
Intel® QuickAssist Technology Compression API
Reference

Automatically generated from sources, June 11, 2014.

Based on API version 1.3

(See Release Notes to map API version to software package version.)

Reference Number: 330686-001

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below. You
may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly,
in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION
CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS'
FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR
NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF
THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may
be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Any software source code reprinted in this document is furnished for informational purposes only and may only be
used or copied and no license, express or implied, by estoppel or otherwise, to any of the reprinted source code is
granted by this document.

This document contains information on products in the design phase of development.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number/.

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (â��productsâ��) in
development by Intel that have not been made commercially available to the public, i.e., announced, launched or
shipped. They are never to be used as â��commercialâ�� names for products. Also, they are not intended to function
as trademarks.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2014. All Rights Reserved.

Reference Number: 330686-001

Revision History
Date Revision Description

June 2014 001
First �public� version of the document. Based on �Intel Confidential�
document number 410926-1.3 with the revision history of that document
retained for reference purposes.

February
2013 1.3

· Supports supplying multiple intermediate buffer lists when starting a
compression instance. Also provides a utility function to determine the
number of intermediate buffer lists required by an implementation.

· API extensions to support endOfLastBlock detection within a deflate
stream.

January 2013 1.2

Resolves the following work requests:

· TECG00000185: Changing use of flush flags for stateless
compression. Adding support for passing an initial checksum into a
stateless compression request. Adding a constraint that
cpaDcGenerateFooter() is not supported for stateless operations.

November
2012 1.1

Resolves the following work requests:

· TECG00000189: Add a unique instance identifier to
CpaInstanceInfo2

· TECG00000193: Enhanced auto select best

October 2012 1.0

Resolves the following work requests:

· TECG00000186: Add instance notification support for
RESTARTING & RESTARTED events and CPA_STATUS_RESTARTING
return codes.

June 2012 0.93

Resolved review comments against previous version which resulted in
minor updates to the API comments.

Resolved the following work requests:

· TECG00000179: Adding version number to compression API

May 2012 0.92

Resolved the following work requests:

· TECG00000172: Remove references to cpaDcSessionCreate in
cpa_dc.h

· TECG00000170: cpaCySymDpSessionCtxGetSize() returns a fixed
value

· TECG00000173 and TECG00000174 updates/cleanup of api
comments

· TECG00000174: Updated checksum processing rules.
March 2012 0.92RC6 Added -12 and -13 error codes

March 2012 0.92RC7

Resolved the following work requests:

· TECG00000166: Added ability to query bus address information for
a CpaInstance.

November
2011 0.92RC5 Added internal memory store to capabilities reporting

September
2011 0.92RC4 Addressed review comments

July 2011 0.92RC3 Completed data plane API

· Moved results structure to 1st 64 byte section

· Added buffer sizes for use by driver
May 2011 0.92RC2 Addressed comments in data plane API
March 2011 0.92RC1 Added data plane API
October 2010 0.91RC2 Minor typo fixes

September
2010 0.91RC1

Based on feedback, incorporated the following:

· Converted statistics counters to 64 bit

· Improved the results structure

· Updated memory configuration for consistency with other services

March 2010 0.9RC5

Based on review and feedback, incorporated the following:

Added a results structure to the compress and decompress
interfaces, and to the callback API

•

added enums to define the potential failures of the accelerators•
Intermediate buffer is now a buffer list.•

January 2010 0.9RC4-2 Added size of context field to cpaDcGetSessionSize

December
2009 0.90RC4

Based on feedback, incorporated the following:

Separated checksum algorithms in capabilities•
Added return code CPA_DC_BAD_DATA return code•
Bundled return information to include bytes consumed, bytes
produced and checksum

•

Clean up of some documentation•

Sept 21 2009 0.90RC3

Updated as a result of review, incorporate the following changes;

Compression window capabilities now split for compress and
decompress.

•

Update statistic to be more consistent with other APIs.•
Added pHistoryBuffer to support state-full deflate.•
Removed reference to having different instances able to process
the same session.

•

July 2009 0.90RC2

Added distinction in capabilities for stateful and stateless, compression
and decompression

Replaced cpaPmGetInstanceInfo with cpaPmGetInstanceInfo2 that gets a
new info structure, CpaInstanceInfo2, which supersedes the previous
version. Additional info includes physical id, core affinity, and NUMA
relevant node.

June 2009 0.90RC1

Added capabilities

Add distinction between stateful and stateless.

Updated with cpaDcGet/SetMemoryConfiguration

Changed from buffer lists to u32 pointers for responses.
February
2009

0.74
Addition of response Arguments - APIs can use source and
destination buffers in an easier fashion

1.

Change from flat buffers to buffer lists to align with QA
conventions

2.

Major re-write of description of buffer rules3.
Addition of dynamic Huffman trees4.
Removal of file based functions. It was deemed that this
functionality could be built using other buffer based APIs

5.

Clean up of session parameters and various typos6.

December
2008 0.73 First released version of this document with new generation process.

Table of Contents
1 Deprecated List...1

2 CPA API...2
2.1 Detailed Description..2
2.2 Modules..2

3 Base Data Types [CPA API]..3
3.1 Detailed Description..3
3.2 Data Structures...3
3.3 Defines..3
3.4 Typedefs...4
3.5 Enumerations..4
3.6 Data Structure Documentation...5

3.6.1 _CpaFlatBuffer Struct Reference..5
3.6.2 _CpaBufferList Struct Reference..6
3.6.3 _CpaPhysFlatBuffer Struct Reference..7
3.6.4 _CpaPhysBufferList Struct Reference..8
3.6.5 _CpaInstanceInfo Struct Reference..9
3.6.6 _CpaPhysicalInstanceId Struct Reference..10
3.6.7 _CpaInstanceInfo2 Struct Reference..11

3.7 Define Documentation..13
3.8 Typedef Documentation..15
3.9 Enumeration Type Documentation...19

4 CPA Type Definition [CPA API]..22
4.1 Detailed Description..22
4.2 Defines..22
4.3 Typedefs...22
4.4 Enumerations..22
4.5 Define Documentation..23
4.6 Typedef Documentation..24
4.7 Enumeration Type Documentation...25

5 Data Compression API [CPA API]..26
5.1 Detailed Description..26
5.2 Modules..26
5.3 Data Structures...26
5.4 Defines..26
5.5 Typedefs...26
5.6 Enumerations..27
5.7 Functions..29
5.8 Data Structure Documentation...30

5.8.1 _CpaDcInstanceCapabilities Struct Reference...30
5.8.2 _CpaDcSessionSetupData Struct Reference...33
5.8.3 _CpaDcStats Struct Reference...34
5.8.4 _CpaDcRqResults Struct Reference...35

5.9 Define Documentation..36
5.10 Typedef Documentation..36
5.11 Enumeration Type Documentation...40
5.12 Function Documentation...43

6 Data Compression Data Plane API [Data Compression API]..67
6.1 Detailed Description..67
6.2 Data Structures...67
6.3 Typedefs...67

Reference Number: 330686-001 i

Table of Contents
6 Data Compression Data Plane API [Data Compression API]

6.4 Functions..67
6.5 Data Structure Documentation...68

6.5.1 _CpaDcDpOpData Struct Reference..68
6.6 Typedef Documentation..71
6.7 Function Documentation...72

Reference Number: 330686-001 ii

1 Deprecated List

Class _CpaInstanceInfo
As of v1.3 of the Crypto API, this structure has been deprecated, replaced by CpaInstanceInfo2.

Global CPA_DEPRECATED
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by
CpaAccelerationServiceType.

Global CPA_DEPRECATED
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by CpaOperationalState.

Reference Number: 330686-001 1

2 CPA API

Collaboration diagram for CPA API:

2.1 Detailed Description

File: cpa.h

This is the top level API definition for Intel(R) QuickAssist Technology. It contains structures, data types and
definitions that are common across the interface.

2.2 Modules

Base Data Types•
CPA Type Definition•
Data Compression API•

Reference Number: 330686-001 2

3 Base Data Types
 [CPA API]

Collaboration diagram for Base Data Types:

3.1 Detailed Description

File: cpa.h

The base data types for the Intel CPA API.

3.2 Data Structures

struct _CpaFlatBuffer•
struct _CpaBufferList•
struct _CpaPhysFlatBuffer•
struct _CpaPhysBufferList•
struct _CpaInstanceInfo•
struct _CpaPhysicalInstanceId•
struct _CpaInstanceInfo2•

3.3 Defines

#define CPA_INSTANCE_HANDLE_SINGLE•
#define CPA_DP_BUFLIST•
#define CPA_STATUS_SUCCESS

Success status value.
•

#define CPA_STATUS_FAIL
Fail status value.

•

#define CPA_STATUS_RETRY
Retry status value.

•

#define CPA_STATUS_RESOURCE
The resource that has been requested is unavailable.

•

#define CPA_STATUS_INVALID_PARAM
Invalid parameter has been passed in.

•

#define CPA_STATUS_FATAL
A serious error has occurred.

•

#define CPA_STATUS_UNSUPPORTED
The function is not supported, at least not with the specific parameters supplied.

•

#define CPA_STATUS_RESTARTING
The API implementation is restarting.

•

#define CPA_STATUS_MAX_STR_LENGTH_IN_BYTES
Maximum length of the Overall Status String (including generic and specific strings returned
by calls to cpaXxGetStatusText).

•

#define CPA_STATUS_STR_SUCCESS
Status string for CPA_STATUS_SUCCESS.

•

#define CPA_STATUS_STR_FAIL•

Reference Number: 330686-001 3

Status string for CPA_STATUS_FAIL.
#define CPA_STATUS_STR_RETRY

Status string for CPA_STATUS_RETRY.
•

#define CPA_STATUS_STR_RESOURCE
Status string for CPA_STATUS_RESOURCE.

•

#define CPA_STATUS_STR_INVALID_PARAM
Status string for CPA_STATUS_INVALID_PARAM.

•

#define CPA_STATUS_STR_FATAL
Status string for CPA_STATUS_FATAL.

•

#define CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES
Maximum instance info name string length in bytes.

•

#define CPA_INSTANCE_MAX_ID_SIZE_IN_BYTES
Maximum instance info id string length in bytes.

•

#define CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES
Maximum instance info version string length in bytes.

•

3.4 Typedefs

typedef void * CpaInstanceHandle•
typedef Cpa64U CpaPhysicalAddr•
typedef CpaPhysicalAddr(* CpaVirtualToPhysical)(void *pVirtualAddr)•
typedef _CpaFlatBuffer CpaFlatBuffer•
typedef _CpaBufferList CpaBufferList•
typedef _CpaPhysFlatBuffer CpaPhysFlatBuffer•
typedef _CpaPhysBufferList CpaPhysBufferList•
typedef Cpa32S CpaStatus•
typedef enum _CpaInstanceType CPA_DEPRECATED•
typedef enum _CpaAccelerationServiceType CpaAccelerationServiceType•
typedef enum _CpaInstanceState CPA_DEPRECATED•
typedef enum _CpaOperationalState CpaOperationalState•
typedef _CpaInstanceInfo CPA_DEPRECATED•
typedef _CpaPhysicalInstanceId CpaPhysicalInstanceId•
typedef _CpaInstanceInfo2 CpaInstanceInfo2•
typedef enum _CpaInstanceEvent CpaInstanceEvent•

3.5 Enumerations

enum _CpaInstanceType {
CPA_INSTANCE_TYPE_CRYPTO,
CPA_INSTANCE_TYPE_DATA_COMPRESSION,
CPA_INSTANCE_TYPE_RAID,
CPA_INSTANCE_TYPE_XML,
CPA_INSTANCE_TYPE_REGEX
}

•

enum _CpaAccelerationServiceType {
CPA_ACC_SVC_TYPE_CRYPTO,
CPA_ACC_SVC_TYPE_DATA_COMPRESSION,
CPA_ACC_SVC_TYPE_PATTERN_MATCH,
CPA_ACC_SVC_TYPE_RAID,
CPA_ACC_SVC_TYPE_XML,
CPA_ACC_SVC_TYPE_VIDEO_ANALYTICS
}

•

enum _CpaInstanceState {
CPA_INSTANCE_STATE_INITIALISED,
CPA_INSTANCE_STATE_SHUTDOWN

•

3.3 Defines

Reference Number: 330686-001 4

}
enum _CpaOperationalState {
CPA_OPER_STATE_DOWN,
CPA_OPER_STATE_UP
}

•

enum _CpaInstanceEvent {
CPA_INSTANCE_EVENT_RESTARTING,
CPA_INSTANCE_EVENT_RESTARTED
}

•

3.6 Data Structure Documentation

3.6.1 _CpaFlatBuffer Struct Reference

3.6.1.1 Detailed Description

File: cpa.h

Flat buffer structure containing a pointer and length member.

A flat buffer structure. The data pointer, pData, is a virtual address. An API instance may require the actual
data to be in contiguous physical memory as determined by CpaInstanceInfo2.

3.6.1.2 Data Fields

Cpa32U dataLenInBytes
Data length specified in bytes.

•

Cpa8U * pData
The data pointer is a virtual address, however the actual data pointed to is required to be in
contiguous physical memory unless the field requiresPhysicallyContiguousMemory in
CpaInstanceInfo2 is false.

•

3.6.1.3 Field Documentation

Cpa32U _CpaFlatBuffer::dataLenInBytes
Data length specified in bytes.

When used as an input parameter to a function, the length specifies the current length of the buffer. When
used as an output parameter to a function, the length passed in specifies the maximum length of the buffer
on return (i.e. the allocated length). The implementation will not write past this length. On return, the length
is always unchanged.

Cpa8U* _CpaFlatBuffer::pData
The data pointer is a virtual address, however the actual data pointed to is required to be in contiguous
physical memory unless the field requiresPhysicallyContiguousMemory in CpaInstanceInfo2 is false.

3.5 Enumerations

Reference Number: 330686-001 5

3.6.2 _CpaBufferList Struct Reference

Collaboration diagram for _CpaBufferList:

3.6.2.1 Detailed Description

File: cpa.h

Scatter/Gather buffer list containing an array of flat buffers.

A scatter/gather buffer list structure. This buffer structure is typically used to represent a region of memory
which is not physically contiguous, by describing it as a collection of buffers, each of which is physically
contiguous.

Note:
The memory for the pPrivateMetaData member must be allocated by the client as physically
contiguous memory. When allocating memory for pPrivateMetaData, a call to the corresponding
BufferListGetMetaSize function (e.g. cpaCyBufferListGetMetaSize) MUST be made to determine the
size of the Meta Data Buffer. The returned size (in bytes) may then be passed in a memory allocation
routine to allocate the pPrivateMetaData memory.

3.6.2.2 Data Fields

Cpa32U numBuffers
Number of buffers in the list.

•

CpaFlatBuffer * pBuffers
Pointer to an unbounded array containing the number of CpaFlatBuffers defined by
numBuffers.

•

void * pUserData
This is an opaque field that is not read or modified internally.

•

void * pPrivateMetaData
Private representation of this buffer list.

•

3.6.1 _CpaFlatBuffer Struct Reference

Reference Number: 330686-001 6

3.6.2.3 Field Documentation

Cpa32U _CpaBufferList::numBuffers
Number of buffers in the list.

CpaFlatBuffer* _CpaBufferList::pBuffers
Pointer to an unbounded array containing the number of CpaFlatBuffers defined by numBuffers.

void* _CpaBufferList::pUserData
This is an opaque field that is not read or modified internally.

void* _CpaBufferList::pPrivateMetaData
Private representation of this buffer list.

The memory for this buffer needs to be allocated by the client as contiguous data. The amount of memory
required is returned with a call to the corresponding BufferListGetMetaSize function. If that function returns
a size of zero then no memory needs to be allocated, and this parameter can be NULL.

3.6.3 _CpaPhysFlatBuffer Struct Reference

3.6.3.1 Detailed Description

File: cpa.h

Flat buffer structure with physical address.

Functions taking this structure do not need to do any virtual to physical address translation before writing the
buffer to hardware.

3.6.3.2 Data Fields

Cpa32U dataLenInBytes
Data length specified in bytes.

•

Cpa32U reserved
Reserved for alignment.

•

CpaPhysicalAddr bufferPhysAddr
The physical address at which the data resides.

•

3.6.3.3 Field Documentation

Cpa32U _CpaPhysFlatBuffer::dataLenInBytes
Data length specified in bytes.

When used as an input parameter to a function, the length specifies the current length of the buffer. When
used as an output parameter to a function, the length passed in specifies the maximum length of the buffer
on return (i.e. the allocated length). The implementation will not write past this length. On return, the length
is always unchanged.

Cpa32U _CpaPhysFlatBuffer::reserved
Reserved for alignment.

3.6.2 _CpaBufferList Struct Reference

Reference Number: 330686-001 7

CpaPhysicalAddr _CpaPhysFlatBuffer::bufferPhysAddr
The physical address at which the data resides.

The data pointed to is required to be in contiguous physical memory.

3.6.4 _CpaPhysBufferList Struct Reference

Collaboration diagram for _CpaPhysBufferList:

3.6.4.1 Detailed Description

File: cpa.h

Scatter/gather list containing an array of flat buffers with physical addresses.

Similar to CpaBufferList, this buffer structure is typically used to represent a region of memory which is not
physically contiguous, by describing it as a collection of buffers, each of which is physically contiguous. The
difference is that, in this case, the individual "flat" buffers are represented using physical, rather than virtual,
addresses.

3.6.4.2 Data Fields

Cpa64U reserved0
Reserved for internal usage.

•

Cpa32U numBuffers
Number of buffers in the list.

•

Cpa32U reserved1
Reserved for alignment.

•

CpaPhysFlatBuffer flatBuffers []
Array of flat buffer structures, of size numBuffers.

•

3.6.3 _CpaPhysFlatBuffer Struct Reference

Reference Number: 330686-001 8

3.6.4.3 Field Documentation

Cpa64U _CpaPhysBufferList::reserved0
Reserved for internal usage.

Cpa32U _CpaPhysBufferList::numBuffers
Number of buffers in the list.

Cpa32U _CpaPhysBufferList::reserved1
Reserved for alignment.

CpaPhysFlatBuffer _CpaPhysBufferList::flatBuffers[]
Array of flat buffer structures, of size numBuffers.

3.6.5 _CpaInstanceInfo Struct Reference

3.6.5.1 Detailed Description

File: cpa.h

Instance Info Structure

Deprecated:
As of v1.3 of the Crypto API, this structure has been deprecated, replaced by CpaInstanceInfo2.

Structure that contains the information to describe the instance.

3.6.5.2 Data Fields

enum _CpaInstanceType type
Type definition for this instance.

•

enum _CpaInstanceState state
Operational state of the instance.

•

Cpa8U name [CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES]
Simple text string identifier for the instance.

•

Cpa8U version [CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES]
Version string.

•

3.6.5.3 Field Documentation

enum _CpaInstanceType _CpaInstanceInfo::type
Type definition for this instance.

enum _CpaInstanceState _CpaInstanceInfo::state
Operational state of the instance.

Cpa8U _CpaInstanceInfo::name[CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES]
Simple text string identifier for the instance.

Cpa8U _CpaInstanceInfo::version[CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES]

3.6.4 _CpaPhysBufferList Struct Reference

Reference Number: 330686-001 9

Version string.

There may be multiple versions of the same type of instance accessible through a particular library.

3.6.6 _CpaPhysicalInstanceId Struct Reference

3.6.6.1 Detailed Description

File: cpa.h

Physical Instance ID

Identifies the physical instance of an accelerator execution engine.

Accelerators grouped into "packages". Each accelerator can in turn contain one or more execution engines.
Implementations of this API will define the packageId, acceleratorId, executionEngineId and busAddress as
appropriate for the implementation. For example, for hardware-based accelerators, the packageId might
identify the chip, which might contain multiple accelerators, each of which might contain multiple execution
engines. The combination of packageId, acceleratorId and executionEngineId uniquely identifies the instance.

Hardware based accelerators implementing this API may also provide information on the location of the
accelerator in the busAddress field. This field will be defined as appropriate for the implementation. For
example, for PCIe attached accelerators, the busAddress may contain the PCIe bus, device and function
number of the accelerators.

3.6.6.2 Data Fields

Cpa16U packageId
Identifies the package within which the accelerator is contained.

•

Cpa16U acceleratorId
Identifies the specific accelerator within the package.

•

Cpa16U executionEngineId
Identifies the specific execution engine within the accelerator.

•

Cpa16U busAddress
Identifies the bus address associated with the accelerator execution engine.

•

3.6.6.3 Field Documentation

Cpa16U _CpaPhysicalInstanceId::packageId
Identifies the package within which the accelerator is contained.

Cpa16U _CpaPhysicalInstanceId::acceleratorId
Identifies the specific accelerator within the package.

Cpa16U _CpaPhysicalInstanceId::executionEngineId
Identifies the specific execution engine within the accelerator.

Cpa16U _CpaPhysicalInstanceId::busAddress
Identifies the bus address associated with the accelerator execution engine.

3.6.5 _CpaInstanceInfo Struct Reference

Reference Number: 330686-001 10

3.6.7 _CpaInstanceInfo2 Struct Reference

Collaboration diagram for _CpaInstanceInfo2:

3.6.7.1 Detailed Description

File: cpa.h

Instance Info Structure, version 2

Structure that contains the information to describe the instance.

3.6.7.2 Public Member Functions

CPA_BITMAP (coreAffinity, CPA_MAX_CORES)
A bitmap identifying the core or cores to which the instance is affinitized in an SMP operating
system.

•

3.6.7.3 Data Fields

CpaAccelerationServiceType accelerationServiceType
Type of service provided by this instance.

•

Cpa8U vendorName [CPA_INST_VENDOR_NAME_SIZE]
String identifying the vendor of the accelerator.

•

Cpa8U partName [CPA_INST_PART_NAME_SIZE]
String identifying the part (name and/or number).

•

3.6.6 _CpaPhysicalInstanceId Struct Reference

Reference Number: 330686-001 11

Cpa8U swVersion [CPA_INST_SW_VERSION_SIZE]
String identifying the version of the software associated with the instance.

•

Cpa8U instName [CPA_INST_NAME_SIZE]
String identifying the name of the instance.

•

Cpa8U instID [CPA_INST_ID_SIZE]
String containing a unique identifier for the instance.

•

CpaPhysicalInstanceId physInstId
Identifies the "physical instance" of the accelerator.

•

Cpa32U nodeAffinity
Identifies the processor complex, or node, to which the accelerator is physically connected, to
help identify locality in NUMA systems.

•

CpaOperationalState operState
Operational state of the instance.

•

CpaBoolean requiresPhysicallyContiguousMemory
Specifies whether the data pointed to by flat buffers (CpaFlatBuffer::pData) supplied to this
instance must be in physically contiguous memory.

•

CpaBoolean isPolled
Specifies whether the instance must be polled, or is event driven.

•

CpaBoolean isOffloaded
Identifies whether the instance uses hardware offload, or is a software-only implementation.

•

3.6.7.4 Member Function Documentation

_CpaInstanceInfo2::CPA_BITMAP(coreAffinity ,
CPA_MAX_CORES

)
A bitmap identifying the core or cores to which the instance is affinitized in an SMP operating system.

The term core here is used to mean a "logical" core - for example, in a dual-processor, quad-core system
with hyperthreading (two threads per core), there would be 16 such cores (2 processors x 4
cores/processor x 2 threads/core). The numbering of these cores and the corresponding bit positions is
OS-specific. Note that Linux refers to this as "processor affinity" or "CPU affinity", and refers to the bitmap
as a "cpumask".

The term "affinity" is used to mean that this is the core on which the callback function will be invoked when
using the asynchronous mode of the API. In a hardware-based implementation of the API, this might be the
core to which the interrupt is affinitized. In a software-based implementation, this might be the core to which
the process running the algorithm is affinitized. Where there is no affinity, the bitmap can be set to all
zeroes.

This bitmap should be manipulated using the macros CPA_BITMAP_BIT_SET,
CPA_BITMAP_BIT_CLEAR and CPA_BITMAP_BIT_TEST.

3.6.7.5 Field Documentation

CpaAccelerationServiceType _CpaInstanceInfo2::accelerationServiceType
Type of service provided by this instance.

Cpa8U _CpaInstanceInfo2::vendorName[CPA_INST_VENDOR_NAME_SIZE]
String identifying the vendor of the accelerator.

Cpa8U _CpaInstanceInfo2::partName[CPA_INST_PART_NAME_SIZE]
String identifying the part (name and/or number).

3.6.7 _CpaInstanceInfo2 Struct Reference

Reference Number: 330686-001 12

Cpa8U _CpaInstanceInfo2::swVersion[CPA_INST_SW_VERSION_SIZE]
String identifying the version of the software associated with the instance.

For hardware-based implementations of the API, this should be the driver version. For software-based
implementations of the API, this should be the version of the library.

Note that this should NOT be used to store the version of the API, nor should it be used to report the
hardware revision (which can be captured as part of the partName, if required).

Cpa8U _CpaInstanceInfo2::instName[CPA_INST_NAME_SIZE]
String identifying the name of the instance.

Cpa8U _CpaInstanceInfo2::instID[CPA_INST_ID_SIZE]
String containing a unique identifier for the instance.

CpaPhysicalInstanceId _CpaInstanceInfo2::physInstId
Identifies the "physical instance" of the accelerator.

Cpa32U _CpaInstanceInfo2::nodeAffinity
Identifies the processor complex, or node, to which the accelerator is physically connected, to help identify
locality in NUMA systems.

The values taken by this attribute will typically be in the range 0..n-1, where n is the number of nodes
(processor complexes) in the system. For example, in a dual-processor configuration, n=2. The precise
values and their interpretation are OS-specific.

CpaOperationalState _CpaInstanceInfo2::operState
Operational state of the instance.

CpaBoolean _CpaInstanceInfo2::requiresPhysicallyContiguousMemory
Specifies whether the data pointed to by flat buffers (CpaFlatBuffer::pData) supplied to this instance must
be in physically contiguous memory.

CpaBoolean _CpaInstanceInfo2::isPolled
Specifies whether the instance must be polled, or is event driven.

For hardware accelerators, the alternative to polling would be interrupts.

CpaBoolean _CpaInstanceInfo2::isOffloaded
Identifies whether the instance uses hardware offload, or is a software-only implementation.

3.7 Define Documentation

#define CPA_INSTANCE_HANDLE_SINGLE

File: cpa.h

Default instantiation handle value where there is only a single instance

Used as an instance handle value where only one instance exists.

3.7 Define Documentation

Reference Number: 330686-001 13

#define CPA_DP_BUFLIST

File: cpa.h

Special value which can be taken by length fields on some of the "data plane" APIs to indicate that the
buffer in question is of type CpaPhysBufferList, rather than simply an array of bytes.

#define CPA_STATUS_SUCCESS
Success status value.

#define CPA_STATUS_FAIL
Fail status value.

#define CPA_STATUS_RETRY
Retry status value.

#define CPA_STATUS_RESOURCE
The resource that has been requested is unavailable.

Refer to relevant sections of the API for specifics on what the suggested course of action is.

#define CPA_STATUS_INVALID_PARAM
Invalid parameter has been passed in.

#define CPA_STATUS_FATAL
A serious error has occurred.

Recommended course of action is to shutdown and restart the component.

#define CPA_STATUS_UNSUPPORTED
The function is not supported, at least not with the specific parameters supplied.

This may be because a particular capability is not supported by the current implementation.

#define CPA_STATUS_RESTARTING
The API implementation is restarting.

This may be reported if, for example, a hardware implementation is undergoing a reset. Recommended
course of action is to retry the request.

#define CPA_STATUS_MAX_STR_LENGTH_IN_BYTES
Maximum length of the Overall Status String (including generic and specific strings returned by calls to
cpaXxGetStatusText).

File: cpa.h

API status string type definition

This type definition is used for the generic status text strings provided by cpaXxGetStatusText API
functions. Common values are defined, for example see CPA_STATUS_STR_SUCCESS,
CPA_STATUS_FAIL, etc., as well as the maximum size CPA_STATUS_MAX_STR_LENGTH_IN_BYTES.

3.7 Define Documentation

Reference Number: 330686-001 14

#define CPA_STATUS_STR_SUCCESS
Status string for CPA_STATUS_SUCCESS.

#define CPA_STATUS_STR_FAIL
Status string for CPA_STATUS_FAIL.

#define CPA_STATUS_STR_RETRY
Status string for CPA_STATUS_RETRY.

#define CPA_STATUS_STR_RESOURCE
Status string for CPA_STATUS_RESOURCE.

#define CPA_STATUS_STR_INVALID_PARAM
Status string for CPA_STATUS_INVALID_PARAM.

#define CPA_STATUS_STR_FATAL
Status string for CPA_STATUS_FATAL.

#define CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES
Maximum instance info name string length in bytes.

#define CPA_INSTANCE_MAX_ID_SIZE_IN_BYTES
Maximum instance info id string length in bytes.

#define CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES
Maximum instance info version string length in bytes.

3.8 Typedef Documentation

typedef void* CpaInstanceHandle

File: cpa.h

Instance handle type.

Handle used to uniquely identify an instance.

Note:
Where only a single instantiation exists this field may be set to
CPA_INSTANCE_HANDLE_SINGLE.

typedef Cpa64U CpaPhysicalAddr

File: cpa.h

Physical memory address.

Type for physical memory addresses.

typedef CpaPhysicalAddr(* CpaVirtualToPhysical)(void *pVirtualAddr)

3.8 Typedef Documentation

Reference Number: 330686-001 15

File: cpa.h

Virtual to physical address conversion routine.

This function is used to convert virtual addresses to physical addresses.

Context:
The function shall not be called in an interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pVirtualAddr Virtual address to be converted.

Returns:
Returns the corresponding physical address. On error, the value NULL is
returned.

Postcondition:
None

See also:
None

typedef struct _CpaFlatBuffer CpaFlatBuffer

File: cpa.h

Flat buffer structure containing a pointer and length member.

A flat buffer structure. The data pointer, pData, is a virtual address. An API instance may require the actual
data to be in contiguous physical memory as determined by CpaInstanceInfo2.

typedef struct _CpaBufferList CpaBufferList

File: cpa.h

Scatter/Gather buffer list containing an array of flat buffers.

A scatter/gather buffer list structure. This buffer structure is typically used to represent a region of memory
which is not physically contiguous, by describing it as a collection of buffers, each of which is physically
contiguous.

3.8 Typedef Documentation

Reference Number: 330686-001 16

Note:
The memory for the pPrivateMetaData member must be allocated by the client as physically
contiguous memory. When allocating memory for pPrivateMetaData, a call to the corresponding
BufferListGetMetaSize function (e.g. cpaCyBufferListGetMetaSize) MUST be made to determine
the size of the Meta Data Buffer. The returned size (in bytes) may then be passed in a memory
allocation routine to allocate the pPrivateMetaData memory.

typedef struct _CpaPhysFlatBuffer CpaPhysFlatBuffer

File: cpa.h

Flat buffer structure with physical address.

Functions taking this structure do not need to do any virtual to physical address translation before writing
the buffer to hardware.

typedef struct _CpaPhysBufferList CpaPhysBufferList

File: cpa.h

Scatter/gather list containing an array of flat buffers with physical addresses.

Similar to CpaBufferList, this buffer structure is typically used to represent a region of memory
which is not physically contiguous, by describing it as a collection of buffers, each of which is
physically contiguous. The difference is that, in this case, the individual "flat" buffers are represented
using physical, rather than virtual, addresses.

typedef Cpa32S CpaStatus

File: cpa.h

API status value type definition

This type definition is used for the return values used in all the API functions. Common values are defined,
for example see CPA_STATUS_SUCCESS, CPA_STATUS_FAIL, etc.

typedef enum _CpaInstanceType CPA_DEPRECATED

File: cpa.h

Instance Types

Deprecated:
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by
CpaAccelerationServiceType.

Enumeration of the different instance types.

typedef enum _CpaAccelerationServiceType CpaAccelerationServiceType

File: cpa.h

Service Type

3.8 Typedef Documentation

Reference Number: 330686-001 17

Enumeration of the different service
types.

typedef enum _CpaInstanceState CPA_DEPRECATED

File: cpa.h

Instance State

Deprecated:
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by CpaOperationalState.

Enumeration of the different instance states that are possible.

typedef enum _CpaOperationalState CpaOperationalState

File: cpa.h

Instance operational state

Enumeration of the different operational states that are possible.

typedef struct _CpaInstanceInfo CPA_DEPRECATED

File: cpa.h

Instance Info Structure

Deprecated:
As of v1.3 of the Crypto API, this structure has been deprecated, replaced by
CpaInstanceInfo2.

Structure that contains the information to describe the instance.

typedef struct _CpaPhysicalInstanceId CpaPhysicalInstanceId

File: cpa.h

Physical Instance ID

Identifies the physical instance of an accelerator execution engine.

Accelerators grouped into "packages". Each accelerator can in turn contain one or more execution engines.
Implementations of this API will define the packageId, acceleratorId, executionEngineId and busAddress as
appropriate for the implementation. For example, for hardware-based accelerators, the packageId might
identify the chip, which might contain multiple accelerators, each of which might contain multiple execution
engines. The combination of packageId, acceleratorId and executionEngineId uniquely identifies the
instance.

Hardware based accelerators implementing this API may also provide information on the location of the
accelerator in the busAddress field. This field will be defined as appropriate for the implementation. For
example, for PCIe attached accelerators, the busAddress may contain the PCIe bus, device and function
number of the accelerators.

3.8 Typedef Documentation

Reference Number: 330686-001 18

typedef struct _CpaInstanceInfo2 CpaInstanceInfo2

File: cpa.h

Instance Info Structure, version 2

Structure that contains the information to describe the instance.

typedef enum _CpaInstanceEvent CpaInstanceEvent

File: cpa.h

Instance Events

Enumeration of the different events that will cause the registered Instance notification callback function to
be invoked.

3.9 Enumeration Type Documentation

enum _CpaInstanceType

File: cpa.h

Instance Types

Deprecated:
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by
CpaAccelerationServiceType.

Enumeration of the different instance types.

Enumerator:
CPA_INSTANCE_TYPE_CRYPTO Cryptographic instance type.
CPA_INSTANCE_TYPE_DATA_COMPRESSION Data compression instance type.
CPA_INSTANCE_TYPE_RAID RAID instance type.
CPA_INSTANCE_TYPE_XML XML instance type.
CPA_INSTANCE_TYPE_REGEX Regular Expression instance type.

enum _CpaAccelerationServiceType

File: cpa.h

Service Type

Enumeration of the different service types.

Enumerator:
CPA_ACC_SVC_TYPE_CRYPTO Cryptography.
CPA_ACC_SVC_TYPE_DATA_COMPRESSION Data

Compression.
CPA_ACC_SVC_TYPE_PATTERN_MATCH Pattern Match.
CPA_ACC_SVC_TYPE_RAID RAID.

3.9 Enumeration Type Documentation

Reference Number: 330686-001 19

CPA_ACC_SVC_TYPE_XML XML.
CPA_ACC_SVC_TYPE_VIDEO_ANALYTICS Video

Analytics.

enum _CpaInstanceState

File: cpa.h

Instance State

Deprecated:
As of v1.3 of the Crypto API, this enum has been deprecated, replaced by CpaOperationalState.

Enumeration of the different instance states that are possible.

Enumerator:
CPA_INSTANCE_STATE_INITIALISED Instance is in the initialized state and ready for use.
CPA_INSTANCE_STATE_SHUTDOWN Instance is in the shutdown state and not available for

use.

enum _CpaOperationalState

File: cpa.h

Instance operational state

Enumeration of the different operational states that are possible.

Enumerator:
CPA_OPER_STATE_DOWN Instance is not available for

use.

May not yet be initialized, or
stopped.

CPA_OPER_STATE_UP Instance is available for use.

Has been initialized and
started.

enum _CpaInstanceEvent

File: cpa.h

Instance Events

Enumeration of the different events that will cause the registered Instance notification callback function to
be invoked.

Enumerator:
CPA_INSTANCE_EVENT_RESTARTING Event type that triggers the registered instance

notification callback function when and instance is
restarting.

The reason why an instance is restarting is
implementation specific. For example a hardware

3.9 Enumeration Type Documentation

Reference Number: 330686-001 20

implementation may send this event if the hardware
device is about to be reset.

CPA_INSTANCE_EVENT_RESTARTED Event type that triggers the registered instance
notification callback function when and instance has
restarted.

The reason why an instance has restarted is
implementation specific. For example a hardware
implementation may send this event after the hardware
device has been reset.

3.9 Enumeration Type Documentation

Reference Number: 330686-001 21

4 CPA Type Definition
 [CPA API]

Collaboration diagram for CPA Type Definition:

4.1 Detailed Description

File: cpa_types.h

This is the CPA Type Definitions.

4.2 Defines

#define NULL•
#define TRUE•
#define FALSE•
#define CPA_BITMAP(name, sizeInBits)•
#define CPA_BITMAP_BIT_TEST(bitmask, bit)

Test a specified bit in the specified bitmap.
•

#define CPA_BITMAP_BIT_SET(bitmask, bit)•
#define CPA_BITMAP_BIT_CLEAR(bitmask, bit)

Clear a specified bit in the specified bitmap.
•

#define CPA_DEPRECATED
Declare a function or type and mark it as deprecated so that usages get flagged with a
warning.

•

4.3 Typedefs

typedef uint8_t Cpa8U•
typedef int8_t Cpa8S•
typedef uint16_t Cpa16U•
typedef int16_t Cpa16S•
typedef uint32_t Cpa32U•
typedef int32_t Cpa32S•
typedef uint64_t Cpa64U•
typedef int64_t Cpa64S•
typedef enum _CpaBoolean CpaBoolean•

4.4 Enumerations

enum _CpaBoolean {
CPA_FALSE,
CPA_TRUE
}

•

Reference Number: 330686-001 22

4.5 Define Documentation

#define NULL

File: cpa_types.h

NULL definition.

#define TRUE

File: cpa_types.h

True value definition.

#define FALSE

File: cpa_types.h

False value definition.

#define CPA_BITMAP (name,
sizeInBits)

File: cpa_types.h

Declare a bitmap of specified size (in bits).

This macro is used to declare a bitmap of arbitrary size.

To test whether a bit in the bitmap is set, use CPA_BITMAP_BIT_TEST.

While most uses of bitmaps on the API are read-only, macros are also provided to set (see
CPA_BITMAP_BIT_SET) and clear (see CPA_BITMAP_BIT_CLEAR) bits in the bitmap.

#define CPA_BITMAP_BIT_TEST (bitmask,
bit)

Test a specified bit in the specified bitmap.

The bitmap may have been declared using CPA_BITMAP. Returns a Boolean (true if the bit is set, false
otherwise).

#define CPA_BITMAP_BIT_SET (bitmask,
bit)

File: cpa_types.h

Set a specified bit in the specified bitmap. The bitmap may have been declared using CPA_BITMAP.

#define CPA_BITMAP_BIT_CLEAR (bitmask,
bit)

Clear a specified bit in the specified bitmap.

4.5 Define Documentation

Reference Number: 330686-001 23

The bitmap may have been declared using CPA_BITMAP.

#define CPA_DEPRECATED
Declare a function or type and mark it as deprecated so that usages get flagged with a warning.

4.6 Typedef Documentation

typedef uint8_t Cpa8U

File: cpa_types.h

Unsigned byte base type.

typedef int8_t Cpa8S

File: cpa_types.h

Signed byte base type.

typedef uint16_t Cpa16U

File: cpa_types.h

Unsigned double-byte base type.

typedef int16_t Cpa16S

File: cpa_types.h

Signed double-byte base type.

typedef uint32_t Cpa32U

File: cpa_types.h

Unsigned quad-byte base type.

typedef int32_t Cpa32S

File: cpa_types.h

Signed quad-byte base type.

typedef uint64_t Cpa64U

File: cpa_types.h

Unsigned double-quad-byte base type.

typedef int64_t Cpa64S

4.6 Typedef Documentation

Reference Number: 330686-001 24

File: cpa_types.h

Signed double-quad-byte base type.

typedef enum _CpaBoolean CpaBoolean

File: cpa_types.h

Boolean type.

Functions in this API use this type for Boolean variables that take true or false values.

4.7 Enumeration Type Documentation

enum _CpaBoolean

File: cpa_types.h

Boolean type.

Functions in this API use this type for Boolean variables that take true or false values.

Enumerator:
CPA_FALSE False value.
CPA_TRUE True value.

4.7 Enumeration Type Documentation

Reference Number: 330686-001 25

5 Data Compression API
 [CPA API]

Collaboration diagram for Data Compression API:

5.1 Detailed Description

File: cpa_dc.h

These functions specify the API for Data Compression operations.

Remarks:

5.2 Modules

Data Compression Data Plane API•

5.3 Data Structures

struct _CpaDcInstanceCapabilities
Implementation Capabilities Structure.

•

struct _CpaDcSessionSetupData
Session Setup Data.

•

struct _CpaDcStats
Compression Statistics Data.

•

struct _CpaDcRqResults
Request results data.

•

5.4 Defines

#define CPA_DC_API_VERSION_NUM_MAJOR•
#define CPA_DC_API_VERSION_NUM_MINOR•
#define CPA_DC_BAD_DATA

Service specific return codesInput data in invalid.
•

5.5 Typedefs

typedef void * CpaDcSessionHandle
Compression API session handle type.

•

typedef enum _CpaDcFileType CpaDcFileType
Supported file types.

•

typedef enum _CpaDcFlush CpaDcFlush
Supported flush flags.

•

typedef enum _CpaDcHuffType CpaDcHuffType
Supported Huffman Tree types.

•

typedef enum _CpaDcCompType CpaDcCompType
Supported compression types.

•

Reference Number: 330686-001 26

typedef enum _CpaDcChecksum CpaDcChecksum
Supported checksum algorithms.

•

typedef enum _CpaDcSessionDir CpaDcSessionDir
Supported session directions.

•

typedef enum _CpaDcSessionState CpaDcSessionState
Supported session state settings.

•

typedef enum _CpaDcCompLvl CpaDcCompLvl
Supported compression levels.

•

typedef enum _CpaDcReqStatus CpaDcReqStatus
Supported additional details from accelerator.

•

typedef enum _CpaDcAutoSelectBest CpaDcAutoSelectBest
Supported modes for automatically selecting the best compression type.

•

typedef void(* CpaDcCallbackFn)(void *callbackTag, CpaStatus status)
Definition of callback function invoked for asynchronous cpaDc requests.

•

typedef _CpaDcInstanceCapabilities CpaDcInstanceCapabilities
Implementation Capabilities Structure.

•

typedef _CpaDcSessionSetupData CpaDcSessionSetupData
Session Setup Data.

•

typedef _CpaDcStats CpaDcStats
Compression Statistics Data.

•

typedef _CpaDcRqResults CpaDcRqResults
Request results data.

•

typedef void(* CpaDcInstanceNotificationCbFunc)(const CpaInstanceHandle instanceHandle,
void *pCallbackTag, const CpaInstanceEvent instanceEvent)

Callback function for instance notification support.

•

5.6 Enumerations

enum _CpaDcFileType {
CPA_DC_FT_ASCII,
CPA_DC_FT_CSS,
CPA_DC_FT_HTML,
CPA_DC_FT_JAVA,
CPA_DC_FT_OTHER
}

Supported file types.

•

enum _CpaDcFlush {
CPA_DC_FLUSH_NONE,
CPA_DC_FLUSH_FINAL,
CPA_DC_FLUSH_SYNC,
CPA_DC_FLUSH_FULL
}

Supported flush flags.

•

enum _CpaDcHuffType {
CPA_DC_HT_STATIC,
CPA_DC_HT_PRECOMP,
CPA_DC_HT_FULL_DYNAMIC
}

Supported Huffman Tree types.

•

enum _CpaDcCompType {
CPA_DC_LZS,
CPA_DC_ELZS,
CPA_DC_LZSS,
CPA_DC_DEFLATE
}

Supported compression types.

•

5.5 Typedefs

Reference Number: 330686-001 27

enum _CpaDcChecksum {
CPA_DC_NONE,
CPA_DC_CRC32,
CPA_DC_ADLER32
}

Supported checksum algorithms.

•

enum _CpaDcSessionDir {
CPA_DC_DIR_COMPRESS,
CPA_DC_DIR_DECOMPRESS,
CPA_DC_DIR_COMBINED
}

Supported session directions.

•

enum _CpaDcSessionState {
CPA_DC_STATEFUL,
CPA_DC_STATELESS
}

Supported session state settings.

•

enum _CpaDcCompLvl {
CPA_DC_L1,
CPA_DC_L2,
CPA_DC_L3,
CPA_DC_L4,
CPA_DC_L5,
CPA_DC_L6,
CPA_DC_L7,
CPA_DC_L8,
CPA_DC_L9
}

Supported compression levels.

•

enum _CpaDcReqStatus {
CPA_DC_OK,
CPA_DC_INVALID_BLOCK_TYPE,
CPA_DC_BAD_STORED_BLOCK_LEN,
CPA_DC_TOO_MANY_CODES,
CPA_DC_INCOMPLETE_CODE_LENS,
CPA_DC_REPEATED_LENS,
CPA_DC_MORE_REPEAT,
CPA_DC_BAD_LITLEN_CODES,
CPA_DC_BAD_DIST_CODES,
CPA_DC_INVALID_CODE,
CPA_DC_INVALID_DIST,
CPA_DC_OVERFLOW,
CPA_DC_SOFTERR,
CPA_DC_FATALERR
}

Supported additional details from accelerator.

•

enum _CpaDcAutoSelectBest {
CPA_DC_ASB_DISABLED,
CPA_DC_ASB_STATIC_DYNAMIC,
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS,
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS
}

Supported modes for automatically selecting the best compression type.

•

5.6 Enumerations

Reference Number: 330686-001 28

5.7 Functions

CpaStatus cpaDcQueryCapabilities (CpaInstanceHandle dcInstance,
CpaDcInstanceCapabilities *pInstanceCapabilities)

Retrieve Instance Capabilities.

•

CpaStatus cpaDcInitSession (CpaInstanceHandle dcInstance, CpaDcSessionHandle
pSessionHandle, CpaDcSessionSetupData *pSessionData, CpaBufferList *pContextBuffer,
CpaDcCallbackFn callbackFn)

Initialize compression decompression session.

•

CpaStatus cpaDcRemoveSession (const CpaInstanceHandle dcInstance, CpaDcSessionHandle
pSessionHandle)

Compression Session Remove Function.

•

CpaStatus cpaDcCompressData (CpaInstanceHandle dcInstance, CpaDcSessionHandle
pSessionHandle, CpaBufferList *pSrcBuff, CpaBufferList *pDestBuff, CpaDcRqResults *pResults,
CpaDcFlush flushFlag, void *callbackTag)

Submit a request to compress a buffer of data.

•

CpaStatus cpaDcDecompressData (CpaInstanceHandle dcInstance, CpaDcSessionHandle
pSessionHandle, CpaBufferList *pSrcBuff, CpaBufferList *pDestBuff, CpaDcRqResults *pResults,
CpaDcFlush flushFlag, void *callbackTag)

Submit a request to decompress a buffer of data.

•

CpaStatus cpaDcGenerateHeader (CpaDcSessionHandle pSessionHandle, CpaFlatBuffer
*pDestBuff, Cpa32U *count)

Generate compression header.

•

CpaStatus cpaDcGenerateFooter (CpaDcSessionHandle pSessionHandle, CpaFlatBuffer
*pDestBuff, CpaDcRqResults *pResults)

Generate compression footer.

•

CpaStatus cpaDcGetStats (CpaInstanceHandle dcInstance, CpaDcStats *pStatistics)
Retrieve statistics.

•

CpaStatus cpaDcGetNumInstances (Cpa16U *pNumInstances)
Get the number of device instances that are supported by the API implementation.

•

CpaStatus cpaDcGetInstances (Cpa16U numInstances, CpaInstanceHandle *dcInstances)
Get the handles to the device instances that are supported by the API implementation.

•

CpaStatus cpaDcGetNumIntermediateBuffers (CpaInstanceHandle instanceHandle, Cpa16U
*pNumBuffers)

Compression Component utility function to determine the number of intermediate buffers
required by an implementation.

•

CpaStatus cpaDcStartInstance (CpaInstanceHandle instanceHandle, Cpa16U numBuffers,
CpaBufferList **pIntermediateBuffers)

Compression Component Initialization and Start function.

•

CpaStatus cpaDcInstanceGetInfo2 (const CpaInstanceHandle instanceHandle, CpaInstanceInfo2
*pInstanceInfo2)

Function to get information on a particular instance.

•

CpaStatus cpaDcInstanceSetNotificationCb (const CpaInstanceHandle instanceHandle, const
CpaDcInstanceNotificationCbFunc pInstanceNotificationCb, void *pCallbackTag)

Subscribe for instance notifications.

•

CpaStatus cpaDcGetSessionSize (CpaInstanceHandle dcInstance, CpaDcSessionSetupData
*pSessionData, Cpa32U *pSessionSize, Cpa32U *pContextSize)

Get the size of the memory required to hold the session information.

•

CpaStatus cpaDcBufferListGetMetaSize (const CpaInstanceHandle instanceHandle, Cpa32U
numBuffers, Cpa32U *pSizeInBytes)

Function to return the size of the memory which must be allocated for the pPrivateMetaData
member of CpaBufferList.

•

CpaStatus cpaDcGetStatusText (const CpaInstanceHandle dcInstance, const CpaStatus
errStatus, Cpa8S *pStatusText)

Function to return a string indicating the specific error that occurred within the system.

•

5.7 Functions

Reference Number: 330686-001 29

CpaStatus cpaDcSetAddressTranslation (const CpaInstanceHandle instanceHandle,
CpaVirtualToPhysical virtual2Physical)

Set Address Translation function.

•

CpaStatus cpaDcDpGetSessionSize (CpaInstanceHandle dcInstance, CpaDcSessionSetupData
*pSessionData, Cpa32U *pSessionSize)

Get the size of the memory required to hold the data plane session information.

•

CpaStatus cpaDcDpRemoveSession (const CpaInstanceHandle dcInstance,
CpaDcSessionHandle pSessionHandle)

Compression Data Plane Session Remove Function.

•

5.8 Data Structure Documentation

5.8.1 _CpaDcInstanceCapabilities Struct Reference

5.8.1.1 Detailed Description

Implementation Capabilities Structure.

This structure contains data relating to the capabilities of an implementation. The capabilities include
supported compression algorithms, RFC 1951 options and whether the implementation supports both stateful
and stateless compress and decompress sessions.

5.8.1.2 Data Fields

CpaBoolean statefulLZSCompression
True if the Instance supports Stateful LZS compression.

•

CpaBoolean statefulLZSDecompression
True if the Instance supports Stateful LZS decompression.

•

CpaBoolean statelessLZSCompression
True if the Instance supports Stateless LZS compression.

•

CpaBoolean statelessLZSDecompression
True if the Instance supports Stateless LZS decompression.

•

CpaBoolean statefulLZSSCompression
True if the Instance supports Stateful LZSS compression.

•

CpaBoolean statefulLZSSDecompression
True if the Instance supports Stateful LZSS decompression.

•

CpaBoolean statelessLZSSCompression
True if the Instance supports Stateless LZSS compression.

•

CpaBoolean statelessLZSSDecompression
True if the Instance supports Stateless LZSS decompression.

•

CpaBoolean statefulELZSCompression
True if the Instance supports Stateful Extended LZS compression.

•

CpaBoolean statefulELZSDecompression
True if the Instance supports Stateful Extended LZS decompression.

•

CpaBoolean statelessELZSCompression
True if the Instance supports Stateless Extended LZS compression.

•

CpaBoolean statelessELZSDecompression
True if the Instance supports Stateless Extended LZS decompression.

•

CpaBoolean statefulDeflateCompression
True if the Instance supports Stateful Deflate compression.

•

CpaBoolean statefulDeflateDecompression
True if the Instance supports Stateful Deflate decompression.

•

CpaBoolean statelessDeflateCompression
True if the Instance supports Stateless Deflate compression.

•

5.8 Data Structure Documentation

Reference Number: 330686-001 30

CpaBoolean statelessDeflateDecompression
True if the Instance supports Stateless Deflate decompression.

•

CpaBoolean checksumCRC32
True if the Instance can calculate a CRC32 checksum over the uncompressed data.

•

CpaBoolean checksumAdler32
True if the Instance can calculate an Adler-32 checksum over the uncompressed data.

•

CpaBoolean dynamicHuffman
True if the Instance supports dynamic Huffman trees in deflate blocks.

•

CpaBoolean dynamicHuffmanBufferReq
True if an Instance specific buffer is required to perform a dynamic Huffman tree deflate
request.

•

CpaBoolean precompiledHuffman
True if the Instance supports precompiled Huffman trees in deflate blocks.

•

CpaBoolean autoSelectBestHuffmanTree
True if the Instance has the ability to automatically select between different Huffman encoding
schemes for better compression ratios.

•

Cpa8U validWindowSizeMaskCompression
Bits set to '1' for each valid window size supported by the compression implementation.

•

Cpa8U validWindowSizeMaskDecompression
Bits set to '1' for each valid window size supported by the decompression implementation.

•

Cpa32U internalHuffmanMem
Number of bytes internally available to be used when constructing dynamic Huffman trees.

•

CpaBoolean endOfLastBlock
True if the Instance supports stopping at the end of the last block in a deflate stream during a
decompression operation and reporting that the end of the last block has been reached as
part of the CpaDcReqStatus data.

•

5.8.1.3 Field Documentation

CpaBoolean _CpaDcInstanceCapabilities::statefulLZSCompression
True if the Instance supports Stateful LZS compression.

CpaBoolean _CpaDcInstanceCapabilities::statefulLZSDecompression
True if the Instance supports Stateful LZS decompression.

CpaBoolean _CpaDcInstanceCapabilities::statelessLZSCompression
True if the Instance supports Stateless LZS compression.

CpaBoolean _CpaDcInstanceCapabilities::statelessLZSDecompression
True if the Instance supports Stateless LZS decompression.

CpaBoolean _CpaDcInstanceCapabilities::statefulLZSSCompression
True if the Instance supports Stateful LZSS compression.

CpaBoolean _CpaDcInstanceCapabilities::statefulLZSSDecompression
True if the Instance supports Stateful LZSS decompression.

CpaBoolean _CpaDcInstanceCapabilities::statelessLZSSCompression
True if the Instance supports Stateless LZSS compression.

CpaBoolean _CpaDcInstanceCapabilities::statelessLZSSDecompression
True if the Instance supports Stateless LZSS decompression.

5.8.1 _CpaDcInstanceCapabilities Struct Reference

Reference Number: 330686-001 31

CpaBoolean _CpaDcInstanceCapabilities::statefulELZSCompression
True if the Instance supports Stateful Extended LZS compression.

CpaBoolean _CpaDcInstanceCapabilities::statefulELZSDecompression
True if the Instance supports Stateful Extended LZS decompression.

CpaBoolean _CpaDcInstanceCapabilities::statelessELZSCompression
True if the Instance supports Stateless Extended LZS compression.

CpaBoolean _CpaDcInstanceCapabilities::statelessELZSDecompression
True if the Instance supports Stateless Extended LZS decompression.

CpaBoolean _CpaDcInstanceCapabilities::statefulDeflateCompression
True if the Instance supports Stateful Deflate compression.

CpaBoolean _CpaDcInstanceCapabilities::statefulDeflateDecompression
True if the Instance supports Stateful Deflate decompression.

CpaBoolean _CpaDcInstanceCapabilities::statelessDeflateCompression
True if the Instance supports Stateless Deflate compression.

CpaBoolean _CpaDcInstanceCapabilities::statelessDeflateDecompression
True if the Instance supports Stateless Deflate decompression.

CpaBoolean _CpaDcInstanceCapabilities::checksumCRC32
True if the Instance can calculate a CRC32 checksum over the uncompressed data.

CpaBoolean _CpaDcInstanceCapabilities::checksumAdler32
True if the Instance can calculate an Adler-32 checksum over the uncompressed data.

CpaBoolean _CpaDcInstanceCapabilities::dynamicHuffman
True if the Instance supports dynamic Huffman trees in deflate blocks.

CpaBoolean _CpaDcInstanceCapabilities::dynamicHuffmanBufferReq
True if an Instance specific buffer is required to perform a dynamic Huffman tree deflate request.

CpaBoolean _CpaDcInstanceCapabilities::precompiledHuffman
True if the Instance supports precompiled Huffman trees in deflate blocks.

CpaBoolean _CpaDcInstanceCapabilities::autoSelectBestHuffmanTree
True if the Instance has the ability to automatically select between different Huffman encoding schemes for
better compression ratios.

Cpa8U _CpaDcInstanceCapabilities::validWindowSizeMaskCompression
Bits set to '1' for each valid window size supported by the compression
implementation.

Cpa8U _CpaDcInstanceCapabilities::validWindowSizeMaskDecompression
Bits set to '1' for each valid window size supported by the decompression
implementation.

5.8.1 _CpaDcInstanceCapabilities Struct Reference

Reference Number: 330686-001 32

Cpa32U _CpaDcInstanceCapabilities::internalHuffmanMem
Number of bytes internally available to be used when constructing dynamic Huffman trees.

CpaBoolean _CpaDcInstanceCapabilities::endOfLastBlock
True if the Instance supports stopping at the end of the last block in a deflate stream during a
decompression operation and reporting that the end of the last block has been reached as part of the
CpaDcReqStatus data.

5.8.2 _CpaDcSessionSetupData Struct Reference

5.8.2.1 Detailed Description

Session Setup Data.

This structure contains data relating to setting up a session. The client needs to complete the information in
this structure in order to setup a session.

5.8.2.2 Data Fields

CpaDcCompLvl compLevel
Compression Level from CpaDcCompLvl.

•

CpaDcCompType compType
Compression type from CpaDcCompType.

•

CpaDcHuffType huffType
Huffman type from CpaDcHuffType.

•

CpaDcAutoSelectBest autoSelectBestHuffmanTree
Indicates if and how the implementation should select the best Huffman encoding.

•

CpaDcFileType fileType
File type for the purpose of determining Huffman Codes from CpaDcFileType.

•

CpaDcSessionDir sessDirection
Session direction indicating whether session is used for compression, decompression or both.

•

CpaDcSessionState sessState
Session state indicating whether the session should be configured as stateless or stateful.

•

Cpa32U deflateWindowSize
Base 2 logarithm of maximum window size minus 8 (a value of 7 for a 32K window size).

•

CpaDcChecksum checksum
Desired checksum required for the session.

•

5.8.2.3 Field Documentation

CpaDcCompLvl _CpaDcSessionSetupData::compLevel
Compression Level from CpaDcCompLvl.

CpaDcCompType _CpaDcSessionSetupData::compType
Compression type from CpaDcCompType.

CpaDcHuffType _CpaDcSessionSetupData::huffType
Huffman type from CpaDcHuffType.

CpaDcAutoSelectBest _CpaDcSessionSetupData::autoSelectBestHuffmanTree
Indicates if and how the implementation should select the best Huffman encoding.

5.8.2 _CpaDcSessionSetupData Struct Reference

Reference Number: 330686-001 33

CpaDcFileType _CpaDcSessionSetupData::fileType
File type for the purpose of determining Huffman Codes from CpaDcFileType.

CpaDcSessionDir _CpaDcSessionSetupData::sessDirection
Session direction indicating whether session is used for compression, decompression or both.

CpaDcSessionState _CpaDcSessionSetupData::sessState
Session state indicating whether the session should be configured as stateless or stateful.

Cpa32U _CpaDcSessionSetupData::deflateWindowSize
Base 2 logarithm of maximum window size minus 8 (a value of 7 for a 32K window size).

Permitted values are 0 to 7. cpaDcDecompressData may return an error if an attempt is made to
decompress a stream that has a larger window size.

CpaDcChecksum _CpaDcSessionSetupData::checksum
Desired checksum required for the session.

5.8.3 _CpaDcStats Struct Reference

5.8.3.1 Detailed Description

Compression Statistics Data.

This structure contains data elements corresponding to statistics. Statistics are collected on a per instance
basis and include: jobs submitted and completed for both compression and decompression.

5.8.3.2 Data Fields

Cpa64U numCompRequests
Number of successful compression requests.

•

Cpa64U numCompRequestsErrors
Number of compression requests that had errors and could not be processed.

•

Cpa64U numCompCompleted
Compression requests completed.

•

Cpa64U numCompCompletedErrors
Compression requests not completed due to errors.

•

Cpa64U numDecompRequests
Number of successful decompression requests.

•

Cpa64U numDecompRequestsErrors
Number of decompression requests that had errors and could not be processed.

•

Cpa64U numDecompCompleted
Decompression requests completed.

•

Cpa64U numDecompCompletedErrors
Decompression requests not completed due to errors.

•

5.8.3.3 Field Documentation

Cpa64U _CpaDcStats::numCompRequests
Number of successful compression requests.

5.8.3 _CpaDcStats Struct Reference

Reference Number: 330686-001 34

Cpa64U _CpaDcStats::numCompRequestsErrors
Number of compression requests that had errors and could not be processed.

Cpa64U _CpaDcStats::numCompCompleted
Compression requests completed.

Cpa64U _CpaDcStats::numCompCompletedErrors
Compression requests not completed due to errors.

Cpa64U _CpaDcStats::numDecompRequests
Number of successful decompression requests.

Cpa64U _CpaDcStats::numDecompRequestsErrors
Number of decompression requests that had errors and could not be processed.

Cpa64U _CpaDcStats::numDecompCompleted
Decompression requests completed.

Cpa64U _CpaDcStats::numDecompCompletedErrors
Decompression requests not completed due to errors.

5.8.4 _CpaDcRqResults Struct Reference

5.8.4.1 Detailed Description

Request results data.

This structure contains the request results.

For stateful sessions the status, produced, consumed and endOfLastBlock results are per request values
while the checksum value is cumulative across all requests on the session so far. In this case the checksum
value is not guaranteed to be correct until the final compressed data has been processed.

For stateless sessions, an initial checksum value is passed into the stateless operation. Once the stateless
operation completes, the checksum value will contain checksum produced by the operation.

5.8.4.2 Data Fields

CpaDcReqStatus status
Additional status details from accelerator.

•

Cpa32U produced
Octets produced by the operation.

•

Cpa32U consumed
Octets consumed by the operation.

•

Cpa32U checksum
Initial checksum passed into stateless operations.

•

CpaBoolean endOfLastBlock
Decompression operation has stopped at the end of the last block in a deflate stream.

•

5.8.4 _CpaDcRqResults Struct Reference

Reference Number: 330686-001 35

5.8.4.3 Field Documentation

CpaDcReqStatus _CpaDcRqResults::status
Additional status details from accelerator.

Cpa32U _CpaDcRqResults::produced
Octets produced by the operation.

Cpa32U _CpaDcRqResults::consumed
Octets consumed by the operation.

Cpa32U _CpaDcRqResults::checksum
Initial checksum passed into stateless operations.

Will also be updated to the checksum produced by the operation

CpaBoolean _CpaDcRqResults::endOfLastBlock
Decompression operation has stopped at the end of the last block in a deflate stream.

5.9 Define Documentation

#define CPA_DC_API_VERSION_NUM_MAJOR

File: cpa_dc.h

CPA Dc Major Version Number

The CPA_DC API major version number. This number will be incremented when significant churn to the API
has occurred. The combination of the major and minor number definitions represent the complete version
number for this interface.

#define CPA_DC_API_VERSION_NUM_MINOR

File: cpa_dc.h

CPA DC Minor Version Number

The CPA_DC API minor version number. This number will be incremented when minor changes to the API
has occurred. The combination of the major and minor number definitions represent the complete version
number for this interface.

#define CPA_DC_BAD_DATA
Service specific return codesInput data in invalid.

Compression specific return codes

5.10 Typedef Documentation

typedef void* CpaDcSessionHandle

5.8.4 _CpaDcRqResults Struct Reference

Reference Number: 330686-001 36

Compression API session handle type.

Handle used to uniquely identify a Compression API session handle. This handle is established upon
registration with the API using cpaDcInitSession().

typedef enum _CpaDcFileType CpaDcFileType
Supported file types.

This enumerated lists identified file types. Used to select Huffman trees. File types are associated with
Precompiled Huffman Trees.

typedef enum _CpaDcFlush CpaDcFlush
Supported flush flags.

This enumerated list identifies the types of flush that can be specified for stateful and stateless
cpaDcCompressData and cpaDcDecompressData functions.

typedef enum _CpaDcHuffType CpaDcHuffType
Supported Huffman Tree types.

This enumeration lists support for Huffman Tree types. Selecting Static Huffman trees generates
compressed blocks with an RFC 1951 header specifying "compressed with fixed Huffman trees".

Selecting Full Dynamic Huffman trees generates compressed blocks with an RFC 1951 header specifying
"compressed with dynamic Huffman codes". The headers are calculated on the data being compressed,
requiring two passes.

Selecting Precompiled Huffman Trees generates blocks with RFC 1951 dynamic headers. The headers are
pre-calculated and are specified by the file type.

CpaDcFileType is valid only for the deflate compression algorithm. CpaDcFileType is ignored for static or
full dynamic Huffman trees.

typedef enum _CpaDcCompType CpaDcCompType
Supported compression types.

This enumeration lists the supported data compression algorithms. In combination with CpaDcChecksum it
is used to decide on the file header and footer format.

typedef enum _CpaDcChecksum CpaDcChecksum
Supported checksum algorithms.

This enumeration lists the supported checksum algorithms Used to decided on file header and footer
specifics.

typedef enum _CpaDcSessionDir CpaDcSessionDir
Supported session directions.

This enumerated list identifies the direction of a session. A session can be compress, decompress or both.

typedef enum _CpaDcSessionState CpaDcSessionState
Supported session state settings.

This enumerated list identifies the stateful setting of a session. A session can be either stateful or stateless.

5.10 Typedef Documentation

Reference Number: 330686-001 37

Stateful sessions are limited to have only one in-flight message per session. This means a compress or
decompress request must be complete before a new request can be started. This applies equally to
sessions that are uni-directional in nature and sessions that are combined compress and decompress.
Completion occurs when the synchronous function returns, or when the asynchronous call back function
has completed.

typedef enum _CpaDcCompLvl CpaDcCompLvl
Supported compression levels.

This enumerated lists the supported compressed levels. Lower values will result in less compressibility in
less time.

typedef enum _CpaDcReqStatus CpaDcReqStatus
Supported additional details from accelerator.

This enumeration lists the supported additional details from the accelerator. These may be useful in
determining the best way to recover from a failure.

typedef enum _CpaDcAutoSelectBest CpaDcAutoSelectBest
Supported modes for automatically selecting the best compression type.

This enumeration lists the supported modes for automatically selecting the best huffman encoding which
would lead to the best compression results.

typedef void(* CpaDcCallbackFn)(void *callbackTag, CpaStatus status)
Definition of callback function invoked for asynchronous cpaDc requests.

This is the prototype for the cpaDc compression callback functions. The callback function is registered by
the application using the cpaDcInitSession() function call.

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
callbackTag User-supplied value to help identify request.
status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.

Return values:
None

Precondition:
Component has been initialized.

5.10 Typedef Documentation

Reference Number: 330686-001 38

Postcondition:
None

Note:
None

See also:
None

typedef struct _CpaDcInstanceCapabilities CpaDcInstanceCapabilities
Implementation Capabilities Structure.

This structure contains data relating to the capabilities of an implementation. The capabilities include
supported compression algorithms, RFC 1951 options and whether the implementation supports both
stateful and stateless compress and decompress sessions.

typedef struct _CpaDcSessionSetupData CpaDcSessionSetupData
Session Setup Data.

This structure contains data relating to setting up a session. The client needs to complete the information in
this structure in order to setup a session.

typedef struct _CpaDcStats CpaDcStats
Compression Statistics Data.

This structure contains data elements corresponding to statistics. Statistics are collected on a per instance
basis and include: jobs submitted and completed for both compression and decompression.

typedef struct _CpaDcRqResults CpaDcRqResults
Request results data.

This structure contains the request results.

For stateful sessions the status, produced, consumed and endOfLastBlock results are per request values
while the checksum value is cumulative across all requests on the session so far. In this case the checksum
value is not guaranteed to be correct until the final compressed data has been processed.

For stateless sessions, an initial checksum value is passed into the stateless operation. Once the stateless
operation completes, the checksum value will contain checksum produced by the operation.

typedef void(* CpaDcInstanceNotificationCbFunc)(const CpaInstanceHandle instanceHandle, void
*pCallbackTag, const CpaInstanceEvent instanceEvent)
Callback function for instance notification support.

This is the prototype for the instance notification callback function. The callback function is passed in as a
parameter to the cpaDcInstanceSetNotificationCb function.

Context:
This function will be executed in a context that requires that sleeping MUST NOT be permitted.

Assumptions:
None

Side-Effects:

5.10 Typedef Documentation

Reference Number: 330686-001 39

None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCallbackTag Opaque value provided by user while making individual function calls.
[in] instanceEvent The event that will trigger this function to get invoked.

Return values:
None

Precondition:
Component has been initialized and the notification function has been set via the
cpaDcInstanceSetNotificationCb function.

Postcondition:
None

Note:
None

See also:
cpaDcInstanceSetNotificationCb(),

5.11 Enumeration Type Documentation

enum _CpaDcFileType
Supported file types.

This enumerated lists identified file types. Used to select Huffman trees. File types are associated with
Precompiled Huffman Trees.

Enumerator:
CPA_DC_FT_ASCII ASCII File Type.
CPA_DC_FT_CSS Cascading Style Sheet File Type.
CPA_DC_FT_HTML HTML or XML (or similar) file type.
CPA_DC_FT_JAVA File Java code or similar.
CPA_DC_FT_OTHER Other file types.

enum _CpaDcFlush
Supported flush flags.

This enumerated list identifies the types of flush that can be specified for stateful and stateless
cpaDcCompressData and cpaDcDecompressData functions.

5.11 Enumeration Type Documentation

Reference Number: 330686-001 40

Enumerator:
CPA_DC_FLUSH_NONE No flush request.
CPA_DC_FLUSH_FINAL Indicates that the input buffer contains all of the data for the

compression session allowing any buffered data to be released.

For Deflate, BFINAL is set in the compression header.
CPA_DC_FLUSH_SYNC Used for stateful deflate compression to indicate that all pending output

is flushed, byte aligned, to the output buffer.

The session state is not reset.
CPA_DC_FLUSH_FULL Used for deflate compression to indicate that all pending output is

flushed to the output buffer and the session state is reset.

enum _CpaDcHuffType
Supported Huffman Tree types.

This enumeration lists support for Huffman Tree types. Selecting Static Huffman trees generates
compressed blocks with an RFC 1951 header specifying "compressed with fixed Huffman trees".

Selecting Full Dynamic Huffman trees generates compressed blocks with an RFC 1951 header specifying
"compressed with dynamic Huffman codes". The headers are calculated on the data being compressed,
requiring two passes.

Selecting Precompiled Huffman Trees generates blocks with RFC 1951 dynamic headers. The headers are
pre-calculated and are specified by the file type.

CpaDcFileType is valid only for the deflate compression algorithm. CpaDcFileType is ignored for static or
full dynamic Huffman trees.

Enumerator:
CPA_DC_HT_STATIC Static Huffman Trees.
CPA_DC_HT_PRECOMP Precompiled Huffman Trees.
CPA_DC_HT_FULL_DYNAMIC Full Dynamic Huffman Trees.

enum _CpaDcCompType
Supported compression types.

This enumeration lists the supported data compression algorithms. In combination with CpaDcChecksum it
is used to decide on the file header and footer format.

Enumerator:
CPA_DC_LZS LZS Compression.
CPA_DC_ELZS Extended LZS Compression.
CPA_DC_LZSS LZSS Compression.
CPA_DC_DEFLATE Deflate Compression.

enum _CpaDcChecksum
Supported checksum algorithms.

This enumeration lists the supported checksum algorithms Used to decided on file header and footer
specifics.

Enumerator:
CPA_DC_NONE No checksums required.

5.11 Enumeration Type Documentation

Reference Number: 330686-001 41

CPA_DC_CRC32 application requires a CRC32 checksum
CPA_DC_ADLER32 Application requires Adler-32 checksum.

enum _CpaDcSessionDir
Supported session directions.

This enumerated list identifies the direction of a session. A session can be compress, decompress or both.

Enumerator:
CPA_DC_DIR_COMPRESS Session will be used for compression.
CPA_DC_DIR_DECOMPRESS Session will be used for decompression.
CPA_DC_DIR_COMBINED Session will be used both both compression and decompression.

enum _CpaDcSessionState
Supported session state settings.

This enumerated list identifies the stateful setting of a session. A session can be either stateful or stateless.

Stateful sessions are limited to have only one in-flight message per session. This means a compress or
decompress request must be complete before a new request can be started. This applies equally to
sessions that are uni-directional in nature and sessions that are combined compress and decompress.
Completion occurs when the synchronous function returns, or when the asynchronous call back function
has completed.

Enumerator:
CPA_DC_STATEFUL Session will be stateful, implying that state may need to be saved in some

situations.
CPA_DC_STATELESS Session will be stateless, implying no state will be stored.

enum _CpaDcCompLvl
Supported compression levels.

This enumerated lists the supported compressed levels. Lower values will result in less compressibility in
less time.

Enumerator:
CPA_DC_L1 Compression level 1.
CPA_DC_L2 Compression level 2.
CPA_DC_L3 Compression level 3.
CPA_DC_L4 Compression level 4.
CPA_DC_L5 Compression level 5.
CPA_DC_L6 Compression level 6.
CPA_DC_L7 Compression level 7.
CPA_DC_L8 Compression level 8.
CPA_DC_L9 Compression level 9.

enum _CpaDcReqStatus

5.11 Enumeration Type Documentation

Reference Number: 330686-001 42

Supported additional details from accelerator.

This enumeration lists the supported additional details from the accelerator. These may be useful in
determining the best way to recover from a failure.

Enumerator:
CPA_DC_OK No error detected by compression slice.
CPA_DC_INVALID_BLOCK_TYPE Invalid block type (type == 3).
CPA_DC_BAD_STORED_BLOCK_LEN Stored block length did not match one's complement.
CPA_DC_TOO_MANY_CODES Too many length or distance codes.
CPA_DC_INCOMPLETE_CODE_LENS Code length codes incomplete.
CPA_DC_REPEATED_LENS Repeated lengths with no first length.
CPA_DC_MORE_REPEAT Repeat more than specified lengths.
CPA_DC_BAD_LITLEN_CODES Invalid literal/length code lengths.
CPA_DC_BAD_DIST_CODES Invalid distance code lengths.
CPA_DC_INVALID_CODE Invalid literal/length or distance code in fixed or dynamic

block.
CPA_DC_INVALID_DIST Distance is too far back in fixed or dynamic block.
CPA_DC_OVERFLOW Overflow detected.
CPA_DC_SOFTERR Other non-fatal detected.
CPA_DC_FATALERR Fatal error detected.

enum _CpaDcAutoSelectBest
Supported modes for automatically selecting the best compression type.

This enumeration lists the supported modes for automatically selecting the best huffman encoding which
would lead to the best compression results.

Enumerator:
CPA_DC_ASB_DISABLED Auto select best mode is

disabled.
CPA_DC_ASB_STATIC_DYNAMIC Auto select between

static and dynamic
compression.

CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS Auto select between
uncompressed, static
and dynamic
compression, using
stored block deflate
headers if uncompressed
is selected.

CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS Auto select between
uncompressed, static
and dynamic
compression, using no
deflate headers if
uncompressed is
selected.

5.12 Function Documentation

5.12 Function Documentation

Reference Number: 330686-001 43

CpaStatus cpaDcQueryCapabilities (CpaInstanceHandle dcInstance,
CpaDcInstanceCapabilities * pInstanceCapabilities

)
Retrieve Instance Capabilities.

This function is used to retrieve the capabilities matrix of an instance.

Context:
This function shall not be called in an interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Instance handle derived from discovery

functions
[in,out] pInstanceCapabilities Pointer to a capabilities struct

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit

the request.

Precondition:
None

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

See also:
None

CpaStatus cpaDcInitSession (CpaInstanceHandle dcInstance,
CpaDcSessionHandle pSessionHandle,
CpaDcSessionSetupData * pSessionData,
CpaBufferList * pContextBuffer,
CpaDcCallbackFn callbackFn

5.12 Function Documentation

Reference Number: 330686-001 44

)
Initialize compression decompression session.

This function is used to initialize a compression/decompression session. This function specifies a BufferList
for context data. A single session can be used for both compression and decompression requests. Clients
MAY register a callback function for the compression service using this function. This function returns a
unique session handle each time this function is invoked. If the session has been configured with a callback
function, then the order of the callbacks are guaranteed to be in the same order the compression or
decompression requests were submitted for each session, so long as a single thread of execution is used
for job submission.

Context:
This is a synchronous function and it cannot sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Instance handle derived from discovery functions.
[in,out] pSessionHandle Pointer to a session handle.
[in,out] pSessionData Pointer to a user instantiated structure containing session data.
[in] pContextBuffer pointer to context buffer. This is not required for stateless operations.

The total size of the buffer list must be equal to or larger than the
specified contextSize retrieved from the cpaDcGetSessionSize()
function.

[in] callbackFn For synchronous operation this callback shall be a null pointer.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
dcInstance has been started using cpaDcStartInstance.

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

5.12 Function Documentation

Reference Number: 330686-001 45

This initializes opaque data structures in the session handle. Data compressed under this session will be
compressed to the level specified in the pSessionData structure. Lower compression levels numbers
indicate a request for faster compression at the expense of compression ratio. Higher compression level
numbers indicate a request for higher compression ratios at the expense of execution time.

The session is opaque to the user application and the session handle contains job specific data.

The pointer to the ContextBuffer will be stored in session specific data if required by the implementation.

It is not permitted to have multiple outstanding asynchronous compression requests for stateful sessions. It
is possible to add parallelization to compression by using multiple sessions.

The window size specified in the pSessionData must be match exactly one of the supported window sizes
specified in the capabilities structure. If a bi-directional session is being initialized, then the window size
must be valid for both compress and decompress.

See also:
None

CpaStatus cpaDcRemoveSession (const CpaInstanceHandle dcInstance,
CpaDcSessionHandle pSessionHandle

)
Compression Session Remove Function.

This function will remove a previously initialized session handle and the installed callback handler function.
Removal will fail if outstanding calls still exist for the initialized session handle. The client needs to retry the
remove function at a later time. The memory for the session handle MUST not be freed until this call has
completed successfully.

Context:
This is a synchronous function that cannot sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Instance handle.
[in,out] pSessionHandle Session handle.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.

5.12 Function Documentation

Reference Number: 330686-001 46

CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
The component has been initialized via cpaDcStartInstance function.

Postcondition:
None

Note:
This is a synchronous function and has no completion callback associated with it.

See also:
cpaDcInitSession()

CpaStatus cpaDcCompressData (CpaInstanceHandle dcInstance,
CpaDcSessionHandle pSessionHandle,
CpaBufferList * pSrcBuff,
CpaBufferList * pDestBuff,
CpaDcRqResults * pResults,
CpaDcFlush flushFlag,
void * callbackTag

)
Submit a request to compress a buffer of data.

This API consumes data from the input buffer and generates compressed data in the output buffer.

Context:
When called as an asynchronous funnction it cannot sleep. It can be executed in a context that
does not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Target service instance.
[in,out] pSessionHandle Session handle.
[in] pSrcBuff Pointer to data buffer for compression.
[in] pDestBuff Pointer to buffer space for data after compression.
[in,out] pResults Pointer to results structure

5.12 Function Documentation

Reference Number: 330686-001 47

[in] flushFlag Indicates the type of flush to be performed.
[in] callbackTag User supplied value to help correlate the callback with its associated

request.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.
CPA_DC_BAD_DATA The input data was not properly formed.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
pSessionHandle has been setup using cpaDcInitSession()

Postcondition:
pSessionHandle has session related state information

Note:
This function passes control to the compression service for processing

In synchronous mode the function returns the error status returned from the service. In asynchronous mode
the status is returned by the callback function.

This function may be called repetitively with input until all of the input has been consumed by the
compression service and all the output has been produced.

When this function returns, it may be that all of the available data in the input buffer has not been
compressed. This situation will occur when there is insufficient space in the output buffer. The calling
application should note the amount of data processed, and clear the output buffer and then submit the
request again, with the input buffer pointer to the data that was not previously compressed.

Relationship between input buffers and results buffers.

Implementations of this API must not modify the individual flat buffers of the input buffer list.1.
The implementation communicates the amount of data consumed from the source buffer list via
pResults->consumed arg.

2.

The implementation communicates the amount of data in the destination buffer list via
pResults->produced arg.

3.

Source Buffer Setup Rules

The buffer list must have the correct number of flat buffers. This is specified by the numBuffers
element of the CpaBufferList.

1.

Each flat buffer must have a pointer to contiguous memory that has been allocated by the calling
application. The number of octets to be compressed or decompressed must be stored in the
dataLenInBytes element of the flat buffer.

2.

It is permissible to have one or more flat buffers with a zero length data store. This function will
process all flat buffers until the destination buffer is full or all source data has been processed. If a
buffer has zero length, then no data will be processed from that buffer.

3.

Source Buffer Processing Rules.

5.12 Function Documentation

Reference Number: 330686-001 48

The buffer list is processed in index order - SrcBuff->pBuffers[0] will be completely processed
before SrcBuff->pBuffers[1] begins to be processed.

1.

The application must drain the destination buffers. If the source data was not completely consumed,
the application must resubmit the request.

2.

On return, the pResults->consumed will indicate the number of bytes consumed from the input
buffers.

3.

Destination Buffer Setup Rules

The destination buffer list must have storage for processed data. This implies at least one flat buffer
must exist in the buffer list.

1.

For each flat buffer in the buffer list, the dataLenInBytes element must be set to the size of the
buffer space.

2.

It is permissible to have one or more flat buffers with a zero length data store. If a buffer has zero
length, then no data will be added to that buffer.

3.

Destination Buffer Processing Rules.

The buffer list is processed in index order - DestBuff->pBuffers[0] will be completely processed
before DestBuff->pBuffers[1] begins to be processed.

1.

On return, the pResults->produced will indicate the number of bytes written to the output buffers.2.
If processing has not been completed, the application must drain the destination buffers and
resubmit the request. The application must reset the dataLenInBytes for each flat buffer in the
destination buffer list.

3.

Checksum rules. If a checksum is specified in the session setup data, then:

For the first request for a particular data segment the checksum is initialised internally by the
implementation.

1.

The checksum is maintained by the implementation between calls until the flushFlag is set to
CPA_DC_FLUSH_FINAL indicating the end of a particular data segment.

Intermediate checksum values are returned to the application, via the CpaDcRqResults
structure, in response to each request. However these checksum values are not
guaranteed to the valid until the call with flushFlag set to CPA_DC_FLUSH_FINAL
completes successfully.

a.

2.

The application should set flushFlag to CPA_DC_FLUSH_FINAL to indicate processing a particular data
segment is complete. It should be noted that this function may have to be called more than once to process
data after the flushFlag parameter has been set to CPA_DC_FLUSH_FINAL if the destination buffer fills.
Refer to buffer processing rules.

For statelful operations, when the function is invoked with flushFlag set to CPA_DC_FLUSH_NONE or
CPA_DC_FLUSH_SYNC, indicating more data is yet to come, the function may or may not retain data.
When the function is invoked with flushFlag set to CPA_DC_FLUSH_FULL or CPA_DC_FLUSH_FINAL,
the function will process all buffered data.

For stateless operations, CPA_DC_FLUSH_FINAL will cause the BFINAL bit to be set for deflate
compression. The initial checksum for the stateless operation should be set to 0. CPA_DC_FLUSH_NONE
and CPA_DC_FLUSH_SYNC should not be used for stateless operations.

It is possible to maintain checksum and length information across cpaDcCompressData() calls with a
stateless session without maintaining the full history state that is maintained by a stateful session. In this
mode of operation, an initial checksum value of 0 is passed into the first cpaDcCompressData() call with
the flush flag set to CPA_DC_FLUSH_FULL. On subsequent calls to cpaDcCompressData() for this
session, the checksum passed to cpaDcCompressData should be set to the checksum value produced by
the previous call to cpaDcCompressData(). When the last block of input data is passed to

5.12 Function Documentation

Reference Number: 330686-001 49

cpaDcCompressData(), the flush flag should be set to CP_DC_FLUSH_FINAL. This will cause the BFINAL
bit to be set in a deflate stream. It is the responsibility of the calling application to maintain overall lengths
across the stateless requests and to pass the checksum produced by one request into the next request.

Synchronous or Asynchronous operation of the API is determined by the value of the callbackFn parameter
passed to cpaDcInitSession() when the sessionHandle was setup. If a non-NULL value was specified then
the supplied callback function will be invoked asynchronously with the response of this request.

Response ordering: For each session, the implementation must maintain the order of responses. That is, if
in asynchronous mode, the order of the callback functions must match the order of jobs submitted by this
function. In a simple synchronous mode implementation, the practice of submitting a request and blocking
on its completion ensure ordering is preserved.

This limitation does not apply if the application employs multiple threads to service a single session.

If this API is invoked asynchronous, the return code represents the success or not of asynchronously
scheduling the request. The results of the operation, along with the amount of data consumed and
produced become available when the callback function is invoked. As such, pResults->consumed and
pResults->produced are available only when the operation is complete.

The application must not use either the source or destination buffers until the callback has completed.

See also:
None

CpaStatus cpaDcDecompressData (CpaInstanceHandle dcInstance,
CpaDcSessionHandle pSessionHandle,
CpaBufferList * pSrcBuff,
CpaBufferList * pDestBuff,
CpaDcRqResults * pResults,
CpaDcFlush flushFlag,
void * callbackTag

)
Submit a request to decompress a buffer of data.

This API consumes compressed data from the input buffer and generates uncompressed data in the output
buffer.

Context:
When called as an asynchronous funnction it cannot sleep. It can be executed in a context that
does not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:

5.12 Function Documentation

Reference Number: 330686-001 50

Yes

Parameters:
[in] dcInstance Target service instance.
[in,out] pSessionHandle Session handle.
[in] pSrcBuff Pointer to data buffer for compression.
[in] pDestBuff Pointer to buffer space for data after decompression.
[in,out] pResults Pointer to results structure
[in] flushFlag When set to CPA_DC_FLUSH_FINAL, indicates that the input buffer

contains all of the data for the compression session, allowing the
function to release history data.

[in] callbackTag User supplied value to help correlate the callback with its associated
request.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.
CPA_DC_BAD_DATA The input data was not properly formed.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
pSessionHandle has been setup using cpaDcInitSession()

Postcondition:
pSessionHandle has session related state information

Note:
This function passes control to the compression service for decompression. The function returns
the status from the service.

This function may be called repetitively with input until all of the input has been provided and all the output
has been consumed.

This function has identical buffer processing rules as cpaDcCompressData().

This function has identical checksum processing rules as cpaDcCompressData().

The application should set flushFlag to CPA_DC_FLUSH_FINAL to indicate processing a particular
compressed data segment is complete. It should be noted that this function may have to be called more
than once to process data after flushFlag has been set if the destination buffer fills. Refer to buffer
processing rules in cpaDcCompressData().

Synchronous or Asynchronous operation of the API is determined by the value of the callbackFn parameter
passed to cpaDcInitSession() when the sessionHandle was setup. If a non-NULL value was specified then
the supplied callback function will be invoked asynchronously with the response of this request, along with
the callbackTag specified in the function.

The same response ordering constraints identified in the cpaDcCompressData API apply to this function.

See also:
cpaDcCompressData()

5.12 Function Documentation

Reference Number: 330686-001 51

CpaStatus cpaDcGenerateHeader (CpaDcSessionHandle pSessionHandle,
CpaFlatBuffer * pDestBuff,
Cpa32U * count

)
Generate compression header.

This API generates the gzip or the zlib header and stores it in the output buffer.

Context:
This function may be call from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in,out] pSessionHandle Session handle.
[in] pDestBuff Pointer to data buffer where the compression header will go.
[out] count Pointer to counter filled in with header size.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
pSessionHandle has been setup using cpaDcInitSession()

Note:
This function can output a 10 byte gzip header or 2 byte zlib header to the destination buffer. The
session properties are used to determine the header type. To output a header the session must
have been initialized with CpaDcCompType CPA_DC_DEFLATE for any other value no header is
produced. To output a gzip header the session must have been initialized with CpaDcChecksum
CPA_DC_CRC32. To output a zlib header the session must have been initialized with
CpaDcChecksum CPA_DC_ADLER32. For CpaDcChecksum CPA_DC_NONE no header is
output.

If the compression requires a gzip header, then this header requires at a minimum the following fields,
defined in RFC1952: ID1: 0x1f ID2: 0x8b CM: Compression method = 8 for deflate

The zlib header is defined in RFC1950 and this function must implement as a minimum: CM: four bit
compression method - 8 is deflate with window size to 32k CINFO: four bit window size (see RFC1950 for
details), 7 is 32k window FLG: defined as:

5.12 Function Documentation

Reference Number: 330686-001 52

Bits 0 - 4: check bits for CM, CINFO and FLG (see RFC1950)•
Bit 5: FDICT 0 = default, 1 is preset dictionary•
Bits 6 - 7: FLEVEL, compression level (see RFC 1950)•

The counter parameter will be set to the number of bytes added to the buffer. The pData will be not be
changed.

See also:
None

CpaStatus cpaDcGenerateFooter (CpaDcSessionHandle pSessionHandle,
CpaFlatBuffer * pDestBuff,
CpaDcRqResults * pResults

)
Generate compression footer.

This API generates the footer for gzip or zlib and stores it in the output buffer.

Context:
This function may be call from any context.

Assumptions:
None

Side-Effects:
All session variables are reset

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in,out] pSessionHandle Session handle.
[in] pDestBuff Pointer to data buffer where the compression footer will go.
[in,out] pResults Pointer to results structure filled by CpaDcCompressData. Updated

with the results of this API call

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_UNSUPPORTED Function is not supported.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
pSessionHandle has been setup using cpaDcInitSession() pResults structure has been filled by
CpaDcCompressData().

Note:

5.12 Function Documentation

Reference Number: 330686-001 53

Depending on the session variables, this function can add the alder32 footer to the zlib compressed
data as defined in RFC1950. If required, it can also add the gzip footer, which is the crc32 of the
uncompressed data and the length of the uncompressed data. This section is defined in RFC1952.
The session variables used to determine the header type are CpaDcCompType and
CpaDcChecksum, see cpaDcGenerateHeader for more details.

An artifact of invoking this function for writing the footer data is that all opaque session specific data is
re-initialized. If the compression level and file types are consistent, the upper level application can continue
processing compression requests using the same session handle.

The produced element of the pResults structure will be incremented by the numbers bytes added to the
buffer. The pointer to the buffer will not be modified.

This function is not supported for stateless sessions.

See also:
None

CpaStatus cpaDcGetStats (CpaInstanceHandle dcInstance,
CpaDcStats * pStatistics

)
Retrieve statistics.

This API retrieves the current statistics for a compression instance.

Context:
This function may be call from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Instance handle.
[out] pStatistics Pointer to statistics structure.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit

the request.

Precondition:

5.12 Function Documentation

Reference Number: 330686-001 54

None

Postcondition:
None

See also:
None

CpaStatus cpaDcGetNumInstances (Cpa16U * pNumInstances)
Get the number of device instances that are supported by the API implementation.

This function will get the number of device instances that are supported by an implementation of the
compression API. This number is then used to determine the size of the array that must be passed to
cpaDcGetInstances().

Context:
This function MUST NOT be called from an interrupt context as it MAY sleep.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[out] pNumInstances Pointer to where the number of instances will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated

See also:
cpaDcGetInstances

CpaStatus cpaDcGetInstances (Cpa16U numInstances,
dcInstances

5.12 Function Documentation

Reference Number: 330686-001 55

CpaInstanceHandle
*

)
Get the handles to the device instances that are supported by the API implementation.

This function will return handles to the device instances that are supported by an implementation of the
compression API. These instance handles can then be used as input parameters with other compression
API functions.

This function will populate an array that has been allocated by the caller. The size of this API is determined
by the cpaDcGetNumInstances() function.

Context:
This function MUST NOT be called from an interrupt context as it MAY sleep.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] numInstances Size of the array.
[out] dcInstances Pointer to where the instance handles will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated

See also:
cpaDcGetInstances

CpaStatus cpaDcGetNumIntermediateBuffers (CpaInstanceHandle instanceHandle,
Cpa16U * pNumBuffers

)

5.12 Function Documentation

Reference Number: 330686-001 56

Compression Component utility function to determine the number of intermediate buffers required by an
implementation.

This function will determine the number of intermediate buffer lists required by an implementation for a
compression instance. These buffers should then be allocated and provided when calling
cpaDcStartInstance() to start a compression instance.

Context:
This function may sleep, and MUST NOT be called in interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in,out] instanceHandle Handle to an instance of this API to be initialized.
[out] pNumBuffers When the function returns, this will specify the number of buffer lists

that should be used as intermediate buffers when calling
cpaDcStartInstance().

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed. Suggested course of action is to shutdown and restart.

Precondition:
None

Postcondition:
None

Note:
Note that this is a synchronous function and has no completion callback associated with it.

See also:
cpaDcStartInstance()

CpaStatus cpaDcStartInstance (CpaInstanceHandle instanceHandle,
Cpa16U numBuffers,
CpaBufferList ** pIntermediateBuffers

)
Compression Component Initialization and Start function.

This function will initialize and start the compression component. It MUST be called before any other
compress function is called. This function SHOULD be called only once (either for the very first time, or after
an cpaDcStopInstance call which succeeded) per instance. Subsequent calls will have no effect.

5.12 Function Documentation

Reference Number: 330686-001 57

If required by an implementation, this function can be provided with instance specific intermediate buffers.
The intent is to provide an instance specific location to store intermediate results during dynamic instance
Huffman tree compression requests. The memory should be accessible by the compression engine. The
buffers are to support deflate compression with dynamic Huffman Trees. Each buffer list should be similar in
size to twice the destination buffer size passed to the compress API. The number of intermediate buffer lists
may vary between implementations and so cpaDcGetNumIntermediateBuffers() should be called first to
determine the number of intermediate buffers required by the implementation.

If not required, this parameter can be passed in as NULL.

Context:
This function may sleep, and MUST NOT be called in interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in,out] instanceHandle Handle to an instance of this API to be initialized.
[in] numBuffers Number of buffer lists represented by the pIntermediateBuffers

parameter. Note: cpaDcGetNumIntermediateBuffers() can be
used to determine the number of intermediate buffers that an
implementation requires.

[in] pIntermediateBuffers Optional pointer to Instance specific DRAM buffer.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed. Suggested course of action is to shutdown and restart.

Precondition:
None

Postcondition:
None

Note:
Note that this is a synchronous function and has no completion callback associated with it.

See also:
cpaDcStopInstance() cpaDcGetNumIntermediateBuffers()

CpaStatus cpaDcInstanceGetInfo2 (const CpaInstanceHandle instanceHandle,
CpaInstanceInfo2 * pInstanceInfo2

)

5.12 Function Documentation

Reference Number: 330686-001 58

Function to get information on a particular instance.

This function will provide instance specific information through a CpaInstanceInfo2 structure.

Context:
This function will be executed in a context that requires that sleeping MUST NOT be permitted.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Handle to an instance of this API to be initialized.
[out] pInstanceInfo2 Pointer to the memory location allocated by the client into which the

CpaInstanceInfo2 structure will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
The client has retrieved an instanceHandle from successive calls to cpaDcGetNumInstances and
cpaDcGetInstances.

Postcondition:
None

Note:
None

See also:
cpaDcGetNumInstances, cpaDcGetInstances, CpaInstanceInfo2

CpaStatus
cpaDcInstanceSetNotificationCb (const CpaInstanceHandle instanceHandle,

const
CpaDcInstanceNotificationCbFunc pInstanceNotificationCb,

void * pCallbackTag
)

Subscribe for instance notifications.

Clients of the CpaDc interface can subscribe for instance notifications by registering a
CpaDcInstanceNotificationCbFunc function.

5.12 Function Documentation

Reference Number: 330686-001 59

Context:
This function may be called from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pInstanceNotificationCb Instance notification callback function pointer.
[in] pCallbackTag Opaque value provided by user while making individual function

calls.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
Instance has been initialized.

Postcondition:
None

Note:
None

See also:
CpaDcInstanceNotificationCbFunc

CpaStatus cpaDcGetSessionSize (CpaInstanceHandle dcInstance,
CpaDcSessionSetupData * pSessionData,
Cpa32U * pSessionSize,
Cpa32U * pContextSize

)
Get the size of the memory required to hold the session information.

The client of the Data Compression API is responsible for allocating sufficient memory to hold session
information and the context data. This function provides a means for determining the size of the session
information and the size of the context data.

Context:
No restrictions

5.12 Function Documentation

Reference Number: 330686-001 60

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Instance handle.
[in] pSessionData Pointer to a user instantiated structure containing session data.
[out] pSessionSize On return, this parameter will be the size of the memory that will be required

by cpaDcInitSession() for session data.
[out] pContextSize On return, this parameter will be the size of the memory that will be required

for context data. Context data is save/restore data including history and any
implementation specific data that is required for a save/restore operation.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

It is expected that context data is comprised of the history and any data stores that are specific to the
history such as linked lists or hash tables. For stateless sessions the context size returned from this
function will be zero. For stateful sessions the context size returned will depend on the session setup data.

Session data is expected to include interim checksum values, various counters and other session related
data that needs to persist between invocations. For a given implementation of this API, it is safe to assume
that cpaDcGetSessionSize() will always return the same session size and that the size will not be different
for different setup data parameters. However, it should be noted that the size may change: (1) between
different implementations of the API (e.g. between software and hardware implementations or between
different hardware implementations) (2) between different releases of the same API implementation.

See also:
cpaDcInitSession()

CpaStatus cpaDcBufferListGetMetaSize (const CpaInstanceHandle instanceHandle,
Cpa32U numBuffers,
Cpa32U * pSizeInBytes

5.12 Function Documentation

Reference Number: 330686-001 61

)
Function to return the size of the memory which must be allocated for the pPrivateMetaData member of
CpaBufferList.

This function is used to obtain the size (in bytes) required to allocate a buffer descriptor for the
pPrivateMetaData member in the CpaBufferList structure. Should the function return zero then no meta
data is required for the buffer list.

Context:
This function may be called from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Handle to an instance of this API.
[in] numBuffers The number of pointers in the CpaBufferList. This is the maximum number

of CpaFlatBuffers which may be contained in this CpaBufferList.
[out] pSizeInBytes Pointer to the size in bytes of memory to be allocated when the client

wishes to allocate a cpaFlatBuffer.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
None

See also:
cpaDcGetInstances()

CpaStatus cpaDcGetStatusText (const CpaInstanceHandle dcInstance,
const CpaStatus errStatus,
Cpa8S * pStatusText

)

5.12 Function Documentation

Reference Number: 330686-001 62

Function to return a string indicating the specific error that occurred within the system.

When a function returns any error including CPA_STATUS_SUCCESS, the client can invoke this function
to get a string which describes the general error condition, and if available additional information on the
specific error. The Client MUST allocate CPA_STATUS_MAX_STR_LENGTH_IN_BYTES bytes for the
buffer string.

Context:
This function may be called from any context.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Handle to an instance of this API.
[in] errStatus The error condition that occurred.
[in,out] pStatusText Pointer to the string buffer that will be updated with the status text. The

invoking application MUST allocate this buffer to be exactly
CPA_STATUS_MAX_STR_LENGTH_IN_BYTES.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed. Note, in this scenario it is INVALID to call this

function a second time.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
None

See also:
CpaStatus

CpaStatus cpaDcSetAddressTranslation (const CpaInstanceHandle instanceHandle,
CpaVirtualToPhysical virtual2Physical

)
Set Address Translation function.

5.12 Function Documentation

Reference Number: 330686-001 63

This function is used to set the virtual to physical address translation routine for the instance. The specified
routine is used by the instance to perform any required translation of a virtual address to a physical
address. If the application does not invoke this function, then the instance will use its default method, such
as virt2phys, for address translation.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Data Compression API instance handle.
[in] virtual2Physical Routine that performs virtual to physical address translation.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

See also:
None

CpaStatus cpaDcDpGetSessionSize (CpaInstanceHandle dcInstance,
CpaDcSessionSetupData
* pSessionData,

Cpa32U * pSessionSize
)

Get the size of the memory required to hold the data plane session information.

The client of the Data Compression API is responsible for allocating sufficient memory to hold session
information. This function provides a means for determining the size of the session information and
statistics information.

Context:
No restrictions

Assumptions:
None

5.12 Function Documentation

Reference Number: 330686-001 64

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Instance handle.
[in] pSessionData Pointer to a user instantiated structure containing session data.
[out] pSessionSize On return, this parameter will be the size of the memory that will be required

by cpaDcInitSession() for session data.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

Session data is expected to include interim checksum values, various counters and other other session
related data that needs to persist between invocations. For a given implementation of this API, it is safe to
assume that cpaDcDpGetSessionSize() will always return the same session size and that the size will not
be different for different setup data parameters. However, it should be noted that the size may change: (1)
between different implementations of the API (e.g. between software and hardware implementations or
between different hardware implementations) (2) between different releases of the same API
implementation

See also:
cpaDcDpInitSession()

CpaStatus cpaDcDpRemoveSession (const CpaInstanceHandle dcInstance,
CpaDcSessionHandle pSessionHandle

)
Compression Data Plane Session Remove Function.

This function will remove a previously initialized session handle and the installed callback handler function.
Removal will fail if outstanding calls still exist for the initialized session handle. The client needs to retry the
remove function at a later time. The memory for the session handle MUST not be freed until this call has
completed successfully.

Context:

5.12 Function Documentation

Reference Number: 330686-001 65

This is a synchronous function that cannot sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Instance handle.
[in,out] pSessionHandle Session handle.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
The component has been initialized via cpaDcStartInstance function.

Postcondition:
None

Note:
This is a synchronous function and has no completion callback associated with it.

See also:
cpaDcDpInitSession

5.12 Function Documentation

Reference Number: 330686-001 66

6 Data Compression Data Plane API
 [Data Compression API]

Collaboration diagram for Data Compression Data Plane API:

6.1 Detailed Description

File: cpa_dc_dp.h

These data structures and functions specify the Data Plane API for compression and decompression
operations.

This API is recommended for data plane applications, in which the cost of offload - that is, the cycles
consumed by the driver in sending requests to the hardware, and processing responses - needs to be
minimized. In particular, use of this API is recommended if the following constraints are acceptable to your
application:

Thread safety is not guaranteed. Each software thread should have access to its own unique instance
(CpaInstanceHandle) to avoid contention.

•

Polling is used, rather than interrupts (which are expensive). Implementations of this API will provide a
function (not defined as part of this API) to read responses from the hardware response queue and
dispatch callback functions, as specified on this API.

•

Buffers and buffer lists are passed using physical addresses, to avoid virtual to physical address
translation costs.

•

The ability to enqueue one or more requests without submitting them to the hardware allows for
certain costs to be amortized across multiple requests.

•

Only asynchronous invocation is supported.•
There is no support for partial packets.•
Implementations may provide certain features as optional at build time, such as atomic counters.•
There is no support for stateful operations.

The "default" instance (CPA_INSTANCE_HANDLE_SINGLE) is not supported on this API.
The specific handle should be obtained using the instance discovery functions
(cpaDcGetNumInstances, cpaDcGetInstances).

♦
•

6.2 Data Structures

struct _CpaDcDpOpData•

6.3 Typedefs

typedef _CpaDcDpOpData CpaDcDpOpData•
typedef void(* CpaDcDpCallbackFn)(CpaDcDpOpData *pOpData)•

6.4 Functions

CpaStatus cpaDcDpInitSession (CpaInstanceHandle dcInstance, CpaDcSessionHandle
pSessionHandle, CpaDcSessionSetupData *pSessionData)

•

Reference Number: 330686-001 67

CpaStatus cpaDcDpRegCbFunc (const CpaInstanceHandle dcInstance, const
CpaDcDpCallbackFn pNewCb)

•

CpaStatus cpaDcDpEnqueueOp (CpaDcDpOpData *pOpData, const CpaBoolean performOpNow)•
CpaStatus cpaDcDpEnqueueOpBatch (const Cpa32U numberRequests, CpaDcDpOpData
*pOpData[], const CpaBoolean performOpNow)

•

CpaStatus cpaDcDpPerformOpNow (CpaInstanceHandle dcInstance)•

6.5 Data Structure Documentation

6.5.1 _CpaDcDpOpData Struct Reference

Collaboration diagram for _CpaDcDpOpData:

6.5.1.1 Detailed Description

File: cpa_dc_dp.h

Operation Data for compression data plane API.

6.4 Functions

Reference Number: 330686-001 68

This structure contains data relating to a request to perform compression processing on one or more data
buffers.

The physical memory to which this structure points should be at least 8-byte aligned.

All reserved fields SHOULD NOT be written or read by the calling code.

See also:
cpaDcDpEnqueueOp, cpaDcDpEnqueueOpBatch

6.5.1.2 Data Fields

Cpa64U reserved0
Reserved for internal use.

•

Cpa32U bufferLenToCompress
The total size of the input data in bytes.

•

Cpa32U bufferLenForData
The total size of the output buffer in bytes.

•

Cpa64U reserved1
Reserved for internal use.

•

Cpa64U reserved2
Reserved for internal use.

•

Cpa64U reserved3
Reserved for internal use.

•

CpaDcRqResults results
Results of the operation.

•

CpaInstanceHandle dcInstance
Instance to which the request is to be enqueued.

•

CpaDcSessionHandle pSessionHandle
DC Session associated with the stream of requests.

•

CpaPhysicalAddr srcBuffer
Physical address of the source buffer on which to operate.

•

Cpa32U srcBufferLen
The total size of the input buffer in bytes.

•

CpaPhysicalAddr destBuffer
Physical address of the destination buffer on which to operate.

•

Cpa32U destBufferLen
The total size of the output buffer in bytes.

•

CpaDcSessionDir sessDirection
Session direction indicating whether session is used for compression, decompression.

•

CpaStatus responseStatus
Status of the operation.

•

CpaPhysicalAddr thisPhys
Physical address of this data structure.

•

void * pCallbackTag
Opaque data that will be returned to the client in the function completion callback.

•

6.5.1.3 Field Documentation

Cpa64U _CpaDcDpOpData::reserved0
Reserved for internal use.

Source code should not read or write this field.

6.5.1 _CpaDcDpOpData Struct Reference

Reference Number: 330686-001 69

Cpa32U _CpaDcDpOpData::bufferLenToCompress
The total size of the input data in bytes.

Cpa32U _CpaDcDpOpData::bufferLenForData
The total size of the output buffer in bytes.

Cpa64U _CpaDcDpOpData::reserved1
Reserved for internal use.

Source code should not read or write

Cpa64U _CpaDcDpOpData::reserved2
Reserved for internal use.

Source code should not read or write

Cpa64U _CpaDcDpOpData::reserved3
Reserved for internal use.

Source code should not read or write

CpaDcRqResults _CpaDcDpOpData::results
Results of the operation.

Contents are valid upon completion.

CpaInstanceHandle _CpaDcDpOpData::dcInstance
Instance to which the request is to be enqueued.

CpaDcSessionHandle _CpaDcDpOpData::pSessionHandle
DC Session associated with the stream of requests.

CpaPhysicalAddr _CpaDcDpOpData::srcBuffer
Physical address of the source buffer on which to operate.

This is either the location of the data, of length srcBufferLen; or, if srcBufferLen has the special value
CPA_DP_BUFLIST, then srcBuffer contains the location where a CpaPhysBufferList is stored.

Cpa32U _CpaDcDpOpData::srcBufferLen
The total size of the input buffer in bytes.

If the srcBuffer is a pointer to a buffer list then this value is set to CPA_DP_BUFLIST

CpaPhysicalAddr _CpaDcDpOpData::destBuffer
Physical address of the destination buffer on which to operate.

This is either the location of the data, of length destBufferLen; or, if destBufferLen has the special value
CPA_DP_BUFLIST, then destBuffer contains the location where a CpaPhysBufferList is stored.

Cpa32U _CpaDcDpOpData::destBufferLen
The total size of the output buffer in bytes.

6.5.1 _CpaDcDpOpData Struct Reference

Reference Number: 330686-001 70

If the destBuffer is a pointer to a buffer list then this value is set to CPA_DP_BUFLIST

CpaDcSessionDir _CpaDcDpOpData::sessDirection
Session direction indicating whether session is used for compression, decompression.

For the DP implemetnation, CPA_DC_DIR_COMBINED is not a valid selection.

CpaStatus _CpaDcDpOpData::responseStatus
Status of the operation.

Valid values are CPA_STATUS_SUCCESS and CPA_STATUS_FAIL

CpaPhysicalAddr _CpaDcDpOpData::thisPhys
Physical address of this data
structure.

void* _CpaDcDpOpData::pCallbackTag
Opaque data that will be returned to the client in the function completion callback.

This opaque data is not used by the implementation of the API, but is simply returned as part of the
asynchronous response. It may be used to store information that might be useful when processing the
response later.

6.6 Typedef Documentation

typedef struct _CpaDcDpOpData CpaDcDpOpData

File: cpa_dc_dp.h

Operation Data for compression data plane API.

This structure contains data relating to a request to perform compression processing on one or more data
buffers.

The physical memory to which this structure points should be at least 8-byte aligned.

All reserved fields SHOULD NOT be written or read by the calling code.

See also:
cpaDcDpEnqueueOp, cpaDcDpEnqueueOpBatch

typedef void(* CpaDcDpCallbackFn)(CpaDcDpOpData *pOpData)

File: cpa_dc_dp.h

Definition of callback function for compression data plane API.

This is the callback function prototype. The callback function is registered by the application using the
cpaDcDpRegCbFunc function call, and called back on completion of asycnhronous requests made via
calls to cpaDcDpEnqueueOp or cpaDcDpEnqueueOpBatch.

Context:

6.6 Typedef Documentation

Reference Number: 330686-001 71

This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
No

Parameters:
[in] pOpData Pointer to the CpaDcDpOpData object which was supplied as part of the original

request.

Returns:
None

Precondition:
Instance has been initialized. Callback has been registered with cpaDcDpRegCbFunc.

Postcondition:
None

Note:
None

See also:
cpaDcDpRegCbFunc

6.7 Function Documentation

CpaStatus cpaDcDpInitSession (CpaInstanceHandle dcInstance,
CpaDcSessionHandle pSessionHandle,
CpaDcSessionSetupData * pSessionData

)

File: cpa_dc_dp.h

Initialize compression or decompression data plane session.

This function is used to initialize a compression/decompression session. A single session can be used for
both compression and decompression requests. Clients MUST register a callback function for the
compression service using this function. This function returns a unique session handle each time this
function is invoked. The order of the callbacks are guaranteed to be in the same order the compression or
decompression requests were submitted for each session, so long as a single thread of execution is used
for job submission.

Context:
This function may be called from any context.

6.7 Function Documentation

Reference Number: 330686-001 72

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] dcInstance Instance handle derived from discovery functions.
[in,out] pSessionHandle Pointer to a session handle.
[in,out] pSessionData Pointer to a user instantiated structure containing session data.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
dcInstance has been started using cpaDcStartInstance.

Postcondition:
None

Note:
Only a synchronous version of this function is provided.

This initializes opaque data structures in the session handle. Data compressed under this session will be
compressed to the level specified in the pSessionData structure. Lower compression level numbers indicate
a request for faster compression at the expense of compression ratio. Higher compression level numbers
indicate a request for higher compression ratios at the expense of execution time.

The session is opaque to the user application and the session handle contains job specific data.

The window size specified in the pSessionData must match exactly one of the supported window sizes
specified in the capability structure. If a bi-directional session is being initialized, then the window size must
be valid for both compress and decompress.

Note stateful sessions are not supported by this API.

See also:
None

CpaStatus cpaDcDpRegCbFunc (
const
CpaInstanceHandle dcInstance,

pNewCb

6.7 Function Documentation

Reference Number: 330686-001 73

const
CpaDcDpCallbackFn

)

File: cpa_dc_dp.h

Registration of the operation completion callback function.

This function allows a completion callback function to be registered. The registered callback function is
invoked on completion of asycnhronous requests made via calls to cpaDcDpEnqueueOp or
cpaDcDpEnqueueOpBatch.

Context:
This is a synchronous function and it cannot sleep. It can be executed in a context that DOES NOT
permit sleeping.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
No

Parameters:
[in] dcInstance Instance on which the callback function is to be registered.
[in] pNewCb Callback function for this instance.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
Instance has been initialized.

Postcondition:
None

Note:
None

See also:
cpaDcDpCbFunc

CpaStatus cpaDcDpEnqueueOp (CpaDcDpOpData * pOpData,
const CpaBoolean performOpNow

)

6.7 Function Documentation

Reference Number: 330686-001 74

File: cpa_dp_dp.h

Enqueue a single compression or decompression request.

This function enqueues a single request to perform a compression, decompression operation.

The function is asynchronous; control is returned to the user once the request has been submitted. On
completion of the request, the application may poll for responses, which will cause a callback function
(registered via cpaDcDpRegCbFunc) to be invoked. Callbacks within a session are guaranteed to be in the
same order in which they were submitted.

The following restrictions apply to the pOpData parameter:

The memory MUST be aligned on an 8-byte boundary.•
The reserved fields of the structure MUST NOT be written to or read from.•
The structure MUST reside in physically contiguous memory.•

Context:
This function will not sleep, and hence can be executed in a context that does not permit sleeping.

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
No

Parameters:
[in] pOpData Pointer to a structure containing the request parameters. The client code

allocates the memory for this structure. This component takes ownership of
the memory until it is returned in the callback, which was registered on the
instance via cpaDcDpRegCbFunc. See the above Description for some
restrictions that apply to this parameter.

[in] performOpNow Flag to indicate whether the operation should be performed immediately
(CPA_TRUE), or simply enqueued to be performed later (CPA_FALSE). In
the latter case, the request is submitted to be performed either by calling
this function again with this flag set to CPA_TRUE, or by invoking the
function cpaDcDpPerformOpNow.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
The session identified by pOpData->pSessionHandle was setup using cpaDcDpInitSession. The
instance identified by pOpData->dcInstance has had a callback function registered via
cpaDcDpRegCbFunc.

6.7 Function Documentation

Reference Number: 330686-001 75

Postcondition:
None

Note:
A callback of type CpaDcDpCallbackFn is generated in response to this function call. Any errors
generated during processing are reported as part of the callback status code.

See also:
cpaDcDpPerformOpNow

CpaStatus cpaDcDpEnqueueOpBatch (const Cpa32U numberRequests,
CpaDcDpOpData * pOpData[],
const CpaBoolean performOpNow

)

File: cpa_dc_dp.h

Enqueue multiple requests to the compression data plane API.

This function enqueues multiple requests to perform compression or decompression operations.

The function is asynchronous; control is returned to the user once the request has been submitted. On
completion of the request, the application may poll for responses, which will cause a callback function
(registered via cpaDcDpRegCbFunc) to be invoked. Separate callbacks will be invoked for each request.
Callbacks within a session and at the same priority are guaranteed to be in the same order in which they
were submitted.

The following restrictions apply to each element of the pOpData array:

The memory MUST be aligned on an 8-byte boundary.•
The reserved fields of the structure MUST be set to zero.•
The structure MUST reside in physically contiguous memory.•

Context:
This function will not sleep, and hence can be executed in a context that does not permit sleeping.

Assumptions:
Client MUST allocate the request parameters to 8 byte alignment. Reserved elements of the
CpaDcDpOpData structure MUST not used The CpaDcDpOpData structure MUST reside in
physically contiguous memory.

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
No

Parameters:
[in] numberRequests The number of requests in the array of CpaDcDpOpData structures.
[in] pOpData

6.7 Function Documentation

Reference Number: 330686-001 76

An array of pointers to CpaDcDpOpData structures. Each
CpaDcDpOpData structure contains the request parameters for that
request. The client code allocates the memory for this structure. This
component takes ownership of the memory until it is returned in the
callback, which was registered on the instance via cpaDcDpRegCbFunc.
See the above Description for some restrictions that apply to this
parameter.

[in] performOpNow Flag to indicate whether the operation should be performed immediately
(CPA_TRUE), or simply enqueued to be performed later (CPA_FALSE).
In the latter case, the request is submitted to be performed either by
calling this function again with this flag set to CPA_TRUE, or by invoking
the function cpaDcDpPerformOpNow.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
The session identified by pOpData[i]->pSessionHandle was setup using cpaDcDpInitSession. The
instance identified by pOpData[i]->dcInstance has had a callback function registered via
cpaDcDpRegCbFunc.

Postcondition:
None

Note:
Multiple callbacks of type CpaDcDpCallbackFn are generated in response to this function call (one
per request). Any errors generated during processing are reported as part of the callback status
code.

See also:
cpaDcDpEnqueueOp

CpaStatus cpaDcDpPerformOpNow (CpaInstanceHandle dcInstance)

File: cpa_dp_dp.h

Submit any previously enqueued requests to be performed now on the compression data plane API.

This function triggers processing of previously enqueed requests on the referenced instance.

Context:
Will not sleep. It can be executed in a context that does not permit sleeping.

Side-Effects:
None

Blocking:
No

Reentrant:
No

6.7 Function Documentation

Reference Number: 330686-001 77

Thread-safe:
No

Parameters:
[in] dcInstance Instance to which the requests will be submitted.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESTARTING API implementation is restarting. Resubmit the request.

Precondition:
The component has been initialized via cpaDcStartInstance function. A compression session has
been previously setup using the cpaDcDpInitSession function call.

Postcondition:
None

See also:
cpaDcDpEnqueueOp, cpaDcDpEnqueueOpBatch

6.7 Function Documentation

Reference Number: 330686-001 78

	Table of Contents
	1 Deprecated List
	2 CPA API
	2.1 Detailed Description
	2.2 Modules

	3 Base Data Types [CPA API]
	3.1 Detailed Description
	3.2 Data Structures
	3.3 Defines
	3.4 Typedefs
	3.5 Enumerations
	3.6 Data Structure Documentation
	3.6.1 _CpaFlatBuffer Struct Reference
	3.6.2 _CpaBufferList Struct Reference
	3.6.3 _CpaPhysFlatBuffer Struct Reference
	3.6.4 _CpaPhysBufferList Struct Reference
	3.6.5 _CpaInstanceInfo Struct Reference
	3.6.6 _CpaPhysicalInstanceId Struct Reference
	3.6.7 _CpaInstanceInfo2 Struct Reference

	3.7 Define Documentation
	3.8 Typedef Documentation
	3.9 Enumeration Type Documentation

	4 CPA Type Definition [CPA API]
	4.1 Detailed Description
	4.2 Defines
	4.3 Typedefs
	4.4 Enumerations
	4.5 Define Documentation
	4.6 Typedef Documentation
	4.7 Enumeration Type Documentation

	5 Data Compression API [CPA API]
	5.1 Detailed Description
	5.2 Modules
	5.3 Data Structures
	5.4 Defines
	5.5 Typedefs
	5.6 Enumerations
	5.7 Functions
	5.8 Data Structure Documentation
	5.8.1 _CpaDcInstanceCapabilities Struct Reference
	5.8.2 _CpaDcSessionSetupData Struct Reference
	5.8.3 _CpaDcStats Struct Reference
	5.8.4 _CpaDcRqResults Struct Reference

	5.9 Define Documentation
	5.10 Typedef Documentation
	5.11 Enumeration Type Documentation
	5.12 Function Documentation

	6 Data Compression Data Plane API [Data Compression API]
	6.1 Detailed Description
	6.2 Data Structures
	6.3 Typedefs
	6.4 Functions
	6.5 Data Structure Documentation
	6.5.1 _CpaDcDpOpData Struct Reference

	6.6 Typedef Documentation
	6.7 Function Documentation

