMSG_MAKE _TD RCV_FSK(pMsg, trans, inst, tnout)\
{\
Macro XMBG_MAKE_HEAD(pMsg, trans, XMPR TNDET, inst,\
Csi zeof (XMsgTDRcVFSK_t), XMSG TD RCV_FSK, 0)\
((XMsgTDRcVFSK_ t *) (pMsg))->ti meout = tnout;\
}
Response Tone Detector FSK receive-completed message (XMSG_TD_RCV_FSK_CMPLT)
30 APl Reference Manual

u
Intel ® Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

6.9 Tone-Detector-FSK-Receive-Completed Message
Type XMSG_TD_RCV_FSK_CMPLT
Direction Outbound

Description Tone Detector indicates the completion of receiving FSK data

t ypedef struct{

XMsgHdr _t head; /* message header */

U NT16 reason; /* the reason of conpletion */

Ul NT8 nunByt es; /* nunber of bytes received */

Ul NT8 dat a[XMAX_FSKDATASI ZE]; /* received data */
Format } XMsgTDRcvFskCmpl t _t;

where the reason may be:
#def i ne XMSG_STOP_REASON ECD 2
#def i ne XMSG_STOP_REASON_TI MEQUT 4

#defi ne XMSG_FI ELD_TD RCV_FSK_CMPLT(pMsg, rsn, num pBuf)\

{\
M rsn = ((XMsgTDRcvFskCnplt _t *) (pMsg))->reason;\
acro num = ((XMsgTDRcvFskCnplt _t *)(pMsg))->nunBytes;\
pBuf = ((XMsgTDRcvFskCnplt _t *)(pMsg))->data;\
}
6.10 Player-Start Message
Type XMSG_PLY_START (Sheet 1 of 2)
Direction Inbound

Description Start Player to play back pre-recorded audio data

API Reference Manual 31

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

Type XMSG_PLY_START (Sheet 2 of 2)
typedef struct{
XMsgHdr _t head; /* message header */
XPl yMedi aDesc_t nedi aSeg[XMAX_PLY_SEG ; /* media segnents to play */
Ul NT8 nunteg; /* nunber of segnents */
} XMsgPlyStart _t;
where the nedi a segnent data structure is defined as
Format typedef struct{
I NT32 of fset; /* offset in byte where player starts */
I NT32 | engt h; /* length to play (in 10nms unit),
0 neans playing till end of this segnent*/
XMedi aHandl e_t handle; /* nedia storage handle */
I NT16 next; /* the relative index of next segnent followed,
XPLY_MEDI A_SEG EOP neans end- of - pl ay
at this segment */
} XPl yMedi aDesc_t ;
#defi ne XMSG_MAKE_PLY_START(pMsg, trans, inst, num\
{\
XMBG_MAKE_HEAD(pMsg, trans, XMPR _PLY, inst,\
si zeof (XMsgPl yStart _t), XMSG PLY_START, 0)\
((XMsgPlyStart _t *)(pMsg))->nunSeg = num\
Macro }
#defi ne XMSG_FI ELD_PLY_START(pMsg, pMedia) \
{\
pMedi a = ((XMsgPlyStart _t *)(pMsg))->nedi aSeg; \
}
Response Player play-completed message (XMSG_PLY_CMPLT)
6.11 Player-Play-Completed Message
Type XMSG_PLY_CMPLT
Direction Outbound
Description Player indicates the completion of playing audio data.
typedef struct{
XVsgHdr _t head; /* message header */
Ul NT16 reason; /* the reason of conpletion */
} XMsgPl yCmpl t _t;
Format
where the reason may be:
#def i ne XMBG_STOP_REASON USER 1
#def i ne XMBG_STOP_REASON_ECD 2
#defi ne XMSG_FI ELD PLY_CMPLT(pMsg, rsn)\
{\
Macro rsn = ((XMsgPlyCmplt _t *) (pMsg))->reason;\
}

32

API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

6.12 Get-Jitter-Buffer-Statistics Message
Type XMSG_GET_JBSTAT
Direction Inbound
Description Get the jitter buffer statistics from a Decoder instance.
typedef struct{
XMsgHdr _t head; /* message header */
Format U NT16 reset; /* reset flag, 1. reset statistics after
retrieve the information */
} XMsgGet JBStat _t;
#def i ne XMSG_MAKE_GET_JBSTAT(pMsg, trans, inst, clr)\
{\
Macro XMBG_MAKE_HEAD(pMsg, trans, XMPR DEC, inst,\
si zeof (XMsgCGet JBStat _t), XMSG_CGET_JBSTAT, 0)\
((XMsgGetJBStat _t *)(pMsg))->reset = clr;\
}
Response complete message of getting jitter buffer statistics (XM5G_GET_JBSTAT_CMPLT)
6.13 Complete Message of Getting Jitter Buffer Statistics
Type XMSG_GET_JBSTAT_CMPLT
Direction Outbound
Description Response to the message of getting the jitter buffer statistics.
typedef struct{
XVsgHdr _t head; /* nmessage header */
XJBStatistics_t stat; /* jiter buffer statistics */
} XMsgGet JBStat Cnplt _t;
where the XMsgGet JBStat Cnplt _t date structure of jitter buffer statistics
Format is defined as
typedef struct{
Ul NT32 rcvdPacket s; /* total packets received */
Ul NT32 | ost Packet s; /* | ost packets */
Ul NT32 badFr anes; /* decoder bad franes */
Ul NT32 rcvdTonePacket s; /* RFC2833 packets received */
} XJIBStatistics_t;
#define XM5G_FI ELD _GET_JBSTAT_CMPLT(pMsg, pStat)\
Macro A
pStat = & ((XMsgCGetJBStatCnplt_t *)(pMsg))->stat);\
}

API Reference Manual 33

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

7.0

Packet Data Interface

INtal.

The packet data interface is a protocol for the DSP software to exchange the encoded data packets
with IP stack. This interface is defined as a packet format and two callback functions — one is
provided by DSP software release and another is provided by the user (IP stack).

7.1 Packet Formats
The ingress packet from the IP stack to the DSP software has an 8-byte header as shown below:
31 242322 16|15 12|11 8|7 0
Channel ID M Payload Type Media Payload Length
Remote Time Stamp
Payload
Similarly, the egress packet from the DSP software to the IP stack has an 8-byte header as shown
below:
31 242322 16|15 1211 8|7 0
Channel ID M Payload Type Media Payload Length

Local Time Stamp

Payload

34

The fields of the packet header and the payload are described as:

Field

Description

Local Time Stamp

Packet arrival time as measured by a local clock.

Remote Time Stamp

Packet data sampling time measured by a remote clock.

Payload Length

Payload length in bytes.

Media

4-bit media type field is defined as:

0x01 — Audio

0x02 — Tone (RFC2833 event type)
0x04 — Tone (RFC2833 tone type)

0x08 — T.38 UDP
0x09 — T.38 TCP

M

Marker bit for the RTP packet. This bit set indicates the first speech packet after a
silence period or the first packet of a RFC-2833 tone event, otherwise 0.

Payload type

RTP payload type as defined in RFC 1990.

Payload

Encoded audio data or RFC-2838 tone event information.

API Reference Manual

In

7.2

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

The corresponding data structure is defined as:

typedef struct{

Ul NT8 channel | D; /* channel |ID */

Ul NT8 payl oadType; /* bit[0-6] payload type,

bit[7] SID nmark bit */

unsi gned int medi aType: 4; /* media type */

unsi gned int payl oadLen: 12; /* payl oad | ength */

Ul NT32 ti meSt anp; /* local or renote time stanp */
} __attribute__ ((packed)) XPacketHeader _t;

In ingress, the header information of Remote Time Stamp, Payload Type and Marker bit is directly
copied from a RTP packet. In egress, the header information is filled by DSP software except for
the Payload Type of RFC-2833 event packets. The RTP processing module is responsible to
determine the payload type if media type indicates a RFC-2833 tone-event packet.

Packet Delivery Mechanism

Packets are transferred between the DSP software and IP stack via callback functions. The packet
delivery module calls the function and passes the packet each time when a packet is produced. The
rules of using the callback function to deliver the packets include:

¢ The packet receiver registers a callback function with the packet deliverer.
* The packet deliverer is responsible to prepare the memory for the packet.

* The packet receiver has to copy the data to its internal buffer immediately in the callback
function because the deliverer may reuse the same memory for the next packet (i.e., the packet
data may not be valid any more after the callback function returns).

* The packet receiver may perform some data processing in the callback function provided the
execution of such processing is predictable (i.e., the processing must be guaranteed to
complete within a certain short period of time).

The function that DSP software provides to receive the packets from IP stack is defined as follows:

XStatus_t xPacketReceive (UNIT16 channel, XPacket_t *buffer);

Description Call-back function to receive packets.

Buffer — memory address of the packet

Input

Channel — Channel numbers
Output None

XSUCC - If successful
Return

XERROR - If the packet receptor is unable to process the packet.

IP stack has to build DSP software data packets from the IP packets it receives and deliver them to
the DSP software by calling this function.

In egress direction, IP stack must provide a function to receive egress data packets from the DSP
software. The DSP software will call the function each time when a packet is generated. That
function must be registered during initialization

API Reference Manual 35

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

8.0

8.1

36

Configuration and Initialization

The Intel® 1XP400 DSP Software is configurable at initialization time, allowing the user to specify
the HSS parameters, the number of resource instances to be created and the country-specific
features. The user-supplied call back functions are also registered at that time.

System Configuration

Prototype voi d xDspSysl nit (XDSPSysConfig_t *pSysConfig);
Input pSysConfi g — system configuration information

Output None

Return None

Description

This function performs the following procedures:

Initialize and start HSS port.

Create TDM termination channels (i.e., Network Endpoint resource instance) and link them to
the HSS time slots sequentially. Error will occur if not enough time slots are enabled for all the
TDM channels.

Create the IP terminations (i.e., Decoder, Encoder, Tone Generator and Tone Detector
resources).

Create media service resources (i.e., Player and Mixer).

Enable country-specific call progress tones and set country-specific default parameters to the
resources.

Register user-supplied call back functions.

API Reference Manual

intel.

8.2

The configuration information in this function is defined as:

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

t ypedef struct{

i nt nunChTDM /* nunmber of channels of TDMterm nation(1~4) */
i nt nunthl P; /* nunber of channels of IP termnation (1~4) */
int nunPl ayers; /* nunber of Player instances (1~4) */

i nt numM xers; [* nunber of Audio M xers (nust be 1) */

i nt nunPort sPer M xer; /* nunber of ports per mxer (3~5) */

i nt count ryCode; /* country code */

int t askPri Base; /* the base priority of DSP nodule */

int taskPri Order; /* the priority ordering of the OS */

HSS port (nust be Port 0) */
/* HSS configuration paranmeters */

| xHssAccHssPort port; /*
| xHssAccConf i gPar ans *pHssCf gPar ns;

| xHssAccTdntl ot Usage *pHssTDMBI ots; /* HSS TDM tinme sl ot mapping */

XPkt RevFxn_t pkt RcvFxn; [/ * packet receiver function in egress */
XMsgAgent Dec_t nsgDecoder; /* optional nessage decoder function of MA */
XMsgAgent Enc_t nsgEncoder; /* optional nessage encoder function of MA */

} XDSPSysConfig_t;

wher e:

t ypedef XStatus_t (*XPktRcvFxn_t) (U NT16 channel,

typedef int (*XMsgAgentDec_t) (XMsgRef _t pUsrMsg,
i nt sequenceNo) ;

typedef void (*XMsgAgent Enc_t) (XMsgRef _t pUsrReply,
int sequenceNo, Ul NT8 usrMsgType);

voi d *pPacket);
XMsgRef _t pNativeMsg,

XMsgRef _t pNativeReply,

This function must be called after downloading HSS NPE. An assertion occurs if any fatal errors
happen (e.g., memory exhausted) during the initialization. If the numbers of resources to be created

are not specified correctly, the default ones are applied, which can be retrieved by the
xDspGet ResConf i g() function.

Adding Tones to Tone Generator

Prototype XStatus_t xBuil dToneTG Ul NT16 toneld, U NT16 nunSegs,

P XTGToneSeg_t *pToneSegs, U NT32 *pErr Code);
« onel d — Tone ID, must be in the range of 16 ~ 255

Input « NunBSegs — Number of segments of the tone
« pToneSegs — Array of tone segment definition

Output pEr r Code - Error code if errors

Return « XSUCCif successful
« Otherwise XERROR

API Reference Manual

37

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

Description

This function adds a new tone which can be played by the Tone Generator resources. Each new
tone can contains one or more segments which is defined as

Ul NT16
Ul NT16
Ul NT32

Ul NT32
I NT16

I NT16

I NT16

I NT16

Ul NT16

I NT16

typedef struct {

repCount ;
segType;
durati onOn;

durationOf;
freqgA

freqB;

anpA;

anpB;

node;

next Seg;

} XTGToneSeg_t;

/* repetition nunber of the segnent.

0 nmeans to repeat forever */

/* signal type (single or dual frequency

/*
/*
/*

/*

/*

/*

/*

/*

wave or AM wave) */

active duration in 1-ns unit. */
silence duration in 1-ms unit. */

1st frequency if single or dual
frequency wave, or the nodul ated carry
frequency if AMwave, in 1Hz wunit*/
2nd frequency if dual frequency
wave or the nodul ating frequency if AM
wave, ignored if single frequency wave */
anmpl i tude of frequency A above,
(0~ — 45 in 1dBmunit) */
anmpl i tude of frequency B if dual
frequency wave, or nodul ation rate if
AM wave (0~100 in 1% unit), ignored if
singl e frequency wave */
node, overwite or mx over the
Decoder output */
t he i ndex of next segment relative

to the current segenent. e.g., 1 neans
to go the foll owing segnent, 0 neans
repeat the current segnent, -2 neans
go back to previous 2 segnents.
XTG_LASTSEG neans end-of -tone */

Warning:

8.3

38

New tone definition must be added during the initialization after xDspSys| ni t () . The pre-
defined country-specific call progress tone will be overwritten if a new tone is added with the same

tone ID.

Adding Tones to Tone Detector

Prototype Status_t xBuil dToneTD(Ul NT8 toneld, XTDTonelnfo_t *pTonel nfo,
U NT32 *pErr Code);
Inout « onel d —Tone ID, must be in the range of 16 ~ 255
P « pTonel nf 0 — Tone detection criterion information
Output pErr Code - Error code if errors
Return « XSUCCif successful
« Otherwise XERROR

API Reference Manual

intel.

Description

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

This function adds a criterion for the Tone Detector to detect a new tone. The criterion specifies the

qualification ranges in a set of parameters defined as:

Ul NT16
Ul NT16

Ul NT16
Ul NT16
Ul NT16
U NT16
I NT16
I NT16

I NT16
I NT16

Ul NT8

type;
criteria;

freqlLowA;
freqH ghA;
freqlLows;
freqH ghB;
anpLowA;
anpH ghA;

anmpLowB;
anpH ghB;

attributes;

} XTDTonel nfo_t;

/* segnment data for tone detection tenplate. */
t ypedef struct {

/*
/*

/*
/*
/*
/*
/*
/*

/*
/*

/*

tone type (single or dual frequency tone) */

| oose, mediumor tight, use nediumfor norma
case, use |loose to get higher detection
probability in poor SNR, use tight to get |ower
fal se detection probability in good SNR */

| ow bound of the 1st frequency in Hz */

hi gh bound of the 1st frequency in Hz */

| ow bound of the 2nd frequency in Hz */

hi gh bound of the 2nd frequency in Hz */

|l ow | evel of the 1st frequency in dBm */

hi gh |l evel of the 1st frequency in dBm

If both low and high are set to 0, the default
full range is applied */

Il ow | evel of the 2nd frequency in dBm */

hi gh I evel of the 2nd frequency in dBm

If both | ow and high are set to 0, the default
full range is applied */

attribute (report the tone on, tone off or
both on/of f) */

Warning:

8.4

New tone detection criterion must be added during the initialization before xDspSysl ni t ().

Getting DSP Resource Configuration and Routing

Information

Prototype voi d xDspGet ResConfi g(XDSPResConfi g t *pCf gl nfo)

Input pCf gl nf o - Pointer to DSP configuration data structure
Output The resource configuration and the assignment of the routing streams
Return None

API Reference Manual

39

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

Description

The user’s applications can call this function any time after xDspSyslnit () to obtain the DSP
resource configuration and the stream IDs assigned to the T-Ports of each type of the resources.
The data structure XDSPResConf i g_t is defined as:

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

typedef struct{

nunChTDM
nunthl P;
nunPl ayers;
nunM xers;

/*
/*
/*
/*

nunPort sPerM xer;/*

nuntt r eans;

st r eanBaseTDM
st reanBasel P;
streanBasePl y;
st reanBaseM x;
count ryCode;

} XDSPResConfig_t;

/*
/*
/*
/*
/*
/*

nunber of TDM term nati on channels */

nunber of I P termnation channels */

number of player instances */

nunber of Audio M xers */

nunber of ports per mxer */

nunber of total streans in the router */

T-Port stream|ID of the first TMD term nation channel */
T-Port stream|ID of the first IP term nation channel */
T-Port stream | D 1st port of the 1st Player instance */
T-Port stream|ID of the first m xer port */

country code */

40

The stream ID information is used for the application to connect the T-Ports and L-Ports of the

resources.

API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

9.0 Complementary Functions

9.1 Direct Parameter Access

The user’s applications can bypass the messages and directly access the DSP parameters. This
allows quicker access without having to send a message and receive a response. All parameters can
be directly read, but only some of them can be directly modified.

The functions to access the parameters are:

Prototype XSt at us_t xDspPar mRead(Ul NT8res, U NT16i nst, Ul NT16 par ni d,
P Ul NT16 *pParnval) :
e res —DSPresource ID
« inst —lInstance ID of the resource
Input
e parm d - Parameter ID
« pPar nVal - Pointer to the variable that receives the returned parameter value
Output Parameter value
Return « XSUCCif successful
« Otherwise XERROR
Description This function retrieves the specified parameter value.
Prototype XStatus_t xDspParmNite(U NT8 res, U NT16 inst,
P U NT16 parmnid, U NT16 parnVal, U NT32 transld);
e res —DSPresource ID
« i nst —instaNce ID of the resource
Input « parm d - Parameter ID
« parmval - Parameter value to be set
« transld - Transaction ID
Output None
Return « XSUCCif successful
« Otherwise XERROR
Description This function sets the value of the specified parameter.
9.2 Flash Hook Detection
Prototype Status_t xFl ashHookDet ect (Ul NT16 channel
P XHookSt ate_t hookState, XU NT32 transld);
« channel - Channel number starting from 1
Input » hookSt at e — Hook state, XHOOK_STATE_ON or XHOOK_STATE_OFF
« transld - Transaction ID

API Reference Manual

41

u
Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Intel ®

Status_t xFl ashHookDet ect (Ul NT16 channel ,

Prototype XHookSt ate_t hookState, XU NT32 transld);
Output None

» XSUCCif successful
Return

» Otherwise XERROR

This function is called by the SLIC driver to report the hook state changes via the event
message. If an on-hook transition followed by an off-hook one within the time specified by the
XPARM D_NET_FLASH_ HK parameter, a flash hook event is reported. The hook states are
defined as:

Description | t ypedef enun{
XHOOK_STATE_ON = 0,
XHOOK_STATE_OFF,
XHOOK_STATE_FLASH

} XHookSt ate_t;

9.3 Cache Prompt Registration
Prototype XMedi aHandl e_t xDspRegCachePr onpt (XCachePr onpt Desc_t *pDesc);
Input pDesc — The pointer to structure XCachePromptDesc_t.
Output None
Return XMedi aHandl e — Returns XMEDIA_HANDLE_NULL in the error case.

This function is called to register a cached prompt for playing at a later time.
XCachePr onpt Desc_t describes the data required to register a cached prompt.

typedef struct{

U NT8 *pBuffer; /* Pointer to the play buffer. */
I NT32 si ze; /* The size of play buffer. */
Description XCoder Type_t type; /* The type of data in play

buffer. The valid types are
XCODER_TYPE_G711MJ_10MS,
XCODER_TYPE_G711A 10Ms and
XCODER_TYPE_G729A */

} XCachePronpt Desc_t;

42 API Reference Manual

u
Intel ® Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

10.0 Constant Data

This section lists up the definitions for constant data such as error codes and event codes.

10.1 Error Codes
Errors are reported via XMBG_ERROR message with an error code and two error data. The common
error codes are defined as:
#defi ne XERR_SYSTEM 0x0001 /* systemerror */
#defi ne XERR _HSSI F 0x0002 /* HSS interface error */
#defi ne XERR_MEMORY 0x0003 /* menory error # */
#define XERR I NVALID RES ID 0x0011 /* invalid resource id */
#define XERR | NVALI D CHAN I D 0x0012 /* invalid channel id */
#define XERR | NVALI D_PARM | D 0x0013 /* invalid paraneter id */
#define XERR | NVALI D_STREAM | D 0x0014 /* invalid streamid */
#defi ne XERR_PARM READONLY 0x0015 /* real only paranmeter */
#defi ne XERR_PARM SET_FAI L 0x0016 /* cannot set paraneter */
#defi ne XERR_PARM GET_FAI L 0x0017 /* cannot get paraneter */
#def i ne XERR_UNEXPECTED MSG 0x0018 /* unexpected message */
#def i ne XERR_UNSUPPORTED MsSG 0x0019 /* unsupported nessage */
#defi ne XERR_ALGORI THM 0x0041 /* algorithmrelated error # */
#defi ne XERR_OTHERS 0x00f f /* other errors */

The resource-specific error codes are defined as

#defi ne XERR | NVALI D_CODE_TYPE 0x401 /* invalid codec type */
#defi ne XERR | NVALI D_FPP 0x402 /* invalid # frns per pkt */
#define XERR TG | NVALI D TONE_I D 0x403 /* invalid tone ID */
#define XERR_TG_|I NVALI D_TI D_NUM 0x404 /* too many tone |IDs */
#def i ne XERR _TG_| NVALI D_DATA_NUM 0x405 /* too many FSK data */
#define XERR TD | NVALI D DI G T_NuM 0x406 /* too many digits */
#def i ne XERR_RESOURCE_BUSY 0x407 /* resource is busy */
#defi ne XERR_RESOURCE | DLE 0x408 /* resource is idle */
#defi ne XERR_MA DEEP_RECURSI VE 0x409 /* deep recursive nsg decoder*/
#defi ne XERR_MA MSG_DECORDER 0x40a /* message decoding fail */
10.2 Event Codes
Events are reported via XMSG_EVENT message with an event code and two event data. The
resource specific event codes are defined as:
#defi ne XEVT_CODE_TD_TONEON 0x101 /* tone-on event */
#defi ne XEVT_CODE_TD_ TONECFF 0x102 /* tone-off event */
#defi ne XEVT_LOST_PACKET 0x103 /* | ost packet */
#defi ne XEVT_DEC_PACKET_CHNG 0x104 /* RTP payl oad type changed */
#defi ne XEVT_NET_HOOK _STATE 0x105 /* hook state change detected */
#defi ne XEVT_NET_TI MER 0x106 /* timer expired */

API Reference Manual 43

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

10.3

10.3.1

10.3.2

44

Tone IDs

DTMF Tone IDs

intel.

The DTMF tone I1Ds used by Tone Generator and Detector are defined as:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

RFC_TI D_DTMF_O
RFC_TI D DTMF_1
RFC_TI D_DTMF_2
RFC_TI D_DTMF_3
RFC_TI D DTMF_4
RFC_TI D_DTMF_5
RFC_TI D_DTMF_6
RFC_TI D DTMF_7
RFC_TI D _DTMF_8
RFC_TI D_DTMF_9
RFC_TI D_DTMF_STAR
RFC_TI D_DTMF_POUND
RFC_TI D DTMF_A
RFC_TI D DTMF_B
RFC_TI D DTMF_C
RFC_TI D_DTMF_D

O©CoOoO~NOULA~WNEFO

Fax-Tone IDs

Fax tone IDs reported by the Tone Detector for fax bypass applications. Not supported by the Tone

Generator.

#def i ne RFC_TI D_FAX_CED
#defi ne RFC_TI D_FAX_CNG

#define RFC TI D_FAX V21

API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

10.3.3 Call-Progression IDs
The general call progress tone IDs used by the Tone Generator are defined as:
#define RFC_TI D DI AL 66
#define RFC_TI D _PBX DI AL 67
#define RFC_TI D _SP_DI AL 68
#define RFC_TI D _2ND DI AL 69
#define RFC_TID R NG 70
#define RFC_TID _SP_RI NG 71
#define RFC_TI D _BUSY 72
#define RFC_TI D_CONGESTI ON 73
#define RFC_TI D _SP_I NFO 74
#def i ne RFC_TI D_COVFORT 75
#define RFC_TI D _HOLD 76
#define RFC_TI D _REC 77
#define RFC TI D CALLER WI 78
#define RFC TI D CALL WK 79
#defi ne RFC_TI D_PAY 80
#define RFC_TI D _POS_| ND 81
#def i ne RFC_TI D_NEG | ND 82
#def i ne RFC_TI D_WARNI NG 83
#define RFC_TI D_| NSTRUSI ON 84
#define RFC_TI D_CAL_CARD 85
#defi ne RFC_TI D_PAYPHONE 86
Currently only the following specific call progress tones are supported for tone generation:
Japan Call-Progress Tones
#define NTT_TID DT RFC TI D DI AL /* dial tone */
#define NTT_TI D_RBT RFC_TI D_RI NG /* ring back tone */
#define NTT_TI D BT RFC_TI D_BUSY /* busy tone */
#define NTT_TI D_PDT RFC_TI D_PBX_DI AL /* private dial tone */
#define NTT_TI D _SDT RFC_TI D_2ND_DI AL /* 2nd dial tone */
#define NTT_TI D _CPT RFC_TI D_POS_| ND /* acceptance tone */
#define NTT_TI D _HST RFC_TI D_HOLD /* hold service tone */
#define NTT_TID IIT RFC TI D_CALL_Wr /* incoming id tone */
#define NTT_TID SIIT 110 /* special incoming id tone */
#define NTT_TI D_HOW RFC_TI D_OFFHK_WARN /* how er tone */
United States Call-Progress Tones
#define US TID D AL RFC _TI D_DI AL /* dial tone */
#define US_TI D R NG RFC _TI D_RI NG /* ring back tone */
#define US_TI D_BUSY RFC_TI D_BUSY /* busy tone */
#define US_TI D RC DI AL RFC _TI D_SP_DI AL /* recall dial tone */
#define US_TI D_PBX DI AL RFC_TI D_PBX_DI AL /* PBX dial tone */
#define US_TI D_CONGESTI ON RFC_TI D_CONGESTION /* congestion tone */
#define US TID CALL_WI RFC TI D CALL_Wr /* call waiting tone */
#define US_TI D_WARN_OPER 110 /* operator intervening tone */

API Reference Manual

45

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

China Call-Progress Tones

In

tel.

#define PRC_TI D THR PARTY RFC_TI D_THR_PARTY
#defi ne PRC_TI D_CONFI RVATI ON RFC_TI D_CONFI RVATI ON

#define PRC_TI D OFFHK WARN RFC_TI D_OFFHK_WARN of f hook warning */

*/

3 party rem nd tone */
confirmation tone */

#define PRC TID DI AL RFC_TI D_DI AL /* dial tone */
#define PRC_TID_RI NG RFC _TI D_RI NG /* ring back tone */
#defi ne PRC_TI D_BUSY RFC_TI D_BUSY /* busy tone */
#define PRC TID_SP_DI AL RFC _TI D_SP_DI AL /* special dial tone */
#define PRC_TI D _CONGESTION RFC_TI D_CONGESTI ON /* congestion tone */
#define PRC_TI D UNAVAI LABLE RFC TI D UNAVAI LABLE /* nunber unavail able
#define PRC_TID TOLL RFC_TI D_COWFORT /* toll (long distance) */
#defi ne PRC_TI D_QUEUE RFC_TI D_QUEUE /* queue tone */
#define PRC TI D CALL_WI RFC TI D_CALL_Wr [* call waiting tone */
*
I
/*

10.4 Other Constants

The coder types used in the XPARM D_DEC_CTYPE and XPARM D_ENC_CTYPE parameters and the

XMBG_CODER_START message are defined as:

typedef enunf
XCODER_TYPE_PASSTHRU = 0,
XCODER _TYPE_G711MJ_10Ms,
XCODER _TYPE_G711A 10Ms5,
XCODER _TYPE_G729A,

XCODER_TYPE_Gr23,

XCODER _TYPE_Gr29 = 17,
XCODER_TYPE_UNDEF = -1

} XCoder Type_t;

Mask bits used to specify the coder type subset in Decoder auto-switch parameter are defined as:

#def i ne XPARM DEC_AUTOSW OFF 0x0000
#def i ne XPARM DEC_AUTOSW G711MJ 0x0001
#def i ne XPARM DEC_AUTOSW G711A 0x0002
#def i ne XPARM DEC_AUTCSW G729A 0x0004
defi ne XPARM DEC_AUTOSW G723 0x0008
#def i ne XPARM DEC_AUTOSW ALL Oxffff

46 API Reference Manual

intel.

Mask bits used to specify the termination digits in the XMSG_TD_RCV message are defined as:

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

XTD_TERM DI G T_NONE

XTD_ TERM DI G T_0
XTD TERM DI G T_1
XTD TERM DI G T_2
XTD TERM DI G T_3
XTD TERM DI G T_4
XTD TERM DI G T_5
XTD TERM DI G T_6
XTD TERM DI G T_7
XTD TERM DI G T_8
XTD TERM DI G T_9

XTD_TERM DI G T_STAR
XTD_TERM DI G T_POUND

XTD TERM DI G T_A
XTD_TERM DI G T_B
XTD TERM DI G T_C
XTD_ TERM DI Gl T_D

0x0000
0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100
0x0200
0x0400
0x0800
0x1000
0x2000
0x4000
0x8000

The stop-reasons in the XMSG_TG_PLAY_CMPLT and XMSG_TD_RCV_CMPLT messages are defined

as:

#defi ne
#def i ne
#def i ne
#defi ne

XMBG_STOP_REASON_USER 1
XMBG_STOP_REASON_ECD 2
XMBG_STOP_REASON TERM 3
XMBG_STOP_REASON_TI MEQUT 4

/* stopped by XMSG STOP nessage */
/* end of data */

/* stopped by the terminate digits */

/* tinme out */

API Reference Manual

47

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4

48

API Reference Manual

	Contents
	Figures
	1 Intel® IXP400 DSP Software v.2.4 Architecture 9
	2 Resource-Component Identifiers 10

	Tables
	None.

	Revision History

	1.0 Introduction
	1.1 General
	1.2 Scope
	1.3 Audience
	1.4 Acronyms
	1.5 Related Documentation

	2.0 Architecture Overview
	3.0 Media-Processing Resource Components
	3.1 Network-Endpoint Resource Component
	3.2 Decoder Resource Component
	3.3 Encoder Resource Component
	3.4 Tone-Generation Resource Component
	3.5 Tone-Detection Resource Component
	3.6 Audio Player Resource Component
	3.7 Audio Mixer Resource Component
	3.8 T.38 Fax Resource Component
	3.9 Message Agent Resource Component

	4.0 Message Format and Delivery Mechanism
	4.1 Message Functions
	4.2 Message Header Format
	4.3 Message Type List

	5.0 Common Control Message
	5.1 Reset Message
	5.2 Start Message
	5.3 Stop Message
	5.4 Ping Message
	5.5 Set-Parameter Message
	5.6 Set-Multiple-Parameter Message
	5.7 Get-Parameter Message
	5.8 Get-Parameter-Acknowledge Message
	5.9 Get-All-Parameters Message
	5.10 Get-All-Parameters-Acknowledge Message
	5.11 General-Acknowledge Message
	5.12 Error Message
	5.13 Event Message

	6.0 Resource-Specific Control Message
	6.1 CODEC Start Message
	6.2 CODEC Stop-Acknowledgement Message
	6.3 Tone-Generator-Play Message
	6.4 Tone-Generator-Play-FSK Message
	6.5 Tone-Generator-Play-Completed Message
	6.6 Tone-Detector-Receive-Digit Message
	6.7 Tone-Detector-Receive-Completed Message
	6.8 Tone-Detector-Receive-FSK Message
	6.9 Tone-Detector-FSK-Receive-Completed Message
	6.10 Player-Start Message
	6.11 Player-Play-Completed Message
	6.12 Get-Jitter-Buffer-Statistics Message
	6.13 Complete Message of Getting Jitter Buffer Statistics

	7.0 Packet Data Interface
	7.1 Packet Formats
	7.2 Packet Delivery Mechanism

	8.0 Configuration and Initialization
	8.1 System Configuration
	8.2 Adding Tones to Tone Generator
	8.3 Adding Tones to Tone Detector
	8.4 Getting DSP Resource Configuration and Routing Information

	9.0 Complementary Functions
	9.1 Direct Parameter Access
	9.2 Flash Hook Detection
	9.3 Cache Prompt Registration

	10.0 Constant Data
	10.1 Error Codes
	10.2 Event Codes
	10.3 Tone IDs
	10.3.1 DTMF Tone IDs
	10.3.2 Fax-Tone IDs
	10.3.3 Call-Progression IDs

	10.4 Other Constants

