Intel® QuickAssist Technology Compression API
Reference

Automatically generated from sources, June 11, 2014.
Based on API version 1.3

(See Release Notes to map API version to software package version.)

Reference Number: 330686-001

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below. You
may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly,
in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION
CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS'
FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR
NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF
THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may
be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Any software source code reprinted in this document is furnished for informational purposes only and may only be
used or copied and no license, express or implied, by estoppel or otherwise, to any of the reprinted source code is
granted by this document.

This document contains information on products in the design phase of development.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number/.

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (& productsd) in
development by Intel that have not been made commercially available to the public, i.e., announced, launched or
shipped. They are never to be usedas & commerciald names for products. Also, they are not intended to function
as trademarks.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2014. All Rights Reserved.

Reference Number: 330686-001

Revision History

Date

Revision

Description

June 2014

001

First public version of the document. Based on Intel Confidential
document number 410926-1.3 with the revision history of that document
retained for reference purposes.

February
2013

Supports supplying multiple intermediate buffer lists when starting a
compression instance. Also provides a utility function to determine the
number of intermediate buffer lists required by an implementation.

API extensions to support endOfLastBlock detection within a deflate
stream.

January 2013

Resolves the following work requests:

TECG00000185: Changing use of flush flags for stateless
compression. Adding support for passing an initial checksum into a
stateless compression request. Adding a constraint that
cpaDcGenerateFooter() is not supported for stateless operations.

November
2012

Resolves the following work requests:

TECGO00000189: Add a unique instance identifier to
Cpalnstancelnfo2

TECG00000193: Enhanced auto select best

October 2012

Resolves the following work requests:

TECGO00000186: Add instance notification support for
RESTARTING & RESTARTED events and CPA_STATUS_RESTARTING
return codes.

June 2012

0.93

Resolved review comments against previous version which resulted in
minor updates to the APl comments.

Resolved the following work requests:

TECG00000179: Adding version number to compression API

May 2012

0.92

Resolved the following work requests:

TECGO00000172: Remove references to cpaDcSessionCreate in
cpa_dc.h

TECG00000170: cpaCySymDpSessionCitxGetSize() returns a fixed
value

TECGO00000173 and TECG00000174 updates/cleanup of api
comments

TECGO00000174: Updated checksum processing rules.

March 2012

0.92RC6

IAdded -12 and -13 error codes

March 2012

0.92RC7 |

Resolved the following work requests:

TECG00000166: Added ability to query bus address information for
a Cpalnstance.

November
2011

0.92RC5

Added internal memory store to capabilities reporting

September
2011

0.92RC4

Addressed review comments

July 2011

0.92RC3

Completed data plane API

Moved results structure to 15! 64 byte section

Added buffer sizes for use by driver

May 2011 0.92RC2 |Addressed comments in data plane API
March 2011 |0.92RC1 |Added data plane API
October 2010 [0.91RC2 [Minor typo fixes
Based on feedback, incorporated the following:
Converted statistics counters to 64 bit
September
5010 0.91RC1
Improved the results structure
Updated memory configuration for consistency with other services
Based on review and feedback, incorporated the following:
e Added a results structure to the compress and decompress
March 2010 [0.9RC5 interfaces, and to the callback API P P
e added enums to define the potential failures of the accelerators
e Intermediate buffer is now a buffer list.
January 2010 |0.9RC4-2|Added size of context field to cpaDcGetSessionSize
Based on feedback, incorporated the following:
December e Separated checksum algorithms in capabilities
5009 0.90RC4 ¢ Added return co_de CPA_DC_I_BAD_DATA return code
¢ Bundled return information to include bytes consumed, bytes
produced and checksum
¢ Clean up of some documentation
Updated as a result of review, incorporate the following changes;
e Compression window capabilities now split for compress and
decompress.
Sept 21 2009 10.90RC3 o Updatepstatistic to be more consistent with other APlIs.
e Added pHistoryBuffer to support state-full deflate.
e Removed reference to having different instances able to process
the same session.
Added distinction in capabilities for stateful and stateless, compression
and decompression
July 2009 0.90RC2 [Replaced cpaPmGetinstancelnfo with cpaPmGetinstancelnfo2 that gets a
new info structure, Cpalnstancelnfo2, which supersedes the previous
version. Additional info includes physical id, core affinity, and NUMA
relevant node.
Added capabilities
Add distinction between stateful and stateless.
June 2009 0.90RC1
Updated with cpaDcGet/SetMemoryConfiguration
Changed from buffer lists to u32 pointers for responses.
February 0.74
2009 1. Addition of response Arguments - APIs can use source and

destination buffers in an easier fashion

. Change from flat buffers to buffer lists to align with QA
conventions

. Major re-write of description of buffer rules

. Addition of dynamic Huffman trees

. Removal of file based functions. It was deemed that this
functionality could be built using other buffer based APIs

o bW

6. Clean up of session parameters and various typos

December
2008

0.73

First released version of this document with new generation process.

Table of Contents

LI LT o =Tz T =T o N T 1
P2 0 2
P2 D= =Vl [=Te l D= Tor o] o) o] o FOU PSSP TP PP 2

2.2 IMOGUIES...c. e ettt ettt e bt e e bt e e b bt e e eab e e e ea bt e e e be e e e be e e ene e e e nree e anre e e nanes 2

3 Base Data TYPes [CPA API] ...t s s s e n e e sam s e an e e ameen e m e e e s e e mnn s 3
O B TC] =11 [=Te l D= Tor o]) o] o FAU ST PT PP 3

3.2 Data SETUCTUIES ...ttt h et e e st e e s bt e e st et e snb e e e nreeeanbeeesanes 3

R I B {1 0= TP PP PR 3

R Y/ o= [- PSPPSR PR 4

RSl =110 0 =T =T - TP PSSP PPT PP 4

3.6 Data Structure DOCUMENTALION.oueiiiiiii ettt enr e 5

3.6.1 _CpaFlatBuffer Struct Reference...........oceoo i 5

3.6.2 _CpaBufferList Struct ReferenCe.........oooueiiiiiiiii e 6

3.6.3 _CpaPhysFlatBuffer Struct Reference............ooiiiiiiiiiiie e 7

3.6.4 _CpaPhysBufferList Struct Reference...........ccoooiiiiiiiiiiiei e 8

3.6.5 _Cpalnstancelnfo Struct REfErenCe.........ooo i 9

3.6.6 _CpaPhysicallnstanceld Struct Reference. ..o 10

3.6.7 _Cpalnstancelnfo2 Struct RefErencCe...........ccoo i 11

3.7 Define DOCUMENTATION. ..ottt ettt et e e st e e st e e e s be e e sbeeeeanreeeaes 13

3.8 Typedef DOCUMENTALION.eiiiiii ettt e e sb e e e s be e sbe e e e enreeeae 15

3.9 Enumeration Type DOCUMENTAION.ii it 19

4 CPA Type Definition [CPA API]...... it nnss s s s s s as s s s sams s m s s mnnnnnns 22
o D TC T =Vl [=Te l D T=Y Yo 1] o) o] o FOS PO PP PRSPPI 22

2 B 1= {1 =T SO OTPRTRPRRN 22

T Y/ o =T [- PSSP OTPPTRPRRN 22
T =T =[] - F PP PPOTPPTRPRRN 22

4.5 Define DOCUMENTATION......oiitiii ittt et e st e e st e e e s be e e sbe e e s enreeeae 23

4.6 Typedef DOCUMENTALION.uii ettt st e st e e s be e e ebe e e eenreeeaes 24

4.7 Enumeration Type DOCUMENTAION.c.uiiiiiii it 25

5 Data Compression APl [CPA API]...... e iricrmr s nsssmss s s ssssms s s sssssmms s s smms s s sssssmms s s ssssnmns s snnsnnnens 26
5.1 Detailed DESCHIPHION. ... ettt ettt e s e e e st e e e s b e e e sbe e e e nr e e snr e e e nnns 26

B2 MOAUIES. ...ttt ettt bt e e s ab e e h bt e e ea bt e e e ab e e e s be e e eabe e e sne e e e nreeenre e e nnnes 26

5.3 Data SEUCTUIES ...ttt ettt e h e e ettt e et e e s b e e e e abe e e s be e e enreesnreeeenns 26

ST R i T OO PUUPR PP 26

TSR Y] o =To (= TR UUPR PP 26

S I = 0 (U100 [T = U1 [o] o - T TR U PR PPPR 27

ST SV g To7 1 o - OO PPSUPR PP 29

5.8 Data Structure DOCUMENTATION.iiiiiiee i 30

5.8.1 _CpaDclInstanceCapabilities Struct Reference..........ccuvvveiiiiiiiiiiiee e 30

5.8.2 _CpaDcSessionSetupData Struct REference.ooovveieiiiiiiiiiieeeee e 33

5.8.3 _CpaDcStats Struct REfEreNCE.........ei i 34

5.8.4 _CpaDcRqgResults Struct Reference..........c.ooiiiiiiiiiiiiiiiee e 35

5.9 Define DOCUMENTALION.........eiiiiie ettt b e e be e e s nr e e e nnns 36

5.10 Typedef DOCUMENTALION.ouiiiiie e b e e nr e e 36

5.11 Enumeration Type DOCUMENTALION........coiiuiiiiiiie it 40

5.12 FUNCLION DOCUMENTATION....ceiiutiiiiiie ittt st be e e e s nr e e e eans 43

6 Data Compression Data Plane API [Data Compression API]........cccocociiiecmminimnnnsmnnnsss s sssessnnens 67
6.1 Detailed DESCHIPIION. ... eii ettt e et e e s b e e s abe e e s be e e e br e e enr e e e nnns 67

8.2 DAta SEUCTUIES ... ettt h et e e st e e s bt e e sabe e e s be e e eneeesnreeeanns 67

LRI Y o<To (= TR TPPUUPR PP 67

Reference Number: 330686-001

Table of Contents

6 Data Compression Data Plane APl [Data Compression API]

LR Vg Ve o] g 67
6.5 Data Structure DOCUMEBNTIALION.cooiiieieeeeeeeee et e e e e e e e e e e et e et b e e e eeeeeas 68

6.5.1 _CpaDcDpOpData Struct REfEreNCe........cocueiiiiiiiiiee e 68
6.6 Typedef DOCUMENTATION.oiii ittt be e e be e e s nr e e e enns 71
6.7 FUNCHON DOCUMENTALION.....cciiiiieiiieeeeeeeeeeeeeeeeeee eeeeesaereb b eaeeeeeeas 72

Reference Number: 330686-001 ii

1 Deprecated List

Class _Cpalnstancelnfo
As of v1.3 of the Crypto API, this structure has been deprecated, replaced by Cpalnstancelnfo2.

Global CPA_DEPRECATED
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by
CpaAccelerationServiceType.

Global CPA_DEPRECATED
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by CpaOperationalState.

Reference Number: 330686-001

2 CPA API

Collaboration diagram for CPA API:

Base Data Types

CPA API Data Compression API

CPA Type Definition

2.1 Detailed Description
File: cpa.h

This is the top level API definition for Intel(R) QuickAssist Technology. It contains structures, data types and
definitions that are common across the interface.

2.2 Modules

e Base Data Types
e CPA Type Definition
e Data Compression API

Reference Number: 330686-001

3 Base Data Types
[CPA API]

Collaboration diagram for Base Data Types:

CPA API Base Data Types

3.1 Detailed Description
File: cpa.h

The base data types for the Intel CPA API.

3.2 Data Structures

e struct _CpaFlatBuffer

e struct _CpaBufferList

e struct _CpaPhysFlatBuffer

e struct _CpaPhysBufferList

e struct _Cpalnstancelnfo

e struct _CpaPhysicallnstanceld
e struct _Cpalnstancelnfo2

3.3 Defines

e #define CPA_INSTANCE_HANDLE_SINGLE

e #define CPA_DP_BUFLIST

e #define CPA_STATUS_SUCCESS
Success status value.

e #define CPA_STATUS_FAIL
Fail status value.

e #define CPA_STATUS_RETRY
Retry status value.

e #define CPA_STATUS_RESOURCE
The resource that has been requested is unavailable.

¢ #define CPA_STATUS_INVALID_PARAM
Invalid parameter has been passed in.

o #define CPA_STATUS_FATAL
A serious error has occurred.

e #define CPA_STATUS_UNSUPPORTED
The function is not supported, at least not with the specific parameters supplied.

o #define CPA_STATUS_RESTARTING
The APl implementation is restarting.

e #define CPA_STATUS_MAX_STR_LENGTH_IN_BYTES
Maximum length of the Overall Status String (including generic and specific strings returned
by calls to cpaXxGetStatusText).

e #define CPA_STATUS_STR_SUCCESS
Status string for CPA_STATUS_SUCCESS.

e #define CPA_STATUS_STR_FAIL

Reference Number: 330686-001

3.3 Defines

Status string for CPA_STATUS_FAIL.
o #define CPA_STATUS_STR_RETRY
Status string for CPA_STATUS_RETRY.
e #define CPA_STATUS_STR_RESOURCE
Status string for CPA_STATUS_RESOURCE.
o #define CPA_STATUS_STR_INVALID_PARAM
Status string for CPA_STATUS_INVALID_ PARAM.
o #define CPA_STATUS_STR_FATAL
Status string for CPA_STATUS_FATAL.
o #define CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES
Maximum instance info name string length in bytes.
o #define CPA_INSTANCE_MAX_ID_SIZE_IN_BYTES
Maximum instance info id string length in bytes.
o #define CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES
Maximum instance info version string length in bytes.

3.4 Typedefs

e typedef void * CpalnstanceHandle

o typedef Cpa64U CpaPhysicalAddr

o typedef CpaPhysicalAddr(* CpaVirtualToPhysical)(void *pVirtualAddr)
o typedef _CpaFlatBuffer CpaFlatBuffer

o typedef _CpaBufferList CpaBufferList

o typedef _CpaPhysFlatBuffer CpaPhysFlatBuffer

o typedef _CpaPhysBufferList CpaPhysBufferList

o typedef Cpa32S CpaStatus

e typedef enum _CpalnstanceType CPA_DEPRECATED

o typedef enum _CpaAccelerationServiceType CpaAccelerationServiceType
o typedef enum _CpalnstanceState CPA_DEPRECATED

e typedef enum _CpaOperationalState CpaOperationalState

o typedef _Cpalnstancelnfo CPA_DEPRECATED

o typedef _CpaPhysicallnstanceld CpaPhysicallnstanceld

o typedef _Cpalnstancelnfo2 Cpalnstancelnfo2

e typedef enum _CpalnstanceEvent CpalnstanceEvent

3.5 Enumerations

e enum _CpalnstanceType {
CPA_INSTANCE_TYPE_CRYPTO,
CPA _INSTANCE_TYPE_DATA_COMPRESSION,
CPA _INSTANCE_TYPE_RAID,
CPA _INSTANCE_TYPE_ XML,
CPA_INSTANCE_TYPE_REGEX
!
e enum _CpaAccelerationServiceType {
CPA_ACC_SVC _TYPE_CRYPTO,
CPA_ACC _SVC _TYPE_DATA COMPRESSION,
CPA_ACC _SVC _TYPE_PATTERN_MATCH,
CPA_ACC_SVC_TYPE_RAID,
CPA _ACC_SVC _TYPE_XML,
CPA_ACC_SVC _TYPE_VIDEO ANALYTICS
!
e enum _CpalnstanceState {
CPA _INSTANCE_STATE_INITIALISED,
CPA _INSTANCE_STATE_SHUTDOWN

Reference Number: 330686-001

3.5 Enumerations

}

e enum _CpaOperationalState {
CPA_OPER_STATE DOWN,
CPA_OPER_STATE UP

}

e enum _CpalnstanceEvent {

CPA _INSTANCE_EVENT_RESTARTING,
CPA _INSTANCE_EVENT_RESTARTED

}

3.6 Data Structure Documentation

3.6.1 _CpaFlatBuffer Struct Reference

3.6.1.1 Detailed Description
File: cpa.h
Flat buffer structure containing a pointer and length member.

A flat buffer structure. The data pointer, pData, is a virtual address. An API instance may require the actual
data to be in contiguous physical memory as determined by Cpalnstancelnfo2.

3.6.1.2 Data Fields

e Cpa32U dataLenInBytes
Data length specified in bytes.

e Cpa8U * pData
The data pointer is a virtual address, however the actual data pointed to is required to be in
contiguous physical memory unless the field requiresPhysicallyContiguousMemory in
Cpalnstancelnfo2 is false.

3.6.1.3 Field Documentation

Cpa32U _CpaFlatBuffer::dataLenIinBytes
Data length specified in bytes.

When used as an input parameter to a function, the length specifies the current length of the buffer. When
used as an output parameter to a function, the length passed in specifies the maximum length of the buffer
on return (i.e. the allocated length). The implementation will not write past this length. On return, the length
is always unchanged.

Cpa8U* _CpaFlatBuffer::pData

The data pointer is a virtual address, however the actual data pointed to is required to be in contiguous
physical memory unless the field requiresPhysicallyContiguousMemory in Cpalnstancelnfo2 is false.

Reference Number: 330686-001

3.6.1 _CpaFlatBuffer Struct Reference
3.6.2 _CpaBufferList Struct Reference

Collaboration diagram for _CpaBufferList:

_CpaFlatBuffer

+ datal enlnBytes
+ pData

A

pBuffers

3.6.2.1 Detailed Description
File: cpa.h
Scatter/Gather buffer list containing an array of flat buffers.

A scatter/gather buffer list structure. This buffer structure is typically used to represent a region of memory
which is not physically contiguous, by describing it as a collection of buffers, each of which is physically
contiguous.

Note:
The memory for the pPrivateMetaData member must be allocated by the client as physically
contiguous memory. When allocating memory for pPrivateMetaData, a call to the corresponding
BufferListGetMetaSize function (e.g. cpaCyBufferListGetMetaSize) MUST be made to determine the
size of the Meta Data Buffer. The returned size (in bytes) may then be passed in a memory allocation
routine to allocate the pPrivateMetaData memory.

3.6.2.2 Data Fields

e Cpa32U numBuffers
Number of buffers in the list.
e CpaFlatBuffer * pBuffers
Pointer to an unbounded array containing the number of CpaFlatBuffers defined by
numBuffers.
¢ void * pUserData
This is an opaque field that is not read or modified internally.
e void * pPrivateMetaData
Private representation of this buffer list.

Reference Number: 330686-001 6

3.6.2 _CpaBufferList Struct Reference

3.6.2.3 Field Documentation

Cpa32U _CpaBufferList::numBuffers
Number of buffers in the list.

CpaFlatBuffer* _CpaBufferList::pBuffers
Pointer to an unbounded array containing the number of CpaFlatBuffers defined by numBuffers.

void* _CpaBufferList::pUserData
This is an opaque field that is not read or modified internally.

void* _CpaBufferList::pPrivateMetaData
Private representation of this buffer list.

The memory for this buffer needs to be allocated by the client as contiguous data. The amount of memory
required is returned with a call to the corresponding BufferListGetMetaSize function. If that function returns
a size of zero then no memory needs to be allocated, and this parameter can be NULL.

3.6.3 _CpaPhysFlatBuffer Struct Reference

3.6.3.1 Detailed Description
File: cpa.h
Flat buffer structure with physical address.

Functions taking this structure do not need to do any virtual to physical address translation before writing the
buffer to hardware.

3.6.3.2 Data Fields

e Cpa32U dataLeninBytes
Data length specified in bytes.
e Cpa32U reserved
Reserved for alignment.
e CpaPhysicalAddr bufferPhysAddr
The physical address at which the data resides.

3.6.3.3 Field Documentation

Cpa32U _CpaPhysFlatBuffer::dataLeninBytes
Data length specified in bytes.

When used as an input parameter to a function, the length specifies the current length of the buffer. When
used as an output parameter to a function, the length passed in specifies the maximum length of the buffer
on return (i.e. the allocated length). The implementation will not write past this length. On return, the length
is always unchanged.

Cpa32U _CpaPhysFlatBuffer::reserved
Reserved for alignment.

Reference Number: 330686-001

3.6.3 _CpaPhysFlatBuffer Struct Reference

CpaPhysicalAddr _CpaPhysFlatBuffer::bufferPhysAddr
The physical address at which the data resides.

The data pointed to is required to be in contiguous physical memory.

3.6.4 _CpaPhysBufferList Struct Reference

Collaboration diagram for _CpaPhysBufferList:

_CpaPhysFlatBuffer

+ datal enlnBytes
+ reserved
+ bufferPhysAddr

A

flatBuffers

CpaPhysBufferList

+ reservec
+num

3.6.4.1 Detailed Description

File: cpa.h

Scatter/gather list containing an array of flat buffers with physical addresses.

Similar to CpaBufferList, this buffer structure is typically used to represent a region of memory which is not
physically contiguous, by describing it as a collection of buffers, each of which is physically contiguous. The
difference is that, in this case, the individual "flat" buffers are represented using physical, rather than virtual,

addresses.
3.6.4.2 Data Fields

e Cpa64U reserved0
Reserved for internal usage.
e Cpa32U numBuffers
Number of buffers in the list.
e Cpa32U reserved1
Reserved for alignment.
e CpaPhysFlatBuffer flatBuffers []
Array of flat buffer structures, of size numBuffers.

Reference Number: 330686-001

3.6.4 _CpaPhysBufferList Struct Reference

3.6.4.3 Field Documentation
Cpa64U _CpaPhysBufferList::reserved0
Reserved for internal usage.

Cpa32U _CpaPhysBufferList::numBuffers
Number of buffers in the list.

Cpa32U _CpaPhysBufferList::reservedi
Reserved for alignment.

CpaPhysFlatBuffer _CpaPhysBufferList::flatBuffers|]
Array of flat buffer structures, of size numBuffers.

3.6.5 _Cpalnstancelnfo Struct Reference

3.6.5.1 Detailed Description
File: cpa.h
Instance Info Structure

Deprecated:
As of v1.3 of the Crypto API, this structure has been deprecated, replaced by Cpalnstancelnfo2.

Structure that contains the information to describe the instance.

3.6.5.2 Data Fields

e enum _CpalnstanceType type
Type definition for this instance.

e enum _CpalnstanceState state
Operational state of the instance.

e Cpa8U name [CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES]
Simple text string identifier for the instance.

¢ Cpa8U version [CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES]
Version string.

3.6.5.3 Field Documentation
enum _CpalnstanceType _Cpalnstancelnfo::type
Type definition for this instance.

enum _CpalnstanceState _Cpalnstancelnfo::state
Operational state of the instance.

Cpa8U _Cpalnstancelnfo::name[CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES]
Simple text string identifier for the instance.

Cpa8U _Cpalnstancelnfo::version[CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES]

Reference Number: 330686-001

3.6.5 _Cpalnstancelnfo Struct Reference

Version string.

There may be multiple versions of the same type of instance accessible through a particular library.

3.6.6 _CpaPhysicallnstanceld Struct Reference

3.6.6.1 Detailed Description

File: cpa.h

Physical Instance ID

Identifies the physical instance of an accelerator execution engine.

Accelerators grouped into "packages". Each accelerator can in turn contain one or more execution engines.
Implementations of this API will define the packageld, acceleratorld, executionEngineld and busAddress as
appropriate for the implementation. For example, for hardware-based accelerators, the packageld might
identify the chip, which might contain multiple accelerators, each of which might contain multiple execution
engines. The combination of packageld, acceleratorld and executionEngineld uniquely identifies the instance.

Hardware based accelerators implementing this API may also provide information on the location of the
accelerator in the busAddress field. This field will be defined as appropriate for the implementation. For
example, for PCle attached accelerators, the busAddress may contain the PCle bus, device and function
number of the accelerators.

3.6.6.2 Data Fields

e Cpa16U packageld
Identifies the package within which the accelerator is contained.
e Cpa16U acceleratorid
Identifies the specific accelerator within the package.
e Cpal6U executionEngineld
Identifies the specific execution engine within the accelerator.
e Cpa16U busAddress
Identifies the bus address associated with the accelerator execution engine.

3.6.6.3 Field Documentation
Cpal6U _CpaPhysicallnstanceld::packageld
Identifies the package within which the accelerator is contained.

Cpai6U _CpaPhysicallnstanceld::acceleratorid
Identifies the specific accelerator within the package.

Cpal6U _CpaPhysicallnstanceld::executionEngineld
Identifies the specific execution engine within the accelerator.

Cpail6U _CpaPhysicallnstanceld::busAddress
Identifies the bus address associated with the accelerator execution engine.

Reference Number: 330686-001 10

3.6.6 _CpaPhysicallnstanceld Struct Reference

3.6.7 _Cpalnstancelnfo2 Struct Reference

Collaboration diagram for _Cpalnstancelnfo2:

3.6.7.1 Detailed Description
File: cpa.h

Instance Info Structure, version 2

_CpaPhysicallnstanceld

+ packageld

+ acceleratorld

+ executionEngineld
+ busAddress

A

physinstld

_Cpalnstancelnfo2

+ accelerationServiceType

+ requiresPhysicallyContiguou st emory
+ isPolled
+ isOffloaded

+ CPA_BITMAP{)

Structure that contains the information to describe the instance.

3.6.7.2 Public Member Functions

e CPA_BITMAP (coreAffinity, CPA_MAX_CORES)
A bitmap identifying the core or cores to which the instance is affinitized in an SMP operating

system.

3.6.7.3 Data Fields

e CpaAccelerationServiceType accelerationServiceType
Type of service provided by this instance.

e Cpa8U vendorName [CPA_INST_VENDOR_NAME_SIZE]
String identifying the vendor of the accelerator.

e Cpa8U partName [CPA_INST_PART_NAME_SIZE]
String identifying the part (hame and/or number).

Reference Number: 330686-001

11

3.6.7 _Cpalnstancelnfo2 Struct Reference

e Cpa8U swVersion [CPA_INST_SW_VERSION_SIZE]
String identifying the version of the software associated with the instance.
e Cpa8U instName [CPA_INST_NAME_SIZE]
String identifying the name of the instance.
e Cpa8U instID [CPA_INST_ID_SIZE]
String containing a unique identifier for the instance.
e CpaPhysicallnstanceld physinstid
Identifies the "physical instance" of the accelerator.
e Cpa32U nodeAffinity
Identifies the processor complex, or node, to which the accelerator is physically connected, to
help identify locality in NUMA systems.
e CpaOperationalState operState
Operational state of the instance.
e CpaBoolean requiresPhysicallyContiguousMemory
Specifies whether the data pointed to by flat buffers (CpaFlatBuffer::pData) supplied to this
instance must be in physically contiguous memory.
e CpaBoolean isPolled
Specifies whether the instance must be polled, or is event driven.
e CpaBoolean isOffloaded
Identifies whether the instance uses hardware offload, or is a software-only implementation.

3.6.7.4 Member Function Documentation

_Cpalnstancelnfo2::CPA_BITMAP (coreAffinity ,
CPA_MAX_CORES
)

A bitmap identifying the core or cores to which the instance is affinitized in an SMP operating system.

The term core here is used to mean a "logical" core - for example, in a dual-processor, quad-core system
with hyperthreading (two threads per core), there would be 16 such cores (2 processors x 4
cores/processor x 2 threads/core). The numbering of these cores and the corresponding bit positions is
OS-specific. Note that Linux refers to this as "processor affinity" or "CPU affinity", and refers to the bitmap
as a "cpumask".

The term "affinity" is used to mean that this is the core on which the callback function will be invoked when
using the asynchronous mode of the API. In a hardware-based implementation of the API, this might be the
core to which the interrupt is affinitized. In a software-based implementation, this might be the core to which
the process running the algorithm is affinitized. Where there is no affinity, the bitmap can be set to all
zeroes.

This bitmap should be manipulated using the macros CPA_BITMAP_BIT_SET,

CPA _BITMAP_BIT _CLEAR and CPA_BITMAP_BIT_TEST.
3.6.7.5 Field Documentation

CpaAccelerationServiceType _Cpalnstancelnfo2::accelerationServiceType
Type of service provided by this instance.

Cpa8U _Cpalnstancelnfo2::vendorName[CPA_INST_VENDOR_NAME_SIZE]
String identifying the vendor of the accelerator.

Cpa8U _Cpalnstancelnfo2::partName[CPA_INST_PART_NAME_SIZE]
String identifying the part (name and/or number).

Reference Number: 330686-001 12

3.7 Define Documentation

Cpa8U _Cpalnstancelnfo2::swVersion[CPA_INST_SW_VERSION_SIZE]
String identifying the version of the software associated with the instance.

For hardware-based implementations of the API, this should be the driver version. For software-based
implementations of the API, this should be the version of the library.

Note that this should NOT be used to store the version of the API, nor should it be used to report the
hardware revision (which can be captured as part of the partName, if required).

Cpa8U _Cpalnstancelnfo2::instName[CPA_INST_NAME_SIZE]
String identifying the name of the instance.

Cpa8U _Cpalnstancelnfo2::instID[CPA_INST_ID_SIZE]
String containing a unique identifier for the instance.

CpaPhysicallnstanceld _Cpalnstancelnfo2::physinstid
Identifies the "physical instance” of the accelerator.

Cpa32U _Cpalnstancelnfo2::nodeAffinity

Identifies the processor complex, or node, to which the accelerator is physically connected, to help identify
locality in NUMA systems.

The values taken by this attribute will typically be in the range 0..n-1, where n is the number of nodes
(processor complexes) in the system. For example, in a dual-processor configuration, n=2. The precise
values and their interpretation are OS-specific.

CpaOperationalState _Cpalnstancelnfo2::operState
Operational state of the instance.

CpaBoolean _Cpalnstancelnfo2::requiresPhysicallyContiguousMemory

Specifies whether the data pointed to by flat buffers (CpaFlatBuffer::pData) supplied to this instance must
be in physically contiguous memory.

CpaBoolean _Cpalnstancelnfo2::isPolled
Specifies whether the instance must be polled, or is event driven.

For hardware accelerators, the alternative to polling would be interrupts.

CpaBoolean _Cpalnstancelnfo2::isOffloaded
Identifies whether the instance uses hardware offload, or is a software-only implementation.

3.7 Define Documentation

#define CPA_INSTANCE_HANDLE_SINGLE
File: cpa.h
Default instantiation handle value where there is only a single instance

Used as an instance handle value where only one instance exists.

Reference Number: 330686-001 13

3.7 Define Documentation
#define CPA_DP_BUFLIST
File: cpa.h

Special value which can be taken by length fields on some of the "data plane" APlIs to indicate that the
buffer in question is of type CpaPhysBufferList, rather than simply an array of bytes.

#define CPA_STATUS SUCCESS
Success status value.

#define CPA_STATUS FAIL
Fail status value.

#define CPA_STATUS_RETRY
Retry status value.

#define CPA_STATUS_RESOURCE
The resource that has been requested is unavailable.

Refer to relevant sections of the API for specifics on what the suggested course of action is.

#define CPA_STATUS_INVALID_PARAM
Invalid parameter has been passed in.

#define CPA_STATUS FATAL
A serious error has occurred.

Recommended course of action is to shutdown and restart the component.

#define CPA_STATUS_ UNSUPPORTED
The function is not supported, at least not with the specific parameters supplied.

This may be because a particular capability is not supported by the current implementation.

#define CPA_STATUS_RESTARTING
The APl implementation is restarting.

This may be reported if, for example, a hardware implementation is undergoing a reset. Recommended
course of action is to retry the request.

#define CPA_STATUS_MAX_STR_LENGTH_IN_BYTES

Maximum length of the Overall Status String (including generic and specific strings returned by calls to
cpaXxGetStatusText).

File: cpa.h
API status string type definition
This type definition is used for the generic status text strings provided by cpaXxGetStatusText API

functions. Common values are defined, for example see CPA_STATUS_STR_SUCCESS,
CPA_STATUS_FAIL, etc., as well as the maximum size CPA_STATUS_MAX_STR_LENGTH_IN_BYTES.

Reference Number: 330686-001 14

3.8 Typedef Documentation

#define CPA_STATUS_STR_SUCCESS
Status string for CPA_STATUS_SUCCESS.

#define CPA_STATUS_STR_FAIL
Status string for CPA_STATUS_FAIL.

#define CPA_STATUS_STR_RETRY
Status string for CPA_STATUS_RETRY.

#define CPA_STATUS_STR_RESOURCE
Status string for CPA_STATUS_RESOURCE.

#define CPA_STATUS_STR_INVALID_PARAM
Status string for CPA_STATUS_INVALID_PARAM.

#define CPA_STATUS STR FATAL
Status string for CPA_STATUS_FATAL.

#define CPA_INSTANCE_MAX_NAME_SIZE IN_BYTES
Maximum instance info name string length in bytes.

#define CPA_INSTANCE_MAX_ID_SIZE_IN_BYTES
Maximum instance info id string length in bytes.

#define CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES
Maximum instance info version string length in bytes.

3.8 Typedef Documentation

typedef void* CpalnstanceHandle
File: cpa.h
Instance handle type.
Handle used to uniquely identify an instance.
Note:

Where only a single instantiation exists this field may be set to
CPA_INSTANCE_HANDLE_SINGLE.

typedef Cpa64U CpaPhysicalAddr
File: cpa.h
Physical memory address.

Type for physical memory addresses.

typedef CpaPhysicalAddr(* CpaVirtualToPhysical)(void *pVirtualAddr)

Reference Number: 330686-001

3.8 Typedef Documentation
File: cpa.h

Virtual to physical address conversion routine.
This function is used to convert virtual addresses to physical addresses.

Context:
The function shall not be called in an interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pVirtualAddr Virtual address to be converted.

Returns:
Returns the corresponding physical address. On error, the value NULL is
returned.

Postcondition:
None

See also:
None

typedef struct _CpaFlatBuffer CpaFlatBuffer
File: cpa.h
Flat buffer structure containing a pointer and length member.

A flat buffer structure. The data pointer, pData, is a virtual address. An API instance may require the actual
data to be in contiguous physical memory as determined by Cpalnstancelnfo2.

typedef struct _CpaBufferList CpaBufferList
File: cpa.h
Scatter/Gather buffer list containing an array of flat buffers.
A scatter/gather buffer list structure. This buffer structure is typically used to represent a region of memory

which is not physically contiguous, by describing it as a collection of buffers, each of which is physically
contiguous.

Reference Number: 330686-001 16

3.8 Typedef Documentation

Note:
The memory for the pPrivateMetaData member must be allocated by the client as physically
contiguous memory. When allocating memory for pPrivateMetaData, a call to the corresponding
BufferListGetMetaSize function (e.g. cpaCyBufferListGetMetaSize) MUST be made to determine
the size of the Meta Data Buffer. The returned size (in bytes) may then be passed in a memory
allocation routine to allocate the pPrivateMetaData memory.

typedef struct _CpaPhysFlatBuffer CpaPhysFlatBuffer
File: cpa.h
Flat buffer structure with physical address.

Functions taking this structure do not need to do any virtual to physical address translation before writing
the buffer to hardware.

typedef struct _CpaPhysBufferList CpaPhysBufferList
File: cpa.h
Scatter/gather list containing an array of flat buffers with physical addresses.

Similar to CpaBufferList, this buffer structure is typically used to represent a region of memory
which is not physically contiguous, by describing it as a collection of buffers, each of which is

physically contiguous. The difference is that, in this case, the individual "flat" buffers are represented

using physical, rather than virtual, addresses.
typedef Cpa32S CpaStatus
File: cpa.h

API status value type definition

This type definition is used for the return values used in all the API functions. Common values are defined,

for example see CPA_STATUS_SUCCESS, CPA_STATUS_FAIL, etc.
typedef enum _CpalnstanceType CPA_DEPRECATED

File: cpa.h

Instance Types

Deprecated:
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by
CpaAccelerationServiceType.
Enumeration of the different instance types.
typedef enum _CpaAccelerationServiceType CpaAccelerationServiceType

File: cpa.h

Service Type

Reference Number: 330686-001

17

3.8 Typedef Documentation

Enumeration of the different service
types.

typedef enum _CpalnstanceState CPA_DEPRECATED
File: cpa.h
Instance State

Deprecated:
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by CpaOperationalState.

Enumeration of the different instance states that are possible.
typedef enum _CpaOperationalState CpaOperationalState

File: cpa.h

Instance operational state

Enumeration of the different operational states that are possible.
typedef struct _Cpalnstancelnfo CPA_DEPRECATED
File: cpa.h
Instance Info Structure
Deprecated:
As of v1.3 of the Crypto API, this structure has been deprecated, replaced by

Cpalnstancelnfo2.
Structure that contains the information to describe the instance.
typedef struct _CpaPhysicallnstanceld CpaPhysicallnstanceld
File: cpa.h
Physical Instance ID
Identifies the physical instance of an accelerator execution engine.

Accelerators grouped into "packages". Each accelerator can in turn contain one or more execution engines.
Implementations of this API will define the packageld, acceleratorld, executionEngineld and busAddress as
appropriate for the implementation. For example, for hardware-based accelerators, the packageld might
identify the chip, which might contain multiple accelerators, each of which might contain multiple execution
engines. The combination of packageld, acceleratorld and executionEngineld uniquely identifies the
instance.

Hardware based accelerators implementing this APl may also provide information on the location of the
accelerator in the busAddress field. This field will be defined as appropriate for the implementation. For
example, for PCle attached accelerators, the busAddress may contain the PCle bus, device and function
number of the accelerators.

Reference Number: 330686-001 18

3.9 Enumeration Type Documentation
typedef struct _Cpalnstancelnfo2 Cpalnstancelnfo2

File: cpa.h

Instance Info Structure, version 2

Structure that contains the information to describe the instance.
typedef enum _CpalnstanceEvent CpalnstanceEvent

File: cpa.h

Instance Events

Enumeration of the different events that will cause the registered Instance notification callback function to
be invoked.

3.9 Enumeration Type Documentation

enum _CpalnstanceType
File: cpa.h
Instance Types
Deprecated:
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by

CpaAccelerationServiceType.

Enumeration of the different instance types.

Enumerator:
CPA_INSTANCE_TYPE_CRYPTO Cryptographic instance type.
CPA _INSTANCE_TYPE_DATA COMPRESSION Data compression instance type.
CPA INSTANCE_TYPE_RAID RAID instance type.
CPA _INSTANCE_TYPE_XML XML instance type.
CPA _INSTANCE_TYPE_REGEX Regular Expression instance type.

enum _CpaAccelerationServiceType
File: cpa.h
Service Type

Enumeration of the different service types.

Enumerator:
CPA ACC SVC TYPE CRYPTO Cryptography.
CPA ACC SVC TYPE DATA COMPRESSION Data
Compression.
CPA ACC SVC TYPE PATTERN MATCH Pattern Match.
CPA ACC SVC TYPE RAID RAID.

Reference Number: 330686-001

19

3.9 Enumeration Type Documentation

CPA_ACC _SVC_TYPE_XML XML.
CPA_ACC _SVC_TYPE_VIDEO_ANALYTICS Video
Analytics.

enum _CpalnstanceState
File: cpa.h
Instance State

Deprecated:
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by CpaOperationalState.

Enumeration of the different instance states that are possible.
Enumerator:
CPA _INSTANCE_STATE_INITIALISED Instance is in the initialized state and ready for use.

CPA INSTANCE STATE SHUTDOWN Instance is in the shutdown state and not available for
use.

enum _CpaOperationalState
File: cpa.h
Instance operational state
Enumeration of the different operational states that are possible.
Enumerator:
CPA OPER _STATE DOWN Instance is not available for

use.

May not yet be initialized, or
stopped.
CPA OPER _STATE_UP Instance is available for use.

Has been initialized and
started.

enum _CpalnstanceEvent
File: cpa.h

Instance Events

Enumeration of the different events that will cause the registered Instance notification callback function to
be invoked.

Enumerator:
CPA INSTANCE_EVENT_RESTARTING Event type that triggers the registered instance
notification callback function when and instance is

restarting.

The reason why an instance is restarting is
implementation specific. For example a hardware

Reference Number: 330686-001 20

3.9 Enumeration Type Documentation

CPA_INSTANCE_EVENT_RESTARTED

Reference Number: 330686-001

implementation may send this event if the hardware
device is about to be reset.

Event type that triggers the registered instance
notification callback function when and instance has
restarted.

The reason why an instance has restarted is
implementation specific. For example a hardware
implementation may send this event after the hardware
device has been reset.

21

4 CPA Type Definition
[CPA API|

Collaboration diagram for CPA Type Definition:

CPA API CPA Type Definition

4.1 Detailed Description
File: cpa_types.h

This is the CPA Type Definitions.

4.2 Defines

e #define NULL

e #define TRUE

e #define FALSE

e #define CPA_BITMAP(name, sizelnBits)

o #define CPA_BITMAP_BIT_TEST (bitmask, bit)
Test a specified bit in the specified bitmap.

¢ #define CPA_BITMAP_BIT_SET (bitmask, bit)

¢ #define CPA_BITMAP_BIT_CLEAR(bitmask, bit)
Clear a specified bit in the specified bitmap.

¢ ##define CPA_DEPRECATED
Declare a function or type and mark it as deprecated so that usages get flagged with a
warning.

4.3 Typedefs

e typedef uint8_t Cpa8U

e typedef int8_t Cpa8S

e typedef uint16_t Cpa16U

e typedef int16_t Cpa16S

e typedef uint32_t Cpa32U

e typedef int32_t Cpa32S

e typedef uint64_t Cpa64U

e typedef int64_t Cpa64S

e typedef enum _CpaBoolean CpaBoolean

4.4 Enumerations

e enum _CpaBoolean {
CPA_FALSE,
CPA_TRUE

}

Reference Number: 330686-001

22

4.5 Define Documentation

4.5 Define Documentation

#define NULL
File: cpa_types.h
NULL definition.
#define TRUE
File: cpa_types.h
True value definition.
#define FALSE
File: cpa_types.h
False value definition.

#define CPA_BITMAP (name,
sizelnBits)

File: cpa_types.h

Declare a bitmap of specified size (in bits).

This macro is used to declare a bitmap of arbitrary size.

To test whether a bit in the bitmap is set, use CPA_BITMAP_BIT_TEST.

While most uses of bitmaps on the API are read-only, macros are also provided to set (see
CPA_BITMAP_BIT_SET) and clear (see CPA_BITMAP_BIT_CLEAR) bits in the bitmap.

#define CPA_BITMAP_BIT_TEST (bitmask,
bit)
Test a specified bit in the specified bitmap.

The bitmap may have been declared using CPA_BITMAP. Returns a Boolean (true if the bit is set, false
otherwise).

#define CPA_BITMAP_BIT_SET (bitmask,
bit)

File: cpa_types.h
Set a specified bit in the specified bitmap. The bitmap may have been declared using CPA_BITMAP.
#define CPA_BITMAP_BIT_CLEAR (bitmask,

bit)
Clear a specified bit in the specified bitmap.

Reference Number: 330686-001 23

4.6 Typedef Documentation
The bitmap may have been declared using CPA_BITMAP.

#define CPA_DEPRECATED
Declare a function or type and mark it as deprecated so that usages get flagged with a warning.

4.6 Typedef Documentation

typedef uint8_t Cpa8U

File: cpa_types.h

Unsigned byte base type.
typedef int8_t Cpa8S

File: cpa_types.h

Signed byte base type.
typedef uint16_t Cpa16U

File: cpa_types.h

Unsigned double-byte base type.
typedef int16_t Cpal16S

File: cpa_types.h

Signed double-byte base type.
typedef uint32_t Cpa32U

File: cpa_types.h

Unsigned quad-byte base type.
typedef int32_t Cpa32S

File: cpa_types.h

Signed quad-byte base type.
typedef uinté4_t Cpa64U

File: cpa_types.h

Unsigned double-quad-byte base type.

typedef int64_t Cpa64S

Reference Number: 330686-001

4.7 Enumeration Type Documentation

File: cpa_types.h

Signed double-quad-byte base type.
typedef enum _CpaBoolean CpaBoolean

File: cpa_types.h

Boolean type.

Functions in this APl use this type for Boolean variables that take true or false values.

4.7 Enumeration Type Documentation

enum _CpaBoolean
File: cpa_types.h
Boolean type.
Functions in this API use this type for Boolean variables that take true or false values.
Enumerator:

CPA_FALSE False value.
CPA _TRUE True value.

Reference Number: 330686-001

25

5 Data Compression API
[CPA API]

Collaboration diagram for Data Compression API:

CPA AP Data Compression API

Data Compression Data Plane API

5.1 Detailed Description

File: cpa_dc.h

These functions specify the API for Data Compression operations.

Remarks:

5.2 Modules

e Data Compression Data Plane API

5.3 Data Structures

e struct _CpaDclnstanceCapabilities
Implementation Capabilities Structure.
e struct _CpaDcSessionSetupData
Session Setup Data.
e struct _CpaDcStats
Compression Statistics Data.
e struct _CpaDcRqResults
Request results data.

5.4 Defines

¢ ##define CPA_DC_API_VERSION_NUM_MAJOR
e #define CPA_DC_API_VERSION_NUM_MINOR

e #define CPA_DC_BAD_DATA

Service specific return codeslnput data in invalid.

5.5 Typedefs

e typedef void * CpaDcSessionHandle
Compression APl session handle type.

e typedef enum _CpaDcFileType CpaDcFileType

Supported file types.
e typedef enum _CpaDcFlush CpaDcFlush
Supported flush flags.

e typedef enum _CpaDcHuffType CpaDcHuffType

Supported Huffman Tree types.

e typedef enum _CpaDcCompType CpaDcCompType

Supported compression types.

Reference Number: 330686-001

26

5.5 Typedefs

e typedef enum _CpaDcChecksum CpaDcChecksum
Supported checksum algorithms.
o typedef enum _CpaDcSessionDir CpaDcSessionDir
Supported session directions.
o typedef enum _CpaDcSessionState CpaDcSessionState
Supported session state settings.
e typedef enum _CpaDcCompLvl CpaDcCompLvl
Supported compression levels.
o typedef enum _CpaDcReqStatus CpaDcReqStatus
Supported additional details from accelerator.
o typedef enum _CpaDcAutoSelectBest CpaDcAutoSelectBest
Supported modes for automatically selecting the best compression type.
o typedef void(* CpaDcCallbackFn)(void *callbackTag, CpaStatus status)
Definition of callback function invoked for asynchronous cpaDc requests.
o typedef _CpaDclnstanceCapabilities CpaDclnstanceCapabilities
Implementation Capabilities Structure.
o typedef _CpaDcSessionSetupData CpaDcSessionSetupData
Session Setup Data.
o typedef _CpaDcStats CpaDcStats
Compression Statistics Data.
o typedef _CpaDcRqResults CpaDcRgResults
Request results data.
o typedef void(* CpaDclnstanceNotificationCbFunc)(const CpalnstanceHandle instanceHandle,
void *pCallbackTag, const CpalnstanceEvent instanceEvent)
Callback function for instance notification support.

5.6 Enumerations

e enum _CpaDcFileType {
CPA_DC_FT_ASCII,
CPA_DC_FT_CSS,
CPA_DC_FT_HTML,
CPA_DC_FT_JAVA,
CPA_DC_FT_OTHER

}
Supported file types.
e enum _CpaDcFlush {
CPA_DC_FLUSH_NONE,
CPA_DC_FLUSH_FINAL,
CPA_DC_FLUSH_SYNC,
CPA_DC_FLUSH_FULL

}
Supported flush flags.

e enum _CpaDcHuffType {
CPA_DC_HT_STATIC,
CPA_DC_HT_PRECOMP,
CPA_DC_HT_FULL_DYNAMIC

}
Supported Huffman Tree types.
e enum _CpaDcCompType {
CPA_DC_LZS,
CPA_DC_ELZS,
CPA_DC_LZSS,
CPA_DC_DEFLATE
}

Supported compression types.

Reference Number: 330686-001

5.6 Enumerations

e enum _CpaDcChecksum {
CPA_DC_NONE,
CPA_DC_CRC32,
CPA_DC_ADLER32

}
Supported checksum algorithms.
e enum _CpaDcSessionDir {
CPA_DC_DIR_COMPRESS,
CPA_DC_DIR_DECOMPRESS,
CPA_DC_DIR_COMBINED

}
Supported session directions.
e enum _CpaDcSessionState {
CPA_DC_STATEFUL,
CPA_DC_STATELESS

}
Supported session state settings.
e enum _CpaDcCompLuvl {
CPA_DC_L1,
CPA_DC_L2,
CPA_DC_L3,
CPA_DC_LA4,
CPA_DC_L5,
CPA_DC_L6,
CPA_DC_L7,
CPA_DC_L8,
CPA_DC_L9

}
Supported compression levels.

e enum _CpaDcReqStatus {
CPA_DC_OK,
CPA_DC_INVALID_BLOCK_TYPE,
CPA_DC_BAD_STORED_BLOCK_LEN,
CPA_DC_TOO_MANY_CODES,
CPA_DC_INCOMPLETE_CODE_LENS,
CPA_DC_REPEATED_LENS,
CPA_DC_MORE_REPEAT,
CPA_DC_BAD_LITLEN_CODES,
CPA_DC_BAD_DIST_CODES,
CPA_DC_INVALID_CODE,
CPA_DC_INVALID_DIST,
CPA_DC_OVERFLOW,
CPA_DC_SOFTERR,
CPA_DC_FATALERR

}
Supported additional details from accelerator.
e enum _CpaDcAutoSelectBest {

CPA_DC_ASB_DISABLED,
CPA_DC_ASB_STATIC_DYNAMIC,
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS,
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS

}

Supported modes for automatically selecting the best compression type.

Reference Number: 330686-001

5.7 Functions
5.7 Functions

e CpaStatus cpaDcQueryCapabilities (CpalnstanceHandle dcinstance,

CpaDclinstanceCapabilities *pInstanceCapabilities)
Retrieve Instance Capabilities.

e CpaStatus cpaDclnitSession (CpalnstanceHandle dcinstance, CpaDcSessionHandle
pSessionHandle, CpaDcSessionSetupData *pSessionData, CpaBufferList “pContextBuffer,
CpaDcCallbackFn callbackFn)

Initialize compression decompression session.

e CpaStatus cpaDcRemoveSession (const CpalnstanceHandle dcinstance, CpaDcSessionHandle
pSessionHandle)

Compression Session Remove Function.

e CpaStatus cpaDcCompressData (CpalnstanceHandle dcinstance, CpaDcSessionHandle
pSessionHandle, CpaBufferList *pSrcBuff, CpaBufferList *pDestBuff, CpaDcRgResults *pResults,
CpaDcFlush flushFlag, void *callbackTag)

Submit a request to compress a buffer of data.

e CpaStatus cpaDcDecompressData (CpalnstanceHandle dcinstance, CpaDcSessionHandle
pSessionHandle, CpaBufferList *pSrcBuff, CpaBufferList *pDestBuff, CpaDcRgResults *pResults,
CpaDcFlush flushFlag, void *callbackTag)

Submit a request to decompress a buffer of data.

e CpaStatus cpaDcGenerateHeader (CpaDcSessionHandle pSessionHandle, CpaFlatBuffer
*pDestBuff, Cpa32U *count)

Generate compression header.

e CpaStatus cpaDcGenerateFooter (CpaDcSessionHandle pSessionHandle, CpaFlatBuffer
*pDestBuff, CpaDcRgResults “pResults)

Generate compression footer.

e CpaStatus cpaDcGetStats (CpalnstanceHandle dcinstance, CpaDcStats *pStatistics)
Retrieve statistics.

e CpaStatus cpaDcGetNuminstances (Cpa16U “pNuminstances)
Get the number of device instances that are supported by the API implementation.

e CpaStatus cpaDcGetlnstances (Cpa16U numinstances, CpalnstanceHandle *dcinstances)
Get the handles to the device instances that are supported by the APl implementation.

e CpaStatus cpaDcGetNumintermediateBuffers (CpalnstanceHandle instanceHandle, Cpa16U
*pNumBuffers)

Compression Component utility function to determine the number of intermediate buffers
required by an implementation.

e CpaStatus cpaDcStartinstance (CpalnstanceHandle instanceHandle, Cpa16U numBuffers,
CpaBufferList “*pIntermediateBuffers)

Compression Component Initialization and Start function.

e CpaStatus cpaDcinstanceGetInfo2 (const CpalnstanceHandle instanceHandle, Cpalnstancelnfo2
*plnstancelnfo2)

Function to get information on a particular instance.

e CpaStatus cpaDcinstanceSetNotificationCb (const CpalnstanceHandle instanceHandle, const
CpaDclnstanceNotificationCbFunc pinstanceNotificationCb, void *pCallbackTag)

Subscribe for instance notifications.

e CpaStatus cpaDcGetSessionSize (CpalnstanceHandle dcinstance, CpaDcSessionSetupData
*pSessionData, Cpa32U *pSessionSize, Cpa32U *pContextSize)

Get the size of the memory required to hold the session information.

e CpaStatus cpaDcBufferListGetMetaSize (const CpalnstanceHandle instanceHandle, Cpa32U
numBuffers, Cpa32U *pSizelnBytes)

Function to return the size of the memory which must be allocated for the pPrivateMetaData
member of CpaBufferList.

e CpaStatus cpaDcGetStatusText (const CpalnstanceHandle dcinstance, const CpaStatus
errStatus, Cpa8S *pStatusText)

Function to return a string indicating the specific error that occurred within the system.

Reference Number: 330686-001 29

5.8 Data Structure Documentation

e CpaStatus cpaDcSetAddressTranslation (const CpalnstanceHandle instanceHandle,
CpaVirtualToPhysical virtual2Physical)
Set Address Translation function.
e CpaStatus cpaDcDpGetSessionSize (CpalnstanceHandle dcinstance, CpaDcSessionSetupData
*pSessionData, Cpa32U *pSessionSize)
Get the size of the memory required to hold the data plane session information.
e CpaStatus cpaDcDpRemoveSession (const CpalnstanceHandle dcinstance,
CpaDcSessionHandle pSessionHandle)
Compression Data Plane Session Remove Function.

5.8 Data Structure Documentation

5.8.1 _CpaDclnstanceCapabilities Struct Reference

5.8.1.1 Detailed Description
Implementation Capabilities Structure.

This structure contains data relating to the capabilities of an implementation. The capabilities include
supported compression algorithms, RFC 1951 options and whether the implementation supports both stateful
and stateless compress and decompress sessions.

5.8.1.2 Data Fields

e CpaBoolean statefulLZSCompression
True if the Instance supports Stateful LZS compression.
e CpaBoolean statefulLZSDecompression
True if the Instance supports Stateful LZS decompression.
e CpaBoolean statelessLZSCompression
True if the Instance supports Stateless LZS compression.
e CpaBoolean statelessLZSDecompression
True if the Instance supports Stateless LZS decompression.
e CpaBoolean statefulLZSSCompression
True if the Instance supports Stateful LZSS compression.
e CpaBoolean statefulLZSSDecompression
True if the Instance supports Stateful LZSS decompression.
e CpaBoolean statelessLZSSCompression
True if the Instance supports Stateless LZSS compression.
e CpaBoolean statelessLZSSDecompression
True if the Instance supports Stateless LZSS decompression.
e CpaBoolean statefulELZSCompression
True if the Instance supports Stateful Extended LZS compression.
e CpaBoolean statefulELZSDecompression
True if the Instance supports Stateful Extended LZS decompression.
e CpaBoolean statelessELZSCompression
True if the Instance supports Stateless Extended LZS compression.
e CpaBoolean statelessELZSDecompression
True if the Instance supports Stateless Extended LZS decompression.
e CpaBoolean statefulDeflateCompression
True if the Instance supports Stateful Deflate compression.
e CpaBoolean statefulDeflateDecompression
True if the Instance supports Stateful Deflate decompression.
e CpaBoolean statelessDeflateCompression
True if the Instance supports Stateless Deflate compression.

Reference Number: 330686-001 30

5.8.1 _CpaDclinstanceCapabilities Struct Reference

e CpaBoolean statelessDeflateDecompression
True if the Instance supports Stateless Deflate decompression.
e CpaBoolean checksumCRC32
True if the Instance can calculate a CRC32 checksum over the uncompressed data.
e CpaBoolean checksumAdier32
True if the Instance can calculate an Adler-32 checksum over the uncompressed data.
e CpaBoolean dynamicHuffman
True if the Instance supports dynamic Huffman trees in deflate blocks.
e CpaBoolean dynamicHuffmanBufferReq
True if an Instance specific buffer is required to perform a dynamic Huffman tree deflate
request.
e CpaBoolean precompiledHuffman
True if the Instance supports precompiled Huffman trees in deflate blocks.
e CpaBoolean autoSelectBestHuffmanTree
True if the Instance has the ability to automatically select between different Huffman encoding
schemes for better compression ratios.
e Cpa8U validWindowSizeMaskCompression
Bits set to '1' for each valid window size supported by the compression implementation.
e Cpa8U validWindowSizeMaskDecompression
Bits set to '1' for each valid window size supported by the decompression implementation.
e Cpa32U internalHuffmanMem
Number of bytes internally available to be used when constructing dynamic Huffman trees.
e CpaBoolean endOfLastBlock
True if the Instance supports stopping at the end of the last block in a deflate stream during a
decompression operation and reporting that the end of the last block has been reached as

part of the CpaDcReqStatus data.

5.8.1.3 Field Documentation
CpaBoolean _CpaDclnstanceCapabilities::statefulLZSCompression
True if the Instance supports Stateful LZS compression.

CpaBoolean _CpaDclnstanceCapabilities::statefulLZSDecompression
True if the Instance supports Stateful LZS decompression.

CpaBoolean _CpaDclnstanceCapabilities::statelessLZSCompression
True if the Instance supports Stateless LZS compression.

CpaBoolean _CpaDclnstanceCapabilities::statelessLZSDecompression
True if the Instance supports Stateless LZS decompression.

CpaBoolean _CpaDclnstanceCapabilities::statefulLZSSCompression
True if the Instance supports Stateful LZSS compression.

CpaBoolean _CpaDclnstanceCapabilities::statefulLZSSDecompression
True if the Instance supports Stateful LZSS decompression.

CpaBoolean _CpaDclnstanceCapabilities::statelessLZSSCompression
True if the Instance supports Stateless LZSS compression.

CpaBoolean _CpaDclInstanceCapabilities::statelessLZSSDecompression
True if the Instance supports Stateless LZSS decompression.

Reference Number: 330686-001

31

5.8.1 _CpaDclinstanceCapabilities Struct Reference

CpaBoolean _CpaDclnstanceCapabilities::statefulELZSCompression
True if the Instance supports Stateful Extended LZS compression.

CpaBoolean _CpaDclnstanceCapabilities::statefulELZSDecompression
True if the Instance supports Stateful Extended LZS decompression.

CpaBoolean _CpaDclInstanceCapabilities::statelessELZSCompression
True if the Instance supports Stateless Extended LZS compression.

CpaBoolean _CpaDclnstanceCapabilities::statelessELZSDecompression
True if the Instance supports Stateless Extended LZS decompression.

CpaBoolean _CpaDclnstanceCapabilities::statefulDeflateCompression
True if the Instance supports Stateful Deflate compression.

CpaBoolean _CpaDclnstanceCapabilities::statefulDeflateDecompression
True if the Instance supports Stateful Deflate decompression.

CpaBoolean _CpaDclnstanceCapabilities::statelessDeflateCompression
True if the Instance supports Stateless Deflate compression.

CpaBoolean _CpaDclInstanceCapabilities::statelessDeflateDecompression
True if the Instance supports Stateless Deflate decompression.

CpaBoolean _CpaDclInstanceCapabilities::checksumCRC32
True if the Instance can calculate a CRC32 checksum over the uncompressed data.

CpaBoolean _CpaDclInstanceCapabilities::checksumAdler32
True if the Instance can calculate an Adler-32 checksum over the uncompressed data.

CpaBoolean _CpaDclnstanceCapabilities::dynamicHuffman
True if the Instance supports dynamic Huffman trees in deflate blocks.

CpaBoolean _CpaDclnstanceCapabilities::dynamicHuffmanBufferReq
True if an Instance specific buffer is required to perform a dynamic Huffman tree deflate request.

CpaBoolean _CpaDclnstanceCapabilities::precompiledHuffman
True if the Instance supports precompiled Huffman trees in deflate blocks.

CpaBoolean _CpaDclnstanceCapabilities::autoSelectBestHuffmanTree

True if the Instance has the ability to automatically select between different Huffman encoding schemes for
better compression ratios.

Cpa8U _CpaDclnstanceCapabilities::validWindowSizeMaskCompression

Bits set to '1' for each valid window size supported by the compression
implementation.

Cpa8U _CpaDclnstanceCapabilities::validWindowSizeMaskDecompression

Bits set to '1' for each valid window size supported by the decompression
implementation.

Reference Number: 330686-001 32

5.8.2 _CpaDcSessionSetupData Struct Reference

Cpa32U _CpaDclnstanceCapabilities::internalHuffmanMem
Number of bytes internally available to be used when constructing dynamic Huffman trees.

CpaBoolean _CpaDclnstanceCapabilities::endOfLastBlock
True if the Instance supports stopping at the end of the last block in a deflate stream during a
decompression operation and reporting that the end of the last block has been reached as part of the
CpaDcReqgStatus data.

5.8.2 _CpaDcSessionSetupData Struct Reference

5.8.2.1 Detailed Description
Session Setup Data.

This structure contains data relating to setting up a session. The client needs to complete the information in
this structure in order to setup a session.

5.8.2.2 Data Fields

e CpaDcCompLvl compLevel
Compression Level from CpaDcCompLuvl.
e CpaDcCompType compType
Compression type from CpaDcCompType.
e CpaDcHuffType huffType
Huffman type from CpaDcHuffType.
e CpaDcAutoSelectBest autoSelectBestHuffmanTree
Indicates if and how the implementation should select the best Huffman encoding.
e CpaDcFileType fileType
File type for the purpose of determining Huffman Codes from CpaDcFileType.
e CpaDcSessionDir sessDirection
Session direction indicating whether session is used for compression, decompression or both.

e CpaDcSessionState sessState

Session state indicating whether the session should be configured as stateless or stateful.
e Cpa32U deflateWindowSize

Base 2 logarithm of maximum window size minus 8 (a value of 7 for a 32K window size).
e CpaDcChecksum checksum

Desired checksum required for the session.

5.8.2.3 Field Documentation

CpaDcCompLvl _CpaDcSessionSetupData::compLevel
Compression Level from CpaDcCompLuvl.

CpaDcCompType _CpaDcSessionSetupData::compType
Compression type from CpaDcCompType.

CpaDcHuffType _ CpaDcSessionSetupData::huffType
Huffman type from CpaDcHuffType.

CpaDcAutoSelectBest _CpaDcSessionSetupData::autoSelectBestHuffmanTree
Indicates if and how the implementation should select the best Huffman encoding.

Reference Number: 330686-001 33

5.8.3 _CpaDcStats Struct Reference

CpaDcFileType _CpaDcSessionSetupData::fileType
File type for the purpose of determining Huffman Codes from CpaDcFileType.

CpaDcSessionDir _CpaDcSessionSetupData::sessDirection
Session direction indicating whether session is used for compression, decompression or both.

CpaDcSessionState _CpaDcSessionSetupData::sessState
Session state indicating whether the session should be configured as stateless or stateful.

Cpa32U _CpaDcSessionSetupData::deflateWindowSize
Base 2 logarithm of maximum window size minus 8 (a value of 7 for a 32K window size).

Permitted values are 0 to 7. cpaDcDecompressData may return an error if an attempt is made to
decompress a stream that has a larger window size.

CpaDcChecksum _CpaDcSessionSetupData::checksum
Desired checksum required for the session.

5.8.3 _CpaDcStats Struct Reference

5.8.3.1 Detailed Description
Compression Statistics Data.

This structure contains data elements corresponding to statistics. Statistics are collected on a per instance
basis and include: jobs submitted and completed for both compression and decompression.

5.8.3.2 Data Fields

e Cpa64U numCompRequests
Number of successful compression requests.
e Cpa64U numCompRequestsErrors
Number of compression requests that had errors and could not be processed.
e Cpa64U numCompCompleted
Compression requests completed.
e Cpa64U numCompCompletedErrors
Compression requests not completed due to errors.
e Cpa64U numDecompRequests
Number of successful decompression requests.
e Cpa64U numDecompRequestsErrors
Number of decompression requests that had errors and could not be processed.
e Cpa64U numDecompCompleted
Decompression requests completed.
e Cpa64U numDecompCompletedErrors
Decompression requests not completed due to errors.

5.8.3.3 Field Documentation

Cpa64U _CpaDcStats::numCompRequests
Number of successful compression requests.

Reference Number: 330686-001

34

5.8.4 _CpaDcRqResults Struct Reference

Cpa64U _CpaDcStats::numCompRequestsErrors
Number of compression requests that had errors and could not be processed.

Cpa64U _CpaDcStats::numCompCompleted
Compression requests completed.

Cpa64U _CpaDcStats::numCompCompletedErrors
Compression requests not completed due to errors.

Cpa64U _CpaDcStats::numDecompRequests
Number of successful decompression requests.

Cpa64U _CpaDcStats::numDecompRequestsErrors
Number of decompression requests that had errors and could not be processed.

Cpa64U _CpaDcStats::numDecompCompleted
Decompression requests completed.

Cpa64U _CpaDcStats::numDecompCompletedErrors
Decompression requests not completed due to errors.

5.8.4 CpaDcRqgResults Struct Reference

5.8.4.1 Detailed Description
Request results data.
This structure contains the request results.

For stateful sessions the status, produced, consumed and endOfLastBlock results are per request values
while the checksum value is cumulative across all requests on the session so far. In this case the checksum
value is not guaranteed to be correct until the final compressed data has been processed.

For stateless sessions, an initial checksum value is passed into the stateless operation. Once the stateless
operation completes, the checksum value will contain checksum produced by the operation.

5.8.4.2 Data Fields

e CpaDcReqStatus status
Additional status details from accelerator.
e Cpa32U produced
Octets produced by the operation.
e Cpa32U consumed
Octets consumed by the operation.
e Cpa32U checksum
Initial checksum passed into stateless operations.
e CpaBoolean endOfLastBlock
Decompression operation has stopped at the end of the last block in a deflate stream.

Reference Number: 330686-001 35

5.8.4 _CpaDcRqResults Struct Reference

5.8.4.3 Field Documentation

CpaDcReqStatus _CpaDcRqgResults::status
Additional status details from accelerator.

Cpa32U _CpaDcRgResults::produced
Octets produced by the operation.

Cpa32U _CpaDcRgResults::consumed
Octets consumed by the operation.

Cpa32U _CpaDcRgResults::checksum
Initial checksum passed into stateless operations.

Will also be updated to the checksum produced by the operation

CpaBoolean _CpaDcRqgResults::endOfLastBlock
Decompression operation has stopped at the end of the last block in a deflate stream.

5.9 Define Documentation

#define CPA_DC_API_VERSION_NUM_MAJOR
File: cpa_dc.h
CPA Dc Major Version Number
The CPA_DC API major version number. This number will be incremented when significant churn to the API

has occurred. The combination of the major and minor number definitions represent the complete version
number for this interface.

#define CPA_DC_API_VERSION_NUM_MINOR
File: cpa_dc.h
CPA DC Minor Version Number
The CPA_DC API minor version number. This number will be incremented when minor changes to the API

has occurred. The combination of the major and minor number definitions represent the complete version
number for this interface.

#define CPA_DC_BAD_DATA
Service specific return codesInput data in invalid.

Compression specific return codes

5.10 Typedef Documentation

typedef void* CpaDcSessionHandle

Reference Number: 330686-001 36

5.10 Typedef Documentation

Compression API session handle type.

Handle used to uniquely identify a Compression API session handle. This handle is established upon
registration with the API using cpaDcInitSession().

typedef enum _CpaDcFileType CpaDcFileType
Supported file types.

This enumerated lists identified file types. Used to select Huffman trees. File types are associated with
Precompiled Huffman Trees.

typedef enum _CpaDcFlush CpaDcFlush
Supported flush flags.

This enumerated list identifies the types of flush that can be specified for stateful and stateless
cpaDcCompressData and cpaDcDecompressData functions.

typedef enum _CpaDcHuffType CpaDcHuffType
Supported Huffman Tree types.

This enumeration lists support for Huffman Tree types. Selecting Static Huffman trees generates
compressed blocks with an RFC 1951 header specifying "compressed with fixed Huffman trees".

Selecting Full Dynamic Huffman trees generates compressed blocks with an RFC 1951 header specifying
"compressed with dynamic Huffman codes". The headers are calculated on the data being compressed,
requiring two passes.

Selecting Precompiled Huffman Trees generates blocks with RFC 1951 dynamic headers. The headers are
pre-calculated and are specified by the file type.

CpaDcFileType is valid only for the deflate compression algorithm. CpaDcFileType is ignored for static or
full dynamic Huffman trees.

typedef enum _CpaDcCompType CpaDcCompType
Supported compression types.

This enumeration lists the supported data compression algorithms. In combination with CpaDcChecksum it
is used to decide on the file header and footer format.

typedef enum _CpaDcChecksum CpaDcChecksum
Supported checksum algorithms.

This enumeration lists the supported checksum algorithms Used to decided on file header and footer
specifics.

typedef enum _CpaDcSessionDir CpaDcSessionDir
Supported session directions.

This enumerated list identifies the direction of a session. A session can be compress, decompress or both.

typedef enum _CpaDcSessionState CpaDcSessionState
Supported session state settings.

This enumerated list identifies the stateful setting of a session. A session can be either stateful or stateless.

Reference Number: 330686-001 37

5.10 Typedef Documentation

Stateful sessions are limited to have only one in-flight message per session. This means a compress or
decompress request must be complete before a new request can be started. This applies equally to
sessions that are uni-directional in nature and sessions that are combined compress and decompress.
Completion occurs when the synchronous function returns, or when the asynchronous call back function
has completed.

typedef enum _CpaDcCompLvl CpaDcCompLvi
Supported compression levels.

This enumerated lists the supported compressed levels. Lower values will result in less compressibility in
less time.

typedef enum _CpaDcReqStatus CpaDcReqStatus
Supported additional details from accelerator.

This enumeration lists the supported additional details from the accelerator. These may be useful in
determining the best way to recover from a failure.

typedef enum _CpaDcAutoSelectBest CpaDcAutoSelectBest
Supported modes for automatically selecting the best compression type.

This enumeration lists the supported modes for automatically selecting the best huffman encoding which
would lead to the best compression results.

typedef void(* CpaDcCallbackFn)(void *callbackTag, CpaStatus status)
Definition of callback function invoked for asynchronous cpaDc requests.

This is the prototype for the cpaDc compression callback functions. The callback function is registered by
the application using the cpaDcInitSession() function call.

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
callbackTag User-supplied value to help identify request.

status Status of the operation. Valid values are CPA_STATUS_SUCCESS and
CPA_STATUS_FAIL.

Return values:
None

Precondition:
Component has been initialized.

Reference Number: 330686-001 38

5.10 Typedef Documentation

Postcondition:

None
Note:

None
See also:

None

typedef struct _CpaDclnstanceCapabilities CpaDclnstanceCapabilities
Implementation Capabilities Structure.

This structure contains data relating to the capabilities of an implementation. The capabilities include

supported compression algorithms, RFC 1951 options and whether the implementation supports both
stateful and stateless compress and decompress sessions.

typedef struct _CpaDcSessionSetupData CpaDcSessionSetupData
Session Setup Data.

This structure contains data relating to setting up a session. The client needs to complete the information in
this structure in order to setup a session.

typedef struct _CpaDcStats CpaDcStats
Compression Statistics Data.

This structure contains data elements corresponding to statistics. Statistics are collected on a per instance
basis and include: jobs submitted and completed for both compression and decompression.

typedef struct _CpaDcRqResults CpaDcRqResults
Request results data.

This structure contains the request results.
For stateful sessions the status, produced, consumed and endOfLastBlock results are per request values
while the checksum value is cumulative across all requests on the session so far. In this case the checksum

value is not guaranteed to be correct until the final compressed data has been processed.

For stateless sessions, an initial checksum value is passed into the stateless operation. Once the stateless
operation completes, the checksum value will contain checksum produced by the operation.

typedef void(* CpaDclnstanceNotificationCbFunc)(const CpalnstanceHandle instanceHandle, void
*pCallbackTag, const CpalnstanceEvent instanceEvent)

Callback function for instance notification support.

This is the prototype for the instance notification callback function. The callback function is passed in as a
parameter to the cpaDclnstanceSetNotificationCb function.

Context:
This function will be executed in a context that requires that sleeping MUST NOT be permitted.

Assumptions:
None

Side-Effects:

Reference Number: 330686-001 39

5.11 Enumeration Type Documentation

None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCallbackTag Opaque value provided by user while making individual function calls.
[in] instanceEvent The event that will trigger this function to get invoked.

Return values:
None

Precondition:
Component has been initialized and the notification function has been set via the
cpaDclnstanceSetNotificationCb function.

Postcondition:

None
Note:

None
See also:

cpaDclnstanceSetNotificationCh(),

5.11 Enumeration Type Documentation

enum _CpaDcFileType
Supported file types.

This enumerated lists identified file types. Used to select Huffman trees. File types are associated with
Precompiled Huffman Trees.

Enumerator:
CPA DC FT_ASCIl ASCII File Type.
CPA DC FT_CSS Cascading Style Sheet File Type.
CPA DC FT_HTML HTML or XML (or similar) file type.
CPA DC FT JAVA File Java code or similar.
CPA _DC _FT_OTHER Other file types.

enum _CpaDcFlush
Supported flush flags.

This enumerated list identifies the types of flush that can be specified for stateful and stateless
cpaDcCompressData and cpaDcDecompressData functions.

Reference Number: 330686-001 40

5.11 Enumeration Type Documentation

Enumerator:
CPA _DC FLUSH_NONE No flush request.

CPA _DC FLUSH_FINAL Indicates that the input buffer contains all of the data for the
compression session allowing any buffered data to be released.

For Deflate, BFINAL is set in the compression header.

CPA DC FLUSH_SYNC Used for stateful deflate compression to indicate that all pending output
is flushed, byte aligned, to the output buffer.

The session state is not reset.

CPA DC FLUSH_FULL Used for deflate compression to indicate that all pending output is
flushed to the output buffer and the session state is reset.

enum _CpaDcHuffType
Supported Huffman Tree types.

This enumeration lists support for Huffman Tree types. Selecting Static Huffman trees generates
compressed blocks with an RFC 1951 header specifying "compressed with fixed Huffman trees".

Selecting Full Dynamic Huffman trees generates compressed blocks with an RFC 1951 header specifying
"compressed with dynamic Huffman codes". The headers are calculated on the data being compressed,
requiring two passes.

Selecting Precompiled Huffman Trees generates blocks with RFC 1951 dynamic headers. The headers are
pre-calculated and are specified by the file type.

CpaDcFileType is valid only for the deflate compression algorithm. CpaDcFileType is ignored for static or
full dynamic Huffman trees.

Enumerator:
CPA DC HT STATIC Static Huffman Trees.
CPA DC HT _PRECOMP Precompiled Huffman Trees.

CPA DC HT_FULL _DYNAMIC Full Dynamic Huffman Trees.

enum _CpaDcCompType
Supported compression types.

This enumeration lists the supported data compression algorithms. In combination with CpaDcChecksum it
is used to decide on the file header and footer format.

Enumerator:
CPA DC LZS LZS Compression.

CPA DC ELZS Extended LZS Compression.
CPA DC LZSS LZSS Compression.
CPA _DC DEFLATE Deflate Compression.

enum _CpaDcChecksum
Supported checksum algorithms.

This enumeration lists the supported checksum algorithms Used to decided on file header and footer
specifics.

Enumerator:
CPA DC NONE No checksums required.

Reference Number: 330686-001 41

5.11 Enumeration Type Documentation

CPA DC CRC32 application requires a CRC32 checksum
CPA DC ADLER32 Application requires Adler-32 checksum.

enum _CpaDcSessionDir
Supported session directions.

This enumerated list identifies the direction of a session. A session can be compress, decompress or both.

Enumerator:
CPA DC DIR COMPRESS Session will be used for compression.
CPA _DC DIR_DECOMPRESS Session will be used for decompression.
CPA DC DIR COMBINED Session will be used both both compression and decompression.

enum _CpaDcSessionState
Supported session state settings.

This enumerated list identifies the stateful setting of a session. A session can be either stateful or stateless.

Stateful sessions are limited to have only one in-flight message per session. This means a compress or
decompress request must be complete before a new request can be started. This applies equally to
sessions that are uni-directional in nature and sessions that are combined compress and decompress.
Completion occurs when the synchronous function returns, or when the asynchronous call back function
has completed.

Enumerator:
CPA DC STATEFUL Session will be stateful, implying that state may need to be saved in some
situations.
CPA DC STATELESS Session will be stateless, implying no state will be stored.

enum _CpaDcCompLuvl
Supported compression levels.

This enumerated lists the supported compressed levels. Lower values will result in less compressibility in
less time.

Enumerator:
CPA DC L1 Compression level 1.
CPA DC L2 Compression level 2.
CPA _DC L3 Compression level 3.
CPA DC L4 Compression level 4.
CPA DC L5 Compression level 5.
CPA DC L6 Compression level 6.
CPA_DC L7 Compression level 7.
CPA_DC L8 Compression level 8.
CPA DC L9 Compression level 9.

enum _CpaDcReqStatus

Reference Number: 330686-001 42

5.12 Function Documentation

Supported additional details from accelerator.

This enumeration lists the supported additional details from the accelerator. These may be useful in
determining the best way to recover from a failure.

Enumerator:
CPA _DC OK No error detected by compression slice.
CPA DC INVALID BLOCK TYPE Invalid block type (type == 3).
CPA DC BAD STORED _BLOCK_LEN Stored block length did not match one's complement.
CPA DC TOO MANY CODES Too many length or distance codes.
CPA _DC INCOMPLETE_CODE_LENS Code length codes incomplete.
CPA DC REPEATED LENS Repeated lengths with no first length.
CPA DC MORE_REPEAT Repeat more than specified lengths.
CPA DC BAD LITLEN CODES Invalid literal/length code lengths.
CPA DC BAD DIST CODES Invalid distance code lengths.
CPA DC INVALID CODE Invalid literal/length or distance code in fixed or dynamic
block.
CPA DC INVALID DIST Distance is too far back in fixed or dynamic block.
CPA DC OVERFLOW Overflow detected.
CPA DC SOFTERR Other non-fatal detected.
CPA DC FATALERR Fatal error detected.

enum _CpaDcAutoSelectBest
Supported modes for automatically selecting the best compression type.

This enumeration lists the supported modes for automatically selecting the best huffman encoding which
would lead to the best compression results.

Enumerator:
CPA DC ASB DISABLED Auto select best mode is
disabled.
CPA _DC ASB _STATIC DYNAMIC Auto select between

static and dynamic
compression.

CPA_DC _ASB _UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS Auto select between
uncompressed, static
and dynamic
compression, using
stored block deflate
headers if uncompressed
is selected.

CPA _ DC ASB UNCOMP_STATIC DYNAMIC WITH NO_HDRS Auto select between
uncompressed, static
and dynamic
compression, using no
deflate headers if
uncompressed is
selected.

5.12 Function Documentation

Reference Number: 330686-001 43

5.12 Function Documentation

CpaStatus cpaDcQueryCapabilities (CpalnstanceHandle dclinstance,
CpaDclinstanceCapabilities * plnstanceCapabilities

)

Retrieve Instance Capabilities.
This function is used to retrieve the capabilities matrix of an instance.

Context:
This function shall not be called in an interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dclnstance Instance handle derived from discovery
functions

[in, out] plnstanceCapabilities Pointer to a capabilities struct

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

CPA STATUS FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.
CPA STATUS RESOURCE Error related to system resources.

CPA STATUS RESTARTING APl implementation is restarting. Resubmit
the request.

Precondition:
None

Postcondition:

None
Note:
Only a synchronous version of this function is provided.
See also:
None
CpaStatus cpaDclnitSession (CpalnstanceHandle dclinstance,
CpaDcSessionHandle pSessionHandle,
CpaDcSessionSetupData * pSessionData,
CpaBufferList * pContextBuffer,
CpaDcCallbackFn callbackFn

Reference Number: 330686-001

5.12 Function Documentation

)

Initialize compression decompression session.

This function is used to initialize a compression/decompression session. This function specifies a BufferList
for context data. A single session can be used for both compression and decompression requests. Clients
MAY register a callback function for the compression service using this function. This function returns a
unique session handle each time this function is invoked. If the session has been configured with a callback
function, then the order of the callbacks are guaranteed to be in the same order the compression or
decompression requests were submitted for each session, so long as a single thread of execution is used
for job submission.

Context:
This is a synchronous function and it cannot sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dclnstance Instance handle derived from discovery functions.

[in, out] pSessionHandle Pointer to a session handle.
[in, out] pSessionData Pointer to a user instantiated structure containing session data.
[

in] pContextBuffer pointer to context buffer. This is not required for stateless operations.
The total size of the buffer list must be equal to or larger than the
specified contextSize retrieved from the cpaDcGetSessionSize()

function.
[in] callbackFn For synchronous operation this callback shall be a null pointer.
Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.
CPA STATUS RESOURCE Error related to system resources.
CPA _STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
dclnstance has been started using cpaDcStartinstance.

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

Reference Number: 330686-001 45

5.12 Function Documentation

This initializes opaque data structures in the session handle. Data compressed under this session will be
compressed to the level specified in the pSessionData structure. Lower compression levels numbers
indicate a request for faster compression at the expense of compression ratio. Higher compression level
numbers indicate a request for higher compression ratios at the expense of execution time.

The session is opaque to the user application and the session handle contains job specific data.
The pointer to the ContextBuffer will be stored in session specific data if required by the implementation.

It is not permitted to have multiple outstanding asynchronous compression requests for stateful sessions. It
is possible to add parallelization to compression by using multiple sessions.

The window size specified in the pSessionData must be match exactly one of the supported window sizes
specified in the capabilities structure. If a bi-directional session is being initialized, then the window size
must be valid for both compress and decompress.

See also:
None

CpaStatus cpaDcRemoveSession (const CpalnstanceHandle dcinstance,
CpaDcSessionHandle pSessionHandle

)

Compression Session Remove Function.

This function will remove a previously initialized session handle and the installed callback handler function.
Removal will fail if outstanding calls still exist for the initialized session handle. The client needs to retry the
remove function at a later time. The memory for the session handle MUST not be freed until this call has
completed successfully.

Context:
This is a synchronous function that cannot sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcinstance Instance handle.
[in, out] pSessionHandle Session handle.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.

Reference Number: 330686-001 46

5.12 Function Documentation

CPA STATUS RETRY Resubmit the request.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

CPA STATUS RESOURCE Error related to system resources.

CPA_STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
The component has been initialized via cpaDcStartInstance function.

Postcondition:

None
Note:

This is a synchronous function and has no completion callback associated with it.
See also:

cpaDclnitSession()

CpaStatus cpaDcCompressData (CpalnstanceHandle dcinstance,
CpaDcSessionHandle pSessionHandle,

CpaBufferList * pSrcBuff,
CpaBufferList * pDestBuff,
CpaDcRgResults * pResults,
CpaDcFlush flushFlag,
void * callbackTag

)

Submit a request to compress a buffer of data.
This APl consumes data from the input buffer and generates compressed data in the output buffer.

Context:
When called as an asynchronous funnction it cannot sleep. It can be executed in a context that
does not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:

None
Blocking:
Yes when configured to operate in synchronous mode.
Reentrant:
No
Thread-safe:
Yes
Parameters:
[in] dclnstance Target service instance.
[in, out] pSessionHandle Session handle.
[in] pSrcBuff Pointer to data buffer for compression.
[in] pDestBuff Pointer to buffer space for data after compression.
[in, out] pResults Pointer to results structure

Reference Number: 330686-001

47

5.12 Function Documentation

[in] flushFlag Indicates the type of flush to be performed.
[in] callbackTag User supplied value to help correlate the callback with its associated
request.

Return values:

CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA STATUS RETRY Resubmit the request.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

CPA STATUS RESOURCE Error related to system resources.

CPA_DC BAD DATA The input data was not properly formed.

CPA _STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:

pSessionHandle has been setup using cpaDclnitSession()

Postcondition:

Note:

pSessionHandle has session related state information

This function passes control to the compression service for processing

In synchronous mode the function returns the error status returned from the service. In asynchronous mode
the status is returned by the callback function.

This function may be called repetitively with input until all of the input has been consumed by the
compression service and all the output has been produced.

When this function returns, it may be that all of the available data in the input buffer has not been
compressed. This situation will occur when there is insufficient space in the output buffer. The calling
application should note the amount of data processed, and clear the output buffer and then submit the
request again, with the input buffer pointer to the data that was not previously compressed.

Relationship between input buffers and results buffers.

1

3.

. Implementations of this APl must not modify the individual flat buffers of the input buffer list.
2.

The implementation communicates the amount of data consumed from the source buffer list via
pResults->consumed arg.

The implementation communicates the amount of data in the destination buffer list via
pResults->produced arg.

Source Buffer Setup Rules

1.

2.

The buffer list must have the correct number of flat buffers. This is specified by the numBuffers
element of the CpaBufferList.

Each flat buffer must have a pointer to contiguous memory that has been allocated by the calling
application. The number of octets to be compressed or decompressed must be stored in the
dataLenlnBytes element of the flat buffer.

. It is permissible to have one or more flat buffers with a zero length data store. This function will

process all flat buffers until the destination buffer is full or all source data has been processed. If a
buffer has zero length, then no data will be processed from that buffer.

Source Buffer Processing Rules.

Reference Number: 330686-001 48

5.12 Function Documentation

1. The buffer list is processed in index order - SrcBuff->pBuffers[0] will be completely processed
before SrcBuff->pBuffers[1] begins to be processed.

2. The application must drain the destination buffers. If the source data was not completely consumed,
the application must resubmit the request.

3. On return, the pResults->consumed will indicate the number of bytes consumed from the input
buffers.

Destination Buffer Setup Rules

1. The destination buffer list must have storage for processed data. This implies at least one flat buffer
must exist in the buffer list.

2. For each flat buffer in the buffer list, the datalL.enInBytes element must be set to the size of the
buffer space.

3. It is permissible to have one or more flat buffers with a zero length data store. If a buffer has zero
length, then no data will be added to that buffer.

Destination Buffer Processing Rules.

1. The buffer list is processed in index order - DestBuff->pBuffers[0] will be completely processed
before DestBuff->pBuffers[1] begins to be processed.

2. On return, the pResults->produced will indicate the number of bytes written to the output buffers.

3. If processing has not been completed, the application must drain the destination buffers and
resubmit the request. The application must reset the dataLenInBytes for each flat buffer in the
destination buffer list.

Checksum rules. If a checksum is specified in the session setup data, then:

1. For the first request for a particular data segment the checksum is initialised internally by the
implementation.

2. The checksum is maintained by the implementation between calls until the flushFlag is set to
CPA_DC_FLUSH_FINAL indicating the end of a particular data segment.

a. Intermediate checksum values are returned to the application, via the CpaDcRqgResults
structure, in response to each request. However these checksum values are not
guaranteed to the valid until the call with flushFlag set to CPA_DC_FLUSH_FINAL
completes successfully.

The application should set flushFlag to CPA_DC_FLUSH_FINAL to indicate processing a particular data
segment is complete. It should be noted that this function may have to be called more than once to process
data after the flushFlag parameter has been set to CPA_DC_FLUSH_FINAL if the destination buffer fills.
Refer to buffer processing rules.

For statelful operations, when the function is invoked with flushFlag set to CPA_DC_FLUSH_NONE or
CPA_DC_FLUSH_SYNC, indicating more data is yet to come, the function may or may not retain data.
When the function is invoked with flushFlag set to CPA_DC_FLUSH_FULL or CPA_DC_FLUSH_FINAL,
the function will process all buffered data.

For stateless operations, CPA_DC_FLUSH_FINAL will cause the BFINAL bit to be set for deflate
compression. The initial checksum for the stateless operation should be set to 0. CPA_DC_FLUSH_NONE
and CPA_DC_FLUSH_SYNC should not be used for stateless operations.

It is possible to maintain checksum and length information across cpaDcCompressData() calls with a
stateless session without maintaining the full history state that is maintained by a stateful session. In this
mode of operation, an initial checksum value of 0 is passed into the first cpaDcCompressData() call with
the flush flag set to CPA_DC_FLUSH_FULL. On subsequent calls to cpaDcCompressData() for this
session, the checksum passed to cpaDcCompressData should be set to the checksum value produced by
the previous call to cpaDcCompressData(). When the last block of input data is passed to

Reference Number: 330686-001 49

5.12 Function Documentation

cpaDcCompressData(), the flush flag should be set to CP_DC_FLUSH_FINAL. This will cause the BFINAL
bit to be set in a deflate stream. It is the responsibility of the calling application to maintain overall lengths
across the stateless requests and to pass the checksum produced by one request into the next request.

Synchronous or Asynchronous operation of the APl is determined by the value of the callbackFn parameter
passed to cpaDclnitSession() when the sessionHandle was setup. If a non-NULL value was specified then
the supplied callback function will be invoked asynchronously with the response of this request.

Response ordering: For each session, the implementation must maintain the order of responses. That is, if
in asynchronous mode, the order of the callback functions must match the order of jobs submitted by this
function. In a simple synchronous mode implementation, the practice of submitting a request and blocking
on its completion ensure ordering is preserved.

This limitation does not apply if the application employs multiple threads to service a single session.

If this API is invoked asynchronous, the return code represents the success or not of asynchronously
scheduling the request. The results of the operation, along with the amount of data consumed and
produced become available when the callback function is invoked. As such, pResults->consumed and
pResults->produced are available only when the operation is complete.

The application must not use either the source or destination buffers until the callback has completed.

See also:
None

CpaStatus cpaDcDecompressData (CpalnstanceHandle dcinstance,
CpaDcSessionHandle pSessionHandle,

CpaBufferList * pSrcBuff,
CpaBufferList * pDestBuff,
CpaDcRgResults * pResults,
CpaDcFlush flushFlag,
void * callbackTag

)

Submit a request to decompress a buffer of data.

This APl consumes compressed data from the input buffer and generates uncompressed data in the output
buffer.

Context:
When called as an asynchronous funnction it cannot sleep. It can be executed in a context that
does not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:

Reference Number: 330686-001 50

5.12 Function Documentation

Yes
Parameters:
[in] dcinstance Target service instance.
[in, out] pSessionHandle Session handle.
[in] pSrcBuff Pointer to data buffer for compression.
[in] pDestBuff Pointer to buffer space for data after decompression.
[in, out] pResults Pointer to results structure
[in] flushFlag When set to CPA_DC_FLUSH_FINAL, indicates that the input buffer
contains all of the data for the compression session, allowing the
function to release history data.
[in] callbackTag User supplied value to help correlate the callback with its associated
request.
Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA STATUS RETRY Resubmit the request.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

CPA STATUS RESOURCE Error related to system resources.

CPA_DC BAD DATA The input data was not properly formed.

CPA _STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
pSessionHandle has been setup using cpaDclnitSession()

Postcondition:
pSessionHandle has session related state information

Note:
This function passes control to the compression service for decompression. The function returns
the status from the service.

This function may be called repetitively with input until all of the input has been provided and all the output
has been consumed.

This function has identical buffer processing rules as cpaDcCompressData().
This function has identical checksum processing rules as cpaDcCompressData().
The application should set flushFlag to CPA_DC_FLUSH_FINAL to indicate processing a particular
compressed data segment is complete. It should be noted that this function may have to be called more
than once to process data after flushFlag has been set if the destination buffer fills. Refer to buffer
processing rules in cpaDcCompressData().
Synchronous or Asynchronous operation of the APl is determined by the value of the callbackFn parameter
passed to cpaDcInitSession() when the sessionHandle was setup. If a non-NULL value was specified then
the supplied callback function will be invoked asynchronously with the response of this request, along with
the callbackTag specified in the function.
The same response ordering constraints identified in the cpaDcCompressData API apply to this function.
See also:

cpaDcCompressData()

Reference Number: 330686-001 51

5.12 Function Documentation

CpaStatus cpaDcGenerateHeader (CpaDcSessionHandle pSessionHandle,
CpaFlatBuffer * pDestBuff,
Cpa32U * count
)

Generate compression header.
This API generates the gzip or the zlib header and stores it in the output buffer.

Context:
This function may be call from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in, out] pSessionHandle Session handle.
[in] pDestBuff Pointer to data buffer where the compression header will go.
[out] count Pointer to counter filled in with header size.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.
CPA _STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
pSessionHandle has been setup using cpaDclnitSession()

Note:
This function can output a 10 byte gzip header or 2 byte zlib header to the destination buffer. The
session properties are used to determine the header type. To output a header the session must
have been initialized with CpaDcCompType CPA_DC_DEFLATE for any other value no header is
produced. To output a gzip header the session must have been initialized with CpaDcChecksum
CPA_DC_CRCS32. To output a zlib header the session must have been initialized with
CpaDcChecksum CPA_DC_ADLERS32. For CpaDcChecksum CPA_DC_NONE no header is
output.

If the compression requires a gzip header, then this header requires at a minimum the following fields,
defined in RFC1952: ID1: 0x1f ID2: 0x8b CM: Compression method = 8 for deflate

The zlib header is defined in RFC1950 and this function must implement as a minimum: CM: four bit
compression method - 8 is deflate with window size to 32k CINFO: four bit window size (see RFC1950 for
details), 7 is 32k window FLG: defined as:

Reference Number: 330686-001 52

5.12 Function Documentation

¢ Bits 0 - 4: check bits for CM, CINFO and FLG (see RFC1950)
¢ Bit 5: FDICT 0 = default, 1 is preset dictionary
¢ Bits 6 - 7: FLEVEL, compression level (see RFC 1950)

The counter parameter will be set to the number of bytes added to the buffer. The pData will be not be
changed.

See also:
None

CpaStatus cpaDcGenerateFooter (CpaDcSessionHandle pSessionHandle,
CpaFlatBuffer * pDestBuff,
CpaDcRqResults * pResults

)

Generate compression footer.
This APl generates the footer for gzip or zlib and stores it in the output buffer.

Context:
This function may be call from any context.

Assumptions:
None

Side-Effects:
All session variables are reset

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in, out] pSessionHandle Session handle.
[in] pDestBuff Pointer to data buffer where the compression footer will go.

[in,out] pResults Pointer to results structure filled by CpaDcCompressData. Updated
with the results of this API call

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_UNSUPPORTED Function is not supported.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.
CPA _STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
pSessionHandle has been setup using cpaDclnitSession() pResults structure has been filled by
CpaDcCompressData().

Note:

Reference Number: 330686-001

53

5.12 Function Documentation

Depending on the session variables, this function can add the alder32 footer to the zlib compressed
data as defined in RFC1950. If required, it can also add the gzip footer, which is the crc32 of the
uncompressed data and the length of the uncompressed data. This section is defined in RFC1952.
The session variables used to determine the header type are CpaDcCompType and
CpaDcChecksum, see cpaDcGenerateHeader for more details.

An artifact of invoking this function for writing the footer data is that all opaque session specific data is
re-initialized. If the compression level and file types are consistent, the upper level application can continue
processing compression requests using the same session handle.

The produced element of the pResults structure will be incremented by the numbers bytes added to the
buffer. The pointer to the buffer will not be modified.

This function is not supported for stateless sessions.

See also:
None

CpaStatus cpaDcGetStats (CpalnstanceHandle dcinstance,
CpaDcStats * pStatistics

)

Retrieve statistics.
This API retrieves the current statistics for a compression instance.

Context:
This function may be call from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dclnstance Instance handle.

[out] pStatistics Pointer to statistics structure.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

CPA _STATUS FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

CPA STATUS RESTARTING APl implementation is restarting. Resubmit
the request.

Precondition:

Reference Number: 330686-001 54

5.12 Function Documentation

None

Postcondition:
None

See also:
None

CpaStatus cpaDcGetNuminstances (Cpal6U * pNuminstances)
Get the number of device instances that are supported by the API implementation.

This function will get the number of device instances that are supported by an implementation of the
compression API. This number is then used to determine the size of the array that must be passed to
cpaDcGetinstances().

Context:
This function MUST NOT be called from an interrupt context as it MAY sleep.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[out] pNuminstances Pointer to where the number of instances will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

CPA _STATUS FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated

See also:
cpaDcGetinstances

CpaStatus cpaDcGetlnstances (Cpal6U numlnstances,
dcinstances

Reference Number: 330686-001 55

5.12 Function Documentation

CpalnstanceHandle

)

Get the handles to the device instances that are supported by the API implementation.

This function will return handles to the device instances that are supported by an implementation of the
compression API. These instance handles can then be used as input parameters with other compression
API functions.

This function will populate an array that has been allocated by the caller. The size of this API is determined
by the cpaDcGetNumlinstances() function.

Context:
This function MUST NOT be called from an interrupt context as it MAY sleep.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] numlinstances Size of the array.
[out] dclnstances Pointer to where the instance handles will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA STATUS FAIL Function failed.
CPA _STATUS _INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:

None
Note:

This function operates in a synchronous manner and no asynchronous callback will be generated
See also:

cpaDcGetlnstances

CpaStatus cpaDcGetNumIntermediateBuffers (CpalnstanceHandle instanceHandle,
Cpal6U * pNumBuffers

)

Reference Number: 330686-001 56

5.12 Function Documentation

Compression Component utility function to determine the number of intermediate buffers required by an
implementation.

This function will determine the number of intermediate buffer lists required by an implementation for a
compression instance. These buffers should then be allocated and provided when calling
cpaDcStartinstance() to start a compression instance.

Context:
This function may sleep, and MUST NOT be called in interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in, out] instanceHandle Handle to an instance of this API to be initialized.
[out] pNumBuffers ~ When the function returns, this will specify the number of buffer lists
that should be used as intermediate buffers when calling
cpaDcStartinstance().

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed. Suggested course of action is to shutdown and restart.

Precondition:
None

Postcondition:

None
Note:

Note that this is a synchronous function and has no completion callback associated with it.
See also:

cpaDcStartinstance()

CpaStatus cpaDcStartinstance (CpalnstanceHandle instanceHandle,
Cpai16U numBuffers,
CpaBufferList ** plntermediateBuffers

)

Compression Component Initialization and Start function.

This function will initialize and start the compression component. It MUST be called before any other
compress function is called. This function SHOULD be called only once (either for the very first time, or after
an cpaDcStoplnstance call which succeeded) per instance. Subsequent calls will have no effect.

Reference Number: 330686-001 57

5.12 Function Documentation

If required by an implementation, this function can be provided with instance specific intermediate buffers.
The intent is to provide an instance specific location to store intermediate results during dynamic instance
Huffman tree compression requests. The memory should be accessible by the compression engine. The
buffers are to support deflate compression with dynamic Huffman Trees. Each buffer list should be similar in
size to twice the destination buffer size passed to the compress API. The number of intermediate buffer lists
may vary between implementations and so cpaDcGetNumlintermediateBuffers() should be called first to
determine the number of intermediate buffers required by the implementation.

If not required, this parameter can be passed in as NULL.

Context:
This function may sleep, and MUST NOT be called in interrupt context.

Assumptions:
None

Side-Effects:

None
Blocking:
This function is synchronous and blocking.
Reentrant:
No
Thread-safe:
Yes
Parameters:

[in, out] InstanceHandle Handle to an instance of this API to be initialized.

[in] numBuffers Number of buffer lists represented by the pintermediateBuffers
parameter. Note: cpaDcGetNumintermediateBuffers() can be
used to determine the number of intermediate buffers that an
implementation requires.

[in] plntermediateBuffers Optional pointer to Instance specific DRAM buffer.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed. Suggested course of action is to shutdown and restart.

Precondition:
None

Postcondition:

None
Note:

Note that this is a synchronous function and has no completion callback associated with it.
See also:

cpaDcStoplinstance() cpaDcGetNumintermediateBuffers()

CpaStatus cpaDclnstanceGetInfo2 (const CpalnstanceHandle instanceHandle,
Cpalnstancelnfo2 * pinstancelnfo2

)

Reference Number: 330686-001 58

5.12 Function Documentation

Function to get information on a particular instance.
This function will provide instance specific information through a Cpalnstancelnfo2 structure.

Context:
This function will be executed in a context that requires that sleeping MUST NOT be permitted.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Handle to an instance of this API to be initialized.
[out] plInstancelnfo2 Pointer to the memory location allocated by the client into which the
Cpalnstancelnfo2 structure will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA STATUS FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
The client has retrieved an instanceHandle from successive calls to cpaDcGetNuminstances and
cpaDcGetinstances.

Postcondition:

None
Note:
None
See also:
cpaDcGetNuminstances, cpaDcGetlnstances, Cpalnstancelnfo2
CpaStatus .
cpaDclnstanceSetNotificationCb (const CpalnstanceHandle HBETGERENENE)
const e
CpaDclnstanceNotificationCbFunc PSIETGE AT,
void * pCallbackTag

)

Subscribe for instance notifications.

Clients of the CpaDc interface can subscribe for instance notifications by registering a
CpaDclinstanceNotificationCbFunc function.

Reference Number: 330686-001 59

5.12 Function Documentation

Context:
This function may be called from any context.

Assumptions:
None

Side-Effects:

None
Blocking:
No
Reentrant:
No
Thread-safe:
Yes
Parameters:
[in] instanceHandle Instance handle.
[in] plnstanceNotificationCb Instance notification callback function pointer.
[in] pCallbackTag Opaque value provided by user while making individual function
calls.
Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
Instance has been initialized.

Postcondition:

None
Note:
None
See also:
CpaDclinstanceNotificationCbFunc
CpaStatus cpaDcGetSessionSize (CpalnstanceHandle dclnstance,
CpaDcSessionSetupData * pSessionData,
Cpa32U * pSessionSize,
Cpa32U * pContextSize

)

Get the size of the memory required to hold the session information.

The client of the Data Compression API is responsible for allocating sufficient memory to hold session
information and the context data. This function provides a means for determining the size of the session
information and the size of the context data.

Context:
No restrictions

Reference Number: 330686-001 60

5.12 Function Documentation

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:

[in] dclnstance Instance handle.

[in] pSessionData Pointer to a user instantiated structure containing session data.

[out] pSessionSize On return, this parameter will be the size of the memory that will be required
by cpaDclnitSession() for session data.

[out] pContextSize On return, this parameter will be the size of the memory that will be required
for context data. Context data is save/restore data including history and any
implementation specific data that is required for a save/restore operation.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA STATUS FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

It is expected that context data is comprised of the history and any data stores that are specific to the
history such as linked lists or hash tables. For stateless sessions the context size returned from this
function will be zero. For stateful sessions the context size returned will depend on the session setup data.

Session data is expected to include interim checksum values, various counters and other session related
data that needs to persist between invocations. For a given implementation of this API, it is safe to assume
that cpaDcGetSessionSize() will always return the same session size and that the size will not be different
for different setup data parameters. However, it should be noted that the size may change: (1) between
different implementations of the API (e.g. between software and hardware implementations or between
different hardware implementations) (2) between different releases of the same API implementation.

See also:
cpaDclnitSession()

CpaStatus cpaDcBufferListGetMetaSize (const CpalnstanceHandle instanceHandle,
Cpa32u numBuffers,
Cpa32U * pSizelnBytes

Reference Number: 330686-001 61

5.12 Function Documentation

)

Function to return the size of the memory which must be allocated for the pPrivateMetaData member of
CpaBufferList.

This function is used to obtain the size (in bytes) required to allocate a buffer descriptor for the
pPrivateMetaData member in the CpaBufferList structure. Should the function return zero then no meta
data is required for the buffer list.

Context:
This function may be called from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] InstanceHandle Handle to an instance of this API.
[in] numBuffers The number of pointers in the CpaBufferList. This is the maximum number
of CpaFlatBuffers which may be contained in this CpaBufferList.
[out] pSizelnBytes Pointer to the size in bytes of memory to be allocated when the client
wishes to allocate a cpaFlatBuffer.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

CPA _STATUS FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:

None
Note:

None
See also:

cpaDcGetlnstances()

CpaStatus cpaDcGetStatusText (const CpalnstanceHandle dcinstance,
const CpaStatus errStatus,
Cpa8S * pStatus Text

)

Reference Number: 330686-001 62

5.12 Function Documentation

Function to return a string indicating the specific error that occurred within the system.

When a function returns any error including CPA_STATUS_SUCCESS, the client can invoke this function
to get a string which describes the general error condition, and if available additional information on the
specific error. The Client MUST allocate CPA_STATUS_MAX_STR_LENGTH_IN_BYTES bytes for the
buffer string.

Context:
This function may be called from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcinstance Handle to an instance of this API.
[in] errStatus The error condition that occurred.

[in, out] pStatusText Pointer to the string buffer that will be updated with the status text. The
invoking application MUST allocate this buffer to be exactly
CPA_STATUS_MAX_STR_LENGTH_IN_BYTES.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

CPA STATUS FAIL Function failed. Note, in this scenario it is INVALID to call this
function a second time.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:

None
Note:
None
See also:
CpaStatus

CpaStatus cpaDcSetAddressTranslation (const CpalnstanceHandle instanceHandle,
CpaVirtualToPhysical virtual2Physical

)

Set Address Translation function.

Reference Number: 330686-001 63

5.12 Function Documentation

This function is used to set the virtual to physical address translation routine for the instance. The specified
routine is used by the instance to perform any required translation of a virtual address to a physical
address. If the application does not invoke this function, then the instance will use its default method, such
as virt2phys, for address translation.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Data Compression APl instance handle.
[in] virtual2Physical Routine that performs virtual to physical address translation.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA STATUS FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:

None
See also:
None
CpaStatus cpaDcDpGetSessionSize (CpalnstanceHandle dclnstance,
CpaDcSessionSetupData ,
N pSessionData,
Cpa32U * pSessionSize

)

Get the size of the memory required to hold the data plane session information.

The client of the Data Compression API is responsible for allocating sufficient memory to hold session
information. This function provides a means for determining the size of the session information and
statistics information.

Context:
No restrictions

Assumptions:
None

Reference Number: 330686-001 64

5.12 Function Documentation

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dclnstance Instance handle.
[in] pSessionData Pointer to a user instantiated structure containing session data.
[out] pSessionSize On return, this parameter will be the size of the memory that will be required
by cpaDclnitSession() for session data.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA STATUS FAIL Function failed.
CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

Session data is expected to include interim checksum values, various counters and other other session
related data that needs to persist between invocations. For a given implementation of this AP, it is safe to
assume that cpaDcDpGetSessionSize() will always return the same session size and that the size will not
be different for different setup data parameters. However, it should be noted that the size may change: (1)
between different implementations of the API (e.g. between software and hardware implementations or
between different hardware implementations) (2) between different releases of the same API
implementation

See also:
cpaDcDplnitSession()

CpaStatus cpaDcDpRemoveSession (const CpalnstanceHandle dcinstance,
CpaDcSessionHandle pSessionHandle
)

Compression Data Plane Session Remove Function.

This function will remove a previously initialized session handle and the installed callback handler function.
Removal will fail if outstanding calls still exist for the initialized session handle. The client needs to retry the
remove function at a later time. The memory for the session handle MUST not be freed until this call has
completed successfully.

Context:

Reference Number: 330686-001 65

5.12 Function Documentation

This is a synchronous function that cannot sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcinstance Instance handle.
[in, out] pSessionHandle Session handle.

Return values:

CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA STATUS RETRY Resubmit the request.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.
CPA STATUS RESOURCE Error related to system resources.
CPA _STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
The component has been initialized via cpaDcStartinstance function.

Postcondition:

None
Note:

This is a synchronous function and has no completion callback associated with it.
See also:

cpaDcDplnitSession

Reference Number: 330686-001

66

6 Data Compression Data Plane API
[Data Compression API]

Collaboration diagram for Data Compression Data Plane API:

Data Compression API Data Compression Data Plane API

6.1 Detailed Description
File: cpa_dc_dp.h

These data structures and functions specify the Data Plane API for compression and decompression
operations.

This APl is recommended for data plane applications, in which the cost of offload - that is, the cycles
consumed by the driver in sending requests to the hardware, and processing responses - needs to be
minimized. In particular, use of this APl is recommended if the following constraints are acceptable to your
application:

e Thread safety is not guaranteed. Each software thread should have access to its own unique instance
(CpalnstanceHandle) to avoid contention.

e Polling is used, rather than interrupts (which are expensive). Implementations of this API will provide a
function (not defined as part of this API) to read responses from the hardware response queue and
dispatch callback functions, as specified on this API.

e Buffers and buffer lists are passed using physical addresses, to avoid virtual to physical address
translation costs.

e The ability to enqueue one or more requests without submitting them to the hardware allows for
certain costs to be amortized across multiple requests.

¢ Only asynchronous invocation is supported.

e There is no support for partial packets.

¢ Implementations may provide certain features as optional at build time, such as atomic counters.

e There is no support for stateful operations.

+ The "default" instance (CPA_INSTANCE_HANDLE_SINGLE) is not supported on this API.
The specific handle should be obtained using the instance discovery functions
(cpaDcGetNuminstances, cpaDcGetinstances).

6.2 Data Structures

e struct _CpaDcDpOpData

6.3 Typedefs

e typedef _CpaDcDpOpData CpaDcDpOpData
e typedef void(* CpaDcDpCallbackFn)(CpaDcDpOpData *pOpData)

6.4 Functions

e CpaStatus cpaDcDplnitSession (CpalnstanceHandle dcinstance, CpaDcSessionHandle
pSessionHandle, CpaDcSessionSetupData “pSessionData)

Reference Number: 330686-001 67

6.4 Functions

e CpaStatus cpaDcDpRegCbFunc (const CpalnstanceHandle dcinstance, const
CpaDcDpCallbackFn pNewCb)

e CpaStatus cpaDcDpEnqueueOp (CpaDcDpOpData “pOpData, const CpaBoolean performOpNow)

e CpaStatus cpaDcDpEnqueueOpBatch (const Cpa32U numberRequests, CpaDcDpOpData
*pOpData[], const CpaBoolean performOpNow)
e CpaStatus cpaDcDpPerformOpNow (CpalnstanceHandle dcinstance)

6.5 Data Structure Documentation

6.5.1 _CpaDcDpOpbData Struct Reference

Collaboration diagram for _CpaDcDpOpData:

_CpalcRgResults

+ status

+ produced
+consumed
+checksum

+ endOfLastBlock

A

results

_CpaDcDpOpData

+ reservedd

xction
Status

6.5.1.1 Detailed Description
File: cpa_dc_dp.h

Operation Data for compression data plane API.

Reference Number: 330686-001

68

6.5.1 _CpaDcDpOpData Struct Reference

This structure contains data relating to a request to perform compression processing on one or more data
buffers.

The physical memory to which this structure points should be at least 8-byte aligned.
All reserved fields SHOULD NOT be written or read by the calling code.

See also:
cpaDcDpEnqueueOp, cpaDcDpEnqueueOpBatch

6.5.1.2 Data Fields

e Cpa64U reserved0
Reserved for internal use.
e Cpa32U bufferLenToCompress
The total size of the input data in bytes.
e Cpa32U bufferLenForData
The total size of the output buffer in bytes.
e Cpa64U reserved1
Reserved for internal use.
e Cpa64U reserved2
Reserved for internal use.
e Cpa64U reserved3
Reserved for internal use.
e CpaDcRqResults results
Results of the operation.
e CpalnstanceHandle dclnstance
Instance to which the request is to be enqueued.
e CpaDcSessionHandle pSessionHandle
DC Session associated with the stream of requests.
e CpaPhysicalAddr srcBuffer
Physical address of the source buffer on which to operate.
e Cpa32U srcBufferLen
The total size of the input buffer in bytes.
e CpaPhysicalAddr destBuffer
Physical address of the destination buffer on which to operate.
e Cpa32U destBufferLen
The total size of the output buffer in bytes.
e CpaDcSessionDir sessDirection
Session direction indicating whether session is used for compression, decompression.
e CpaStatus responseStatus
Status of the operation.
e CpaPhysicalAddr thisPhys
Physical address of this data structure.
e void * pCallbackTag
Opaque data that will be returned to the client in the function completion callback.

6.5.1.3 Field Documentation
Cpa64U _CpaDcDpOpData::reserved0

Reserved for internal use.

Source code should not read or write this field.

Reference Number: 330686-001

69

6.5.1 _CpaDcDpOpData Struct Reference

Cpa32U _CpaDcDpOpData::bufferLenToCompress
The total size of the input data in bytes.

Cpa32U _CpaDcDpOpData::bufferLenForData
The total size of the output buffer in bytes.

Cpa64U _CpaDcDpOpData::reserved1
Reserved for internal use.

Source code should not read or write

Cpa64U _CpaDcDpOpData::reserved?2
Reserved for internal use.

Source code should not read or write

Cpa64U _CpaDcDpOpData::reserved3
Reserved for internal use.

Source code should not read or write

CpaDcRqResults _CpaDcDpOpData::results
Results of the operation.

Contents are valid upon completion.

CpalnstanceHandle _CpaDcDpOpData::dcinstance
Instance to which the request is to be enqueued.

CpaDcSessionHandle _CpaDcDpOpData::pSessionHandle

DC Session associated with the stream of requests.

CpaPhysicalAddr CpaDcDpOpData::srcBuffer

Physical address of the source buffer on which to operate.

This is either the location of the data, of length srcBufferLen; or, if srcBufferLen has the special value
CPA_DP_BUFLIST, then srcBuffer contains the location where a CpaPhysBufferList is stored.

Cpa32U _CpaDcDpOpData::srcBufferLen
The total size of the input buffer in bytes.

If the srcBuffer is a pointer to a buffer list then this value is set to CPA_DP_BUFLIST

CpaPhysicalAddr CpaDcDpOpData::destBuffer

Physical address of the destination buffer on which to operate.

This is either the location of the data, of length destBufferLen; or, if destBufferLen has the special value
CPA_DP_BUFLIST, then destBuffer contains the location where a CpaPhysBufferList is stored.

Cpa32U _CpaDcDpOpData::destBufferLen
The total size of the output buffer in bytes.

Reference Number: 330686-001

70

6.6 Typedef Documentation
If the destBuffer is a pointer to a buffer list then this value is set to CPA_DP_BUFLIST

CpaDcSessionDir _CpaDcDpOpData::sessDirection
Session direction indicating whether session is used for compression, decompression.

For the DP implemetnation, CPA_DC_DIR_COMBINED is not a valid selection.

CpaStatus _CpaDcDpOpData::responseStatus
Status of the operation.

Valid values are CPA_STATUS_SUCCESS and CPA_STATUS_FAIL

CpaPhysicalAddr _CpaDcDpOpData::thisPhys
Physical address of this data
structure.

void* _CpaDcDpOpData::pCallbackTag
Opaque data that will be returned to the client in the function completion callback.

This opaque data is not used by the implementation of the API, but is simply returned as part of the
asynchronous response. It may be used to store information that might be useful when processing the
response later.

6.6 Typedef Documentation

typedef struct _CpaDcDpOpData CpaDcDpOpData
File: cpa_dc_dp.h

Operation Data for compression data plane API.

This structure contains data relating to a request to perform compression processing on one or more data

buffers.
The physical memory to which this structure points should be at least 8-byte aligned.
All reserved fields SHOULD NOT be written or read by the calling code.

See also:
cpaDcDpEnqueueOp, cpaDcDpEnqueueOpBatch

typedef void(* CpaDcDpCallbackFn)(CpaDcDpOpData *pOpData)
File: cpa_dc_dp.h
Definition of callback function for compression data plane API.
This is the callback function prototype. The callback function is registered by the application using the
cpaDcDpRegCbFunc function call, and called back on completion of asycnhronous requests made via

calls to cpaDcDpEnqueueOp or cpaDcDpEnqueueOpBatch.

Context:

Reference Number: 330686-001

71

6.7 Function Documentation

This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
No

Parameters:
[in] pOpData Pointer to the CpaDcDpOpData object which was supplied as part of the original
request.

Returns:
None

Precondition:
Instance has been initialized. Callback has been registered with cpaDcDpRegCbFunc.

Postcondition:

None

Note:
None

See also:
cpaDcDpRegCbFunc

6.7 Function Documentation

CpaStatus cpaDcDplnitSession (CpalnstanceHandle dcinstance,
CpaDcSessionHandle pSessionHandle,
CpaDcSessionSetupData * pSessionData

)
File: cpa_dc_dp.h
Initialize compression or decompression data plane session.

This function is used to initialize a compression/decompression session. A single session can be used for
both compression and decompression requests. Clients MUST register a callback function for the
compression service using this function. This function returns a unique session handle each time this
function is invoked. The order of the callbacks are guaranteed to be in the same order the compression or
decompression requests were submitted for each session, so long as a single thread of execution is used
for job submission.

Context:
This function may be called from any context.

Reference Number: 330686-001 72

6.7 Function Documentation

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcinstance Instance handle derived from discovery functions.

[in, out] pSessionHandle Pointer to a session handle.
[in,out] pSessionData Pointer to a user instantiated structure containing session data.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

CPA STATUS FAIL Function failed.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.

CPA STATUS RESOURCE Error related to system resources.

CPA _STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
dclnstance has been started using cpaDcStartinstance.

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

This initializes opaque data structures in the session handle. Data compressed under this session will be
compressed to the level specified in the pSessionData structure. Lower compression level numbers indicate
a request for faster compression at the expense of compression ratio. Higher compression level numbers
indicate a request for higher compression ratios at the expense of execution time.

The session is opaque to the user application and the session handle contains job specific data.

The window size specified in the pSessionData must match exactly one of the supported window sizes
specified in the capability structure. If a bi-directional session is being initialized, then the window size must
be valid for both compress and decompress.

Note stateful sessions are not supported by this API.

See also:
None

const

CpaStatus cpaDcDpRegCbFunc (CpalnstanceHandle CELEEES

pNewCb

Reference Number: 330686-001 73

6.7 Function Documentation

const
CpaDcDpCallbackFn

)
File: cpa_dc_dp.h
Registration of the operation completion callback function.

This function allows a completion callback function to be registered. The registered callback function is
invoked on completion of asycnhronous requests made via calls to cpaDecDpEnqueueOp or
cpaDcDpEnqueueOpBatch.

Context:
This is a synchronous function and it cannot sleep. It can be executed in a context that DOES NOT
permit sleeping.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
No

Parameters:
[in] dcInstance Instance on which the callback function is to be registered.

[in] pNewCb Callback function for this instance.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

CPA STATUS FAIL Function failed.

CPA _STATUS _INVALID_PARAM Invalid parameter passed in.

CPA STATUS RESOURCE Error related to system resources.

CPA _STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
Instance has been initialized.

Postcondition:

None

Note:
None

See also:
cpaDcDpCbFunc

CpaStatus cpaDcDpEnqueueOp (CpaDcDpOpData * pOpData,
const CpaBoolean performOpNow

)

Reference Number: 330686-001 74

6.7 Function Documentation

File: cpa_dp_dp.h
Enqueue a single compression or decompression request.
This function enqueues a single request to perform a compression, decompression operation.

The function is asynchronous; control is returned to the user once the request has been submitted. On
completion of the request, the application may poll for responses, which will cause a callback function
(registered via cpaDcDpRegCbFunc) to be invoked. Callbacks within a session are guaranteed to be in the
same order in which they were submitted.

The following restrictions apply to the pOpData parameter:

e The memory MUST be aligned on an 8-byte boundary.
¢ The reserved fields of the structure MUST NOT be written to or read from.
¢ The structure MUST reside in physically contiguous memory.

Context:
This function will not sleep, and hence can be executed in a context that does not permit sleeping.

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
No

Parameters:

[in] pOpData Pointer to a structure containing the request parameters. The client code
allocates the memory for this structure. This component takes ownership of
the memory until it is returned in the callback, which was registered on the
instance via cpaDcDpRegCbFunc. See the above Description for some
restrictions that apply to this parameter.

[in] performOpNow Flag to indicate whether the operation should be performed immediately
(CPA_TRUE), or simply enqueued to be performed later (CPA_FALSE). In
the latter case, the request is submitted to be performed either by calling
this function again with this flag set to CPA_TRUE, or by invoking the
function cpaDcDpPerformOpNow.

Return values:

CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA STATUS RETRY Resubmit the request.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
The session identified by pOpData->pSessionHandle was setup using cpaDcDplnitSession. The
instance identified by pOpData->dclinstance has had a callback function registered via
cpaDcDpRegCbFunc.

Reference Number: 330686-001 75

6.7 Function Documentation

Postcondition:

None
Note:
A callback of type CpaDcDpCallbackFn is generated in response to this function call. Any errors
generated during processing are reported as part of the callback status code.
See also:
cpaDcDpPerformOpNow
CpaStatus cpaDcDpEnqueueOpBatch (const Cpa32U numberRequests,

CpaDcDpOpData * pOpDatd[],
const CpaBoolean performOpNow

)
File: cpa_dc_dp.h
Enqueue multiple requests to the compression data plane API.
This function enqueues multiple requests to perform compression or decompression operations.

The function is asynchronous; control is returned to the user once the request has been submitted. On
completion of the request, the application may poll for responses, which will cause a callback function
(registered via cpaDcDpRegCbFunc) to be invoked. Separate callbacks will be invoked for each request.
Callbacks within a session and at the same priority are guaranteed to be in the same order in which they
were submitted.

The following restrictions apply to each element of the pOpData array:

e The memory MUST be aligned on an 8-byte boundary.
¢ The reserved fields of the structure MUST be set to zero.
¢ The structure MUST reside in physically contiguous memory.

Context:
This function will not sleep, and hence can be executed in a context that does not permit sleeping.

Assumptions:
Client MUST allocate the request parameters to 8 byte alignment. Reserved elements of the
CpaDcDpOpData structure MUST not used The CpaDcDpOpData structure MUST reside in
physically contiguous memory.

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
No

Parameters:
[in] numberRequests The number of requests in the array of CpaDcDpOpData structures.

[in] pOpData

Reference Number: 330686-001 76

6.7 Function Documentation

An array of pointers to CpaDcDpOpData structures. Each
CpaDcDpOpData structure contains the request parameters for that
request. The client code allocates the memory for this structure. This
component takes ownership of the memory until it is returned in the
callback, which was registered on the instance via cpaDcDpRegCbFunc.
See the above Description for some restrictions that apply to this
parameter.

[in] performOpNow Flag to indicate whether the operation should be performed immediately
(CPA_TRUE), or simply enqueued to be performed later (CPA_FALSE).
In the latter case, the request is submitted to be performed either by
calling this function again with this flag set to CPA_TRUE, or by invoking
the function cpaDcDpPerformOpNow.

Return values:

CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA STATUS RETRY Resubmit the request.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
The session identified by pOpData[i]->pSessionHandle was setup using cpaDcDplnitSession. The
instance identified by pOpData[i]->dcInstance has had a callback function registered via
cpaDcDpRegCbFunc.

Postcondition:
None

Note:
Multiple callbacks of type CpaDcDpCallbackFn are generated in response to this function call (one
per request). Any errors generated during processing are reported as part of the callback status
code.

See also:
cpaDcDpEnqueueOp

CpaStatus cpaDcDpPerformOpNow (CpalnstanceHandle dcinstance)
File: cpa_dp_dp.h
Submit any previously enqueued requests to be performed now on the compression data plane API.

This function triggers processing of previously enqueed requests on the referenced instance.

Context:
Will not sleep. It can be executed in a context that does not permit sleeping.

Side-Effects:
None

Blocking:
No

Reentrant:
No

Reference Number: 330686-001 77

6.7 Function Documentation

Thread-safe:
No

Parameters:
[in] dcInstance Instance to which the requests will be submitted.

Return values:

CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA STATUS RETRY Resubmit the request.

CPA _STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS RESTARTING APl implementation is restarting. Resubmit the request.

Precondition:
The component has been initialized via cpaDcStartinstance function. A compression session has
been previously setup using the cpaDcDplnitSession function call.

Postcondition:
None

See also:
cpaDcDpEnqueueOp, cpaDcDpEnqueueOpBatch

Reference Number: 330686-001 78

	Table of Contents
	1 Deprecated List
	2 CPA API
	2.1 Detailed Description
	2.2 Modules

	3 Base Data Types [CPA API]
	3.1 Detailed Description
	3.2 Data Structures
	3.3 Defines
	3.4 Typedefs
	3.5 Enumerations
	3.6 Data Structure Documentation
	3.6.1 _CpaFlatBuffer Struct Reference
	3.6.2 _CpaBufferList Struct Reference
	3.6.3 _CpaPhysFlatBuffer Struct Reference
	3.6.4 _CpaPhysBufferList Struct Reference
	3.6.5 _CpaInstanceInfo Struct Reference
	3.6.6 _CpaPhysicalInstanceId Struct Reference
	3.6.7 _CpaInstanceInfo2 Struct Reference

	3.7 Define Documentation
	3.8 Typedef Documentation
	3.9 Enumeration Type Documentation

	4 CPA Type Definition [CPA API]
	4.1 Detailed Description
	4.2 Defines
	4.3 Typedefs
	4.4 Enumerations
	4.5 Define Documentation
	4.6 Typedef Documentation
	4.7 Enumeration Type Documentation

	5 Data Compression API [CPA API]
	5.1 Detailed Description
	5.2 Modules
	5.3 Data Structures
	5.4 Defines
	5.5 Typedefs
	5.6 Enumerations
	5.7 Functions
	5.8 Data Structure Documentation
	5.8.1 _CpaDcInstanceCapabilities Struct Reference
	5.8.2 _CpaDcSessionSetupData Struct Reference
	5.8.3 _CpaDcStats Struct Reference
	5.8.4 _CpaDcRqResults Struct Reference

	5.9 Define Documentation
	5.10 Typedef Documentation
	5.11 Enumeration Type Documentation
	5.12 Function Documentation

	6 Data Compression Data Plane API [Data Compression API]
	6.1 Detailed Description
	6.2 Data Structures
	6.3 Typedefs
	6.4 Functions
	6.5 Data Structure Documentation
	6.5.1 _CpaDcDpOpData Struct Reference

	6.6 Typedef Documentation
	6.7 Function Documentation

