
Document Number: 301925, Revision: 002
October 2005

Intel® IXP400 Software: VLAN and
QoS Application Version 2.0
Programmer’s Guide

October 2005

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
2 Document Number: 301925, Revision: 002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel IXP400 Software may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

This Programmer’s Guide as well as the software described in it is furnished under license and may only be used or copied in accordance with the
terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear
in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel, the Intel logo, and Intel XScale are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2005, Intel Corporation. All Rights Reserved.

http://www.intel.com

Contents

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 3

Contents
1.0 Introduction..7

1.1 What’s New...7
1.2 Scope and Purpose ..7
1.3 Acronyms..8
1.4 Related Documents ..9

2.0 Software Overview ..9
2.1 Functionality Overview..9

2.1.1 VLAN Functionality ..9
2.1.2 QoS Functionality ..10

2.2 Software Architecture and High-Level Design ..11

3.0 802.1Q VLAN Module ..12
3.1 Ingress Rules Component ..15

3.1.1 External Interactions and Dependencies ...17
3.1.2 Key Assumptions ...17

3.2 VLAN Classification Component...17
3.2.1 External Interactions and Dependencies ...18

3.3 Egress Rules Component...19
3.3.1 External Interactions and Dependencies ...20
3.3.2 Key Assumptions ...21

3.4 Database Component...21
3.4.1 External Interactions and Dependencies ...21

3.4.1.1 Port Database ..22
3.4.1.2 VLAN Database ...22

3.4.2 Classification Rules Database ...23
3.5 Management Interface Component ..24

4.0 802.1p User Priority and QoS Module ...25
4.1 Traffic Shaper Component..26

4.1.1 External Interactions and Dependencies ...27
4.2 Priority Mapping Component ..28

4.2.1 External Interactions and Dependencies ...29
4.2.2 Key Assumptions ...29

4.3 Management Interface Component ..29

5.0 IOCTL Enhancements for Ethernet Drivers ..30

6.0 API Reference ..31
6.1 Data Type Definitions ...32
6.2 Function Prototype Definitions..37

Figures
1 Intel® IXP400 Software and Ethernet Device Driver Overview...11
2 Software Architecture with the VLAN and QoS Example Code..12
3 802.1Q VLAN Module – Component View ...13
4 802.1Q Frame Types..15

Contents

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
4 Document Number: 301925, Revision: 002

5 Flow Diagram for Acceptable Frame Type Filtering ... 16
6 Flow Diagram for Ingress VLAN Membership Filtering .. 17
7 Flow Diagram for VLAN Classification.. 18
8 Flow Diagram for Egress VLAN Membership Filtering ... 19
9 Flow Diagram for Rebuilding the Frame Header .. 20
10 Port Database Dependencies... 22
11 VLAN Database Dependencies.. 23
12 Classification Rules Database.. 24
13 Management Interface Interactions .. 25
14 802.1p User Priority to Traffic Class Mapping .. 28
15 Interactions of the QoS Module Management Interface Sub-Component.................................. 29
16 System View of IOCTL Utilities and Parser .. 30

Tables
1 Rules for Rebuilding Frame Headers ... 20
2 User Priority to Traffic Class Defaults and Recommendations... 28
3 API Index .. 31

Contents

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 5

Revision History
Date Revision Description

October 2005 002 General updates. Replaced Section 6.0, “API Reference” on page 31.
Change bars indicate areas of change.

September 2004 001 Initial release.

This page is intentionally left blank.

Contents

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
6 Document Number: 301925, Revision: 002

Introduction

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 7

1.0 Introduction

1.1 What’s New

The VLAN QoS API has been updated from version 1.0. This is documented in Section 6.0, “API
Reference” on page 31.

VLAN Features

• Supports all VLAN groups (VLAN ID #1 to #4094) and all can be enabled simultaneously.
Version 1.0 only supports 32 VLAN groups.

• Protocol-Based VLAN classification supports IPv6 and IPv4 protocol. Version 1.0 only
supports IPv4.

• The following computing/processing tasks are off-loaded to NPE-level software:

— Acceptable Frame Type Checker

— VLAN Membership Filtering

— Frame Tagging and Tag-Removal on Egress

QoS Features

• Supports QoS on Ingress and Egress side. Version 1.0 only supports QoS on Ingress.

• Four traffic classes are supported for each side and for each NPE Ethernet port. Version 1.0
can support eight traffic classes on Ingress for each port.

• Automatic adjusting for queue length for traffic shapers is supported. The benefit is that the
setting function for queue length, which while supported in Version 1.0, is no longer needed or
supported.

1.2 Scope and Purpose

The purpose of this document is to provide high-level technical design information for the Intel®
IXP400 Software VLAN and QoS Application v2.0. Based on Intel® IXP400 Software v2.0, the
VLAN and QoS application is provided to implement IEEE 802.1Q VLAN (Virtual Local Area
Networks), IEEE 802.1p User Priority to Traffic Class (TC) mappings, and Quality of Services
(QoS) functionality for IPv4/IPv6 traffic using the IXP400 software.

This document covers the high-level functionality of the various modules, and describes their
behavioral links. For a more complete understanding, you should review the API reference
information provided in Section 6.0, “API Reference” on page 31, review the IxEthDB Functional
Behavior section in the Intel® IXP400 Software Programmer’s Guide, and review the VLAN and
QoS Example Code user interface (as described in the VLAN and QoS Application Version 2.0
Release Notes), and the VLAN and QoS Example source code.

It is assumed that you are familiar with IEEE 802.1D Ethernet bridging and IEEE 802.1Q/p VLAN
and Priority functionality.

Introduction

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
8 Document Number: 301925, Revision: 002

1.3 Acronyms

FIFO First In, First Out

ID Identification

IEEE Institute of Electrical and Electronics Engineers

IO Input / Output

IOCTL I/O Control

LAN Local Area Network

MAC Media Access Controller

NPE Network Processing Engine

OS Operating System

PVID Port VLAN ID

TC Traffic Class

QoS Quality of Service

VID VLAN Identification

VLAN Virtual LAN

Software Overview

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 9

1.4 Related Documents

Additional Intel documents listed below are available from your field representative or from the
following Web site:

http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm

2.0 Software Overview

2.1 Functionality Overview

2.1.1 VLAN Functionality

The VLAN (Virtual Local Area Networks) functionality behaves as described in the following
example scenario:

1. A frame generated from one station is received by NPE Ethernet port 1.

2. The frame type (VLAN-tagged or VLAN-untagged) is evaluated for the acceptance test.
If the frame is not acceptable by port 1, it is discarded; otherwise, the VLAN tag for the frame
is determined. For a VLAN-tagged frame, the VLAN tag is obtained from the frame header;
otherwise, it is determined by the VLAN tag of the ingress port (i.e., port 1) or by the
classification rules. User Priority and VID (id of the VLAN which this frame should be
grouped into) are included in the VLAN tag.
In this example, the VID of the frame is 1.

3. The Ingress rule is then applied to determine if this frame should be discarded or kept.
The Ingress rule determines whether the station is a member of the VLAN in which the frame
is grouped.
In our example, the frame has not been discarded and the bridging function component will
decide which port this frame should be forwarding to.

Document Title Document #

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Release Notes N/A

Intel® IXP400 Software Release 2.0 Software Release Notes N/A

Intel® IXP400 Software Programmer’s Guide (for Release v2.0) 252539-007

Intel® IXP400 Software Specification Update 273795

IEEE Standards (IEEE Std 802.1D-1998) for Local Area and Metropolitan Networks,
Media Access Control (MAC) Bridge N/A

IEEE Standards (IEEE Std 802.1Q-1998) for Local Area and Metropolitan Networks,
Virtual Bridged Local Area Networks N/A

IEEE Standards (IEEE Std 802.1p-1998) for Traffic class expediting and dynamic
multicast filtering N/A

http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm
http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm

Software Overview

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
10 Document Number: 301925, Revision: 002

4. Once the destination port (e.g., NPE Ethernet port 2) is decided, the egress filtering rule will be
applied to make sure whether this frame can be transmitted on the destination port.
Suppose the VLAN #1 is in the membership of port 2; therefore, the frame passes the filtering
rule and is instructed by egress rule that its frame type as being submitted through port 2.
To fit into the proper frame type, the frame will be tagged, un-tagged by egress port or be
passed through.

2.1.2 QoS Functionality

Traffic can be classified into traffic classes. QoS Traffic Class Mapping maps each Ethernet frame
into particular traffic classes according to the user priority field of the frame. When the IXP400-
based system is connected to a VLAN machine, that machine is considered the ‘previous stat’ to
the IXP400 system. The previous stat generates Ethernet frames with VLAN tags containing the
user priority field.

The mapping table should be manageable per port to allow different QoS strategies on each
individual port.

With the exception of bridging, ingress traffic is usually forwarded to the upper layers. This is
usually data that needs further processing by the host processor, such as DSP (digital signal
processing) applications or network routing. QoS can be applied to each traffic type differently
according to their Traffic Class. For example, time-sensitive traffic (e.g., voice) is mapped into a
traffic class different from time-insensitive traffic (e.g., routing frame). By setting higher priority
for the voice traffic, the bandwidth for the voice data can be distributed to prevent transmission of
the voice frames from being delayed/blocked by the routing frames. This would help ensure high
voice quality in VoIP applications.

In the egress side of NPE Ethernet port, the QoS is also supported in the manner very similar to the
ingress side. The egress traffics are classified and mapped into classes. Priority can be set to the
individual classes. Careful assignment of priorities can help conserve transmission bandwidth for
higher-priority traffic.

Software Overview

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 11

2.2 Software Architecture and High-Level Design

As depicted in Figure 1, the software architecture of Intel® IXP400 Software VLAN and QoS
Application v2.0 is designed to integrate with the IXP400 software.

The Intel® IXP4XX Product Line of Network Processors contain Network Processing Engines
(NPEs), which provide physical connectivity and processing of data to various interfaces. One
function of the IXP400 software is to provide OS and upper-level applications access to these
interfaces via a set of APIs. In the case of the VLAN and QoS Example Code, the two Ethernet
NPE ports are the two physical links of an Ethernet bridge. The Ethernet device driver is the OS-
specific code that provides access to these NPEs via the services of the IXP400 software.

The VLAN and QoS functionality is provided by a set of software modules that interface with the
IXP400 Software, the OS-specific device driver for the NPE ports, and the OS-specific bridging
software.

The modules do contain a minimal amount of OS-dependent code. When OS-specific code is used,
it is enclosed by a compiler definition typically passed through to the makefiles from the IXP400
software build system.

Figure 1. Intel® IXP400 Software and Ethernet Device Driver Overview

802.1Q VLAN Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
12 Document Number: 301925, Revision: 002

Figure 2 closely resembles Figure 1, but includes the VLAN and QoS Example Code. The two
modules, one for 802.1Q VLAN and another for QoS processing, are inserted into the data path of
the system. The Ethernet device driver uses these modules when VLAN-capable Ethernet frames
are received or need to be sent.

The VLAN and QoS Example Code also provides control path capabilities. The Ethernet device
driver’s IOCTL parser is enhanced to recognize and execute the additional VLAN and QoS
functionality.

3.0 802.1Q VLAN Module

This module implements the IEEE 802.1Q VLAN functionality. The module includes five software
sub-components, which are briefly described below; later sections provide more sub-component
detail. Ingress Rules, Egress Rules, and VLAN Classification deal with frame processing, the
Database records all information supported by 802.1Q VLAN module, while the Management
Interface deals with configuration for each component and provides public APIs for external
modules. The general flow, shown in Figure 3, is described below.

Figure 2. Software Architecture with the VLAN and QoS Example Code

802.1Q VLAN Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 13

LAN Module Sub-Components

• Ingress Rules
Two Ingress Rule filterings are supported: Acceptable Frame Types, and Ingress VLAN
Membership. Since IXP400 Software v1.5, the filterings have been assisted by NPE firmware
instead of by software running on the Intel XScale core. For Acceptable Frame Types filtering,
the NPE determines if received frames are “VLAN-tagged” or “all frame types”. Frames are
discarded if the reception port is not allowed to receive these types of frames. For Ingress
VLAN Membership filtering, the frames are discarded if the VLAN group the frame carries is
not in the membership table of the port from which the frame is received or transmitted
through.

• VLAN Classification
Determines VLAN Identification (VID) and User Priority of received frames (in ingress path)
and transmission frames (in egress path), either by the criteria of Tag-Based, Port-Based,
Protocol-Based, or MAC-Based VLAN.

• Egress Rules
Two major features are supported: Egress VLAN Membership filtering and Rebuild Packet
Header. The function of the Egress VLAN Membership filtering is the same as Ingress VLAN
Membership filtering, except that it executes at the egress port. Rebuild Packet Header
supports the ability to determine if transmission frames should be tagged or untagged, and then
adds/removes/modifies the VLAN-tag header for the outbound frames.

Figure 3. 802.1Q VLAN Module – Component View

VLAN VLAN
ClassificationClassification IEEE 802.1QIEEE 802.1Q

DatabaseDatabase

Management InterfaceManagement Interface

IXP400 IXP400
EthernetEthernet
Device Device
DriverDriver

Ethernet FramesEthernet Frames
Data FlowData Flow

Ethernet VLANEthernet VLAN
Control FlowControl Flow

Ingress Rules Ingress Rules

Egress RulesEgress Rules
In

gr
es

s
In

gr
es

s

E
gress

E
gress

802.1Q VLAN Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
14 Document Number: 301925, Revision: 002

• Management Interface
Interface for maintaining database and public APIs.

• Databases
Records all information and rules for the 802.1Q VLAN module. They include port-specific
information, VLAN-group-specific information, and VLAN classification rules. The port-
specific information is port-related such as PVID (Port VLAN Identification), Acceptable
Frame Types parameter, and VLAN membership table. VLAN-specific information contains
the Egress attributes (tagged or untagged). Classification rules include the MAC-based
classification rules and Protocol (Layer 3/4)-based classification rules.

Private Frame Buffer Memory

Sixteen bytes of extra memory is reserved for each frame buffer used by the VLAN module for
storing per-frame VID and user priority information, which is determined at the ingress port. This
private memory is transparent to the IXP400 software.

Ingress Path

For inbound Ethernet Frames, the NPE firmware performs the Ingress rule for VLAN ingress
processing. The Ingress Rules component analyzes the frame type, VLAN-tagged, Priority-tagged,
or VLAN-untagged type (see Figure 4), of received frames and commences Acceptance Frame
Type Check filtering. Frames are discarded if their frame types are not allowed on the reception
port. If frames pass the Acceptance Frame Type Check filtering, the Ingress Rules component then
calls the services of the VLAN Classification component to determine VLAN Identification (VID)
and user priority of received frames. Next, the Database component is queried to get the (port)
member set of the detected VLAN group and decide if the reception port is in the member set of
that VLAN group or not. Frames are discarded if the reception port is not in the member set of the
detected VLAN group. For frames that pass the VLAN Ingress Rules (Acceptable Frame Type
Check and VLAN Membership filtering), the VID and user priority are saved into the private area
and frames are relayed to the kernel for the bridging process. In addition to the VID and User
Priority data, the module also calculates a signature and checksum and stores this information in
the private area to help ensure data integrity.

Egress Path

For outbound Ethernet frames, the device driver calls the API of the Egress Rules component for
VLAN Egress processing if the Egress Rules component determines frames are bridged from the
other NPE/Ethernet port or from an upper-layer application. If frames come from the bridge,
ingress-determined VLAN Identification (VID) and user priority (both saved in the private area)
are retrieved. Otherwise, the Egress Rules component calls the services of VLAN classification
component to determine the VID and user priority of transmission frames. When VID and user
priority of transmission frames are determined, the Database component provides the (port)
member set of the VLAN group and decides whether or not the transmission port is in the member
set of VLAN group. Frames are discarded if the transmission port is not in the member set of the
VLAN group. If the transmission port is in the member set, egress attributes (VLAN-tagged or
VLAN-untagged) of the transmission port in the VLAN group and the frame type of the outbound
frames are used to determine whether or not the frame header of transmission frames should be
rebuilt (insert or remove VLAN tag). After completing all egress processes, the NPE put the frames
in transmission with proper headers.

802.1Q VLAN Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 15

3.1 Ingress Rules Component

This component supports the functionality of IEEE 802.1Q Acceptable Frame Types and Ingress
VLAN Membership filtering. In the IEEE 802.1Q standard, three frame types are defined —
VLAN-tagged, priority-tagged, and non-VLAN-tagged. Figure 4 shows the frame types.

The Acceptable Frame Types parameter associated with each port controls the reception of the
types of frames on that port. Valid values for this parameter are: “Admit Only VLAN-tag Frames”
and “Admit All Frames”. If it is set to “Admit Only VLAN-tag Frames”, any frames received on
that port which do not contain VID tagging information (i.e., untagged frames and priority-tagged
frames) are discarded. Acceptable Frame Type filtering is presented in Figure 5.

Figure 4. 802.1Q Frame Types

DA SA

B5322-01

Type/Length
(!=0x8100) Payload

VLAN-untagged Frame

DA SA VLAN Header Type/Length
(=0x8100) Payload

0x8100 3-bits
Priority

1-bit
C/F

12-bits VID
(!=0)

0x8100 3-bits
Priority

1-bit
C/F

12-bits VID
(=0)

VLAN-tagged
Frame

Priority-tagged
Frame

802.1Q VLAN Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
16 Document Number: 301925, Revision: 002

Ingress VLAN Membership filtering discards any frames whose VLAN group is not included in
the member set of the port they were received from. This is shown in Figure 6.

Figure 5. Flow Diagram for Acceptable Frame Type Filtering

Start Entry of
Acceptable Frame Types Filter

Return FALSE
(Rx frame should be

discarded)
Return TRUE

“Acceptable Frame Types” of
Rx port is “Admit only VLAN-tag

frames”?

Yes

Rx frames is VLAN
tagged?

YesNo

No

802.1Q VLAN Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 17

3.1.1 External Interactions and Dependencies

The Ethernet device driver utilizes this component to perform IEEE 802.1Q Ingress Rules
(Acceptable Frame Types and VLAN Membership) filtering. The Ingress rule depends on whether
or not Ingress Filtering is enabled, Acceptable Frame Types parameters, and the member set of the
VLAN group.

3.1.2 Key Assumptions

• The Database component in VLAN module is initialized and available for query.

• Default value of Acceptable Frame Types parameter for all ports is “Admit All Frames”.

3.2 VLAN Classification Component

VLAN Classification component is used to determine VLAN Identification (VID) and User
Priority of reception/transmission frames in accordance with established classification rules. Four
kinds of classification rules are supported: 802.1Q tag-based, port-based, MAC-based and Protocol
(Layer 3/4) -based classifications. 802.1Q tag-based classification determines VID and priority
from the VLAN-tag header of received frames. Port-based classification uses the reception port
transmission port of frames to decide VID and priority. MAC-based classification uses source
MAC address, and Protocol (Layer 3/4) -based classification uses information in IP/UDP/TCP
IPv6/UDP/TCP/AH/ESP headers to determine a frame’s VID and priority. VLAN Classification
flow is presented in Figure 7.

Figure 6. Flow Diagram for Ingress VLAN Membership Filtering

Start Entry of
Ingress VLAN Membership

Filter

Yes

Ingress Filtering of the
port is enabled?

Is the VLAN group in the
membership set of the port?

DISCARD the frame

No

PASS

Retrieve port’s VLAN
membership information

Yes

No

802.1Q VLAN Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
18 Document Number: 301925, Revision: 002

3.2.1 External Interactions and Dependencies

The Ethernet device driver utilizes the VLAN Classification component to perform Ingress and
Egress VLAN Classification. The driver also utilizes services in the Database component to
determine if any classification rules should be applied to frames.

Figure 7. Flow Diagram for VLAN Classification

VLAN-tagged frame?

Rx Ethernet Frame In

Retrieve VID and User Priority
information from VLAN tag

header of Rx frame

Yes

No

Retrieve User Priority
information from VLAN tag

header of Rx frame

Src MAC of Rx frame
meet any MAC-based

VLAN rule?

No

Apply received port’s PVID
(Port VLAN ID) and default

Priority (if it is not determined
yet) to Rx frame

Return

VLAN enabled or not?

Yes

No

MAC-based VLAN
enable?

VLAN-priority-tagged
frame?

No

Yes

L3/L4-based VLAN
enable?

No

Yes

No

Retrieve VID and user priority
(if it is not determined yet)
information from matched
MAC-based VLAN entry

Yes

L3/L4 info of Rx frame
meet any L3/L4-based

VLAN rule?

Yes

Retrieve VID and user priority
(if it is not determined yet)

information from matched L3/
L4-based VLAN entry

No

Yes

No

802.1Q VLAN Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 19

3.3 Egress Rules Component

This component provides functionality for IEEE 802.1Q VLAN Egress Rules. Two features are
supported: Egress VLAN Membership filtering and Rebuild the Frame Header.

• Egress VLAN Membership filtering
Discards frames whose transmission ports are not present in a frame's VID member set. This
behavior is depicted in Figure 8.

• Rebuilding Frame Headers
In the IEEE 802.1Q Standard, on a given link a VLAN-aware bridge can transmit untagged
frames for some VLANs and VLAN-tagged frames for others, but cannot transmit both
formats for the same VLAN. A feature is provided for adding, modifying, or removing VLAN
tag headers from transmission frames in accordance with tagging requirements on egress for
each port. This behavior is described in Figure 9 and Table 1.

Figure 8. Flow Diagram for Egress VLAN Membership Filtering

Start Entry of
Egress VLAN Membership

Filter

Is the VLAN group in the
membership set of the port?

DISCARD the frame

No

PASS

Retrieve port’s VLAN
membership information

Egress Filtering of the
port is enabled?

No

Yes

Yes

802.1Q VLAN Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
20 Document Number: 301925, Revision: 002

3.3.1 External Interactions and Dependencies

The NPE Ethernet device driver utilizes this component to perform 802.1Q Egress Rules functions.
It depends on whether or not Egress Filtering is enabled, and the VLAN membership of the port on
transmit.

Figure 9. Flow Diagram for Rebuilding the Frame Header

Table 1. Rules for Rebuilding Frame Headers

Transmit Port
Transmits Frame as:

Receive Port Receives frame as:

VLAN-Tagged Priority-Tagged Untagged

untagged Remove tag header Remove tag header N/A

VLAN tagged N/A Modify VLAN header Add VLAN tag header

Start Entry of
Rebuild Packet Header

Tagged port?

Return

Retrieve port’s VLAN
membership

Check the transmission port in
VLAN membership is tagged or

untagged port

YesNo

Tx frame is VLAN-
tagged?

Tx frame is VLAN-
tagged?

Modify VLAN header
to Tx frame

No

Remove VLAN
header from Tx

frame

No

No

YesTx frame is priority-
tagged?

Yes

Tx frame is priority-
tagged?

Yes

Add VLAN header to
Tx frame

No Yes

802.1Q VLAN Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 21

3.3.2 Key Assumptions

• Database component in VLAN module is initialized and available for query.

3.4 Database Component

This component contains all VLAN information for 802.1Q VLAN operations. There are three
categories (sub-database) of information in this database: Port Database, VLAN Database, and
Classification Database.

Port Database

This database contains information about port configurations as follows:

• PVID (Port VLAN Identification) and Default User Priority

• Status of Ingress Filtering (enable or disable)

• Acceptable frame types (AdmitAllFrames or AdmitOnlyVlanTaggedFrames)

• Port’s VLAN membership table.

Note: The VLAN membership table includes the VLAN groups to which the port belongs.
Please see the IEEE 802.1Q standard for more information.

VLAN Database

This database contains the following information about port configurations:

• VLAN function is enabled or not.

• Egress attributes (VLAN-tagged or VLAN-untagged) of ports in VLAN group.

Classification Rules Database

This database contains the following classification rules:

• Rules for MAC-based classification

• Rules for Protocol (Layer 3/4) -based classification.

There are several general characteristics and functions provided by the Database component:

• Services to configure and query information of Port Database, VLAN Database, and
Classification Rules Database.

• 4095 VLAN groups are supported simultaneously.

• Up to 16 MAC-based classification rules and up to 16 Protocol (Layer 3/4) -based
classification rules are supported, for up to 32 simultaneous rules.

3.4.1 External Interactions and Dependencies

The Database component houses critical information attributes used by other sub-components of
the VLAN module. Those interactions (detailed in this section) depend on which sub-database is
used.

802.1Q VLAN Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
22 Document Number: 301925, Revision: 002

3.4.1.1 Port Database

Depending on the desired service, the Port database is used by the following sub-components:

• Ingress Rules: Ingress Filtering and Acceptable Frame Types attributes for each port.

• Port Based VLAN: The PVID and Default User Priority for each port.

• Port VLAN membership: Ingress Filtering and Egress Filtering.

• Management Interface: Supports interactions from the component APIs.

This is shown in Figure 10.

3.4.1.2 VLAN Database

For the services described, the VLAN database is used by the following sub-components:

• Egress Rules: Egress attributes (tagged or untagged) for egress ports in a VLAN group.

• Management Interface: Supports interactions from the component APIs

Figure 10. Port Database Dependencies

Ingress Rules
(Acceptable Frame

Type Filter)

VLAN Classification

Ingress Rules
(Membership Filter)

Header Re-builder
(Option: for removing VLAN tag)

Egress Rules (Header
Re-builder)

VLAN Classification

Egress Rules
(Membership Filter)

Ingress Pipe Egress Pipe

VLAN Module

VLAN
Database

Port Database

Classification
Rules

Database
(for L2/L3/L4)

Management
Interface

802.1Q VLAN Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 23

3.4.2 Classification Rules Database

Depending on the desired service, the Classification Rules database is used by the following sub-
components:

• VLAN Classification: VID and User Priority of frames.

• Management Interface: Supports interactions from the component APIs.

Figure 11. VLAN Database Dependencies

Ingress Rules
(Acceptable Frame

Type Filter)

VLAN Classification

Ingress Rules
(Membership Filter)

Header Re-builder
(Option: for removing VLAN tag)

Egress Rules (Header
Re-builder)

VLAN Classification

Egress Rules
(Membership Filter)

Ingress Pipe Egress Pipe

VLAN Module

VLAN
Database

Port
Database

Classification
Rules

Database
(for L2/L3/L4)

Management
Interface

802.1Q VLAN Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
24 Document Number: 301925, Revision: 002

3.5 Management Interface Component

This component provides a unique interface (i.e., control path) for external modules to configure
the behavior of the 802.1Q VLAN module. For example, the IOCTL parser in the Ethernet device
driver should utilize this interface to access services in 802.1Q VLAN module. Direct accesses to
services (or APIs) in other components in this module are not supported.

The features provided by the Management Interface component are:

• Enable & Disable 802.1Q VLAN function

• Assignment VLAN membership and associated (tagged/untagged) attributes of egress ports

• Set port’s PVID and Default User Priority

• Configure Acceptable Frame Types filtering of reception port

• Enable & Disable Ingress (VLAN) Membership filtering

• Enable & Disable Egress (VLAN) Membership filtering

• Enable & Disable MAC-based VLAN Classification

• Enable & Disable Protocol (Layer 3/4) -based VLAN Classification

• Configure MAC-based VLAN Classification Rules

Figure 12. Classification Rules Database

Ingress Rules
(Acceptable Frame

Types Filter)

VLAN Classification

Ingress Rules
(Membership Filter)

Header Re-builder
(Option: or removing VLAN tag)

Egress Rules (Header
Re-builder)

VLAN Classification

Egress Rules
(Membership Filter)

Ingress Pipe Egress Pipe

VLAN Module

VLAN
Database

Port
Database

Classification
Rules

Database
(for L2/L3/L4)

Management
Interface

802.1p User Priority and QoS Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 25

• Configure Protocol (Layer 3/4) -based VLAN Classification Rules.

4.0 802.1p User Priority and QoS Module

This purpose of this software module is to implement IEEE 802.1p User Priority to Traffic Class
Mappings, and QoS functionality for both Ingress and Egress sides. According to IEEE 802.1p,
there are a maximum of eight traffic classes supported. This module support four traffic classes:
traffic class 0, 1, 2 and 3. The traffic class which is higher in numerically has the higher priority.
The determination for the traffic class is performed by a combination of two subsystems: the
VLAN Classifier module that provides the priority field in VLAN tag, and by the Ingress QoS -
Priority Mapping Module that maps port number and VLAN priority to a traffic class. Each traffic
class has its corresponding shaper with the private configuration. Depending on the shaper of
frame’s traffic class, the traffic could be forwarded to the next module, buffered in a priority queue,
or get dropped.

For each shaper, there are two types of shapers: Data Bytes shaper (D-type), and Frame Count
shaper (F-type). There are two parameters associated with each shaper: Average Rate (avgD/avgF),
and Ceil Rate (ceilD/ceilF). The shaper is designed with the concept of a token bucket. The shaper
design controls the long-term rate of traffic while also allowing some short-term bursts. Because
the D-type shaper monitors the bandwidth of a certain traffic class, they are used extensively in the
network community. The purpose for an F-type shaper is to control the number of frames allowed
for further processing. The F-type shaper is commonly used to limit the number of table lookups
required by the host CPU, which is often a system bottleneck. The upper-layer user interface,
however, can be configured to use both shapers simultaneously, one of the two shaper types at a
time, or disable the shaper for some particular traffic class. When the shaper for a traffic class is
disabled, frames belonging to that traffic class are passed to the next module directly.

Figure 13. Management Interface Interactions

Management Management
InterfaceInterface

VLAN ClassificationVLAN Classification

Ingress RulesIngress Rules

ExternalExternal
ModuleModule

Egress RulesEgress Rules

DatabaseDatabase

802.1p User Priority and QoS Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
26 Document Number: 301925, Revision: 002

When the shaper type (D-type, F-type, or both) is enabled for a traffic class, frames that are
classified to this traffic class have to go through its corresponding shaper. When the corresponding
shaper still has available quota and no frames are buffered in the frame queue, the frame is passed
to the next module. Alternately, if any of the enabled shapers is over-quota, then the frame is sent to
frame queue for that traffic class. Before that frame is physically pushed to a frame queue, the
queue length limitation corresponding to that traffic class is examined. If the queue length exceeds
the limitation, the frame is dropped instantly, otherwise the frame is pushed to the queue.

Periodically, the timer module is triggered and updates shapers that are enabled. After updating all
enabled shapers, a signal is sent to the priority queue service routine, which pops frames from the
high-priority traffic class queue to the low-priority traffic queue. For each frame at the head of a
certain queue, the shaper status is checked before sending to the next module. If the shaper has
available queues, the frame is popped and sent to the next module, after that the corresponding
shapers are updated. If the shapers are already over-quota, then the priority queue service routine
goes to the next queue for service.

802.1p Priority Mapping and Ingress QoS Sub-Components

• Traffic Shaper
Traffic rate control and frame queue for buffering frames.

• User Priority to Traffic Class Mapping
Processes for IEEE 802.1Q/p User Priority to Traffic Class Mappings is handled in this
component.

• Management Interface
Control path for maintaining associated database as well as shaper configuration.

The modularization of 802.1p User Priority to Traffic Class Mappings and QoS components (such
as ingress queues and traffic shaper) makes it easy for updating/enhancing Ingress QoS functions.
No effort is required for design changes in 802.1p User Priority to Traffic Class Mappings when a
new queueing discipline is added into the ingress queue module, or when a new traffic control
algorithm is defined for the traffic shaper.

4.1 Traffic Shaper Component

The purpose of the Traffic Shaper component is to control the rate of traffic sent to the next
software module. In general, the higher traffic class is treated as higher priority traffic. The Traffic
Shaper determines if the frame should be passed to next module directly, queued in the ingress
priority queues, or if the frame should be dropped. As previously stated, frames are sent to the
priority queue under the condition that either traffic rate exceeds the shaper's configured rate or
there are frames waiting in the corresponding priority queue. If rate limitation is not exceeded, and
there are no frames buffered in the respective queue, frames are relayed to the next module. In the
case where the frame must be delayed, the module first checks the number of queued frames of the
particular queue. If the buffered length is above the limitation, then the frame is discarded;
otherwise frames are pushed to the corresponding queue. If shapers for a traffic class are disabled,
then traffic classified to this traffic class is treated as rate-unlimited. Frames are passed to the next
module directly.

Each time a frame is sent to the next software module, the shapers are updated accordingly. If both
D-type and F-type shapers are enabled, then the quota for both types are updated. If only D-type is
enabled, then only the quota for D-type is updated. The F-type shaper quota update process is the
same.

802.1p User Priority and QoS Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 27

Periodically, the timer (interrupt service routine) updates the quota of token buckets by the
parameters of shaper configuration. The shaper parameters are:

• Average data rate in bps (bytes per second)

• Average packet count in fps (frames per second)

• Ceil data rate in bps

• Ceil packet count in fps

• Type of shaper: D-type or F-type

The timer parameters are:

• Period of timer in millisecond (as compiler option)

The functionality provided by the Traffic Shaper component includes:

• Initialize Traffic shaper and unload traffic shaper

• Determine if the traffic conforms to the shaper configuration

• Configure the traffic rate passing through the shaper component by:

— rate in frames

— rate in bytes

• Queuing the frames once the traffic rate exceeds the specified rate of the shaper.

4.1.1 External Interactions and Dependencies

This software component is initialized and configured by the Management Interface component. as
described in the following steps. The Traffic Shaper component utilizes services to retrieve frames
from the Ingress or Egress thread and to push them to the next stage.

1. The device driver (via the Management Interface component) calls the API to initialize whole
QoS modules, including the Traffic Shaper component.

2. The device driver calls the API to register the callback function.

3. The device driver calls the API to initiate the QoS process.

4. The software has the capability to determine the traffic class of a particular traffic. It utilizes
the VLAN classification to determine the user priority of the frame and maps the user priority
into a traffic class. If the number of frames of the traffic class does not exceed the configured
rate of its corresponding shaper, execute the next step. Otherwise, skip to step 6.

5. Call the registered Rx callback function or CSR submitting function to relay frames to next
stage in software. The process is now complete.

6. Check the queued length. If there is room in the buffered queue, proceed to step 7. Otherwise
drop this frame. The process is now complete.

7. Push the frame into the buffered queue.

8. Queue service routine is executed by timer ISR and dequeue frames from queues.

802.1p User Priority and QoS Module

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
28 Document Number: 301925, Revision: 002

4.2 Priority Mapping Component

This component maps the user priority (0~ 7) (determined in VLAN classification) of a received
frame into the corresponding traffic class value. Frames are classified into different classes and call
the services of the Traffic Shaper component to determine if frames should be queued or not. This
process is presented in Figure 14.

Figure 14. 802.1p User Priority to Traffic Class Mapping

Table 2. User Priority to Traffic Class Defaults and Recommendations

User Priority Traffic Class
(Default)

Traffic Class
(Recommendation)

0 0 0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 1

6 0 2

7 0 3

B5321-01

Priority
Mapping

Component

Priority 0

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Priority 6

Priority 7

Traffic Class 0

Traffic
Shaper

Component

Traffic Class 1

Traffic Class 2

Traffic Class 3

802.1p User Priority and QoS Module

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 29

The functionality provided by the Priority Mapping component includes:

• Support 802.1Q/p User Priority to Traffic Class Mappings of received and transmitting frames.

• Interface to configure the table for mapping from User Priority to Traffic Class.

4.2.1 External Interactions and Dependencies

This software component is initialized and configured by the Management Interface component.
The device driver utilizes services of this component for the QoS module. The Traffic Shaper
component uses the Priority Mapping component to determine the traffic class of received or
submitting frames.

4.2.2 Key Assumptions

• Maximum number of User Priority is defined 802.1Q/p and the traffic class support by QoS
module is designed to be four by implementation.

• Each Traffic class is associated with a traffic shaper; default state of a shaper is disabled as
QoS module is initialized.

4.3 Management Interface Component

This component provides the public interface (i.e., control path) for external modules to configure
the behavior of 802.1p User Priority to Traffic Class Mappings and QoS module. The IOCTL
parser in Ethernet device driver should utilize this interface to access services of the QoS module.
Direct access to services (or APIs) in other components of this module is not supported. These
Interactions are shown in Figure 15.

Figure 15. Interactions of the QoS Module Management Interface Sub-Component

Management

Interface

Traffic Shaper
Component

Priority Mapping
Component

Other Component
(Timer, Frame Queue...)

External

Module

IOCTL Enhancements for Ethernet Drivers

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
30 Document Number: 301925, Revision: 002

5.0 IOCTL Enhancements for Ethernet Drivers

The purpose of this software is to extend existing IOCTL functionality in the IXP400 Ethernet
device drivers. New IOCTL commands are defined to support new features for 802.1Q VLAN and
QoS Modules. These commands are grouped into a configuration utility named vqconfig. The
utility communicates with the common module to access VLAN and QoS services in the IXP400
Ethernet device driver. The IOCTL Parser recognizes these IOCTL commands and in turn executes
associated services in the VLAN and QoS modules. The system view is presented in Figure 16

The vqconfig utility sends management API calls via IOCTL commands to the VLAN and Qos
Module. More detailed information regarding the syntax of the utility is available in the Intel®
IXP400 Software: VLAN and QoS Application Version 2.0 Release Notes.

Figure 16. System View of IOCTL Utilities and Parser

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 31

6.0 API Reference

Table 3. API Index (Sheet 1 of 2)
IxVlanQosStatus ixVlanQosModuleInitialize (void); . 37

IxVlanQosStatus ixVlanQosModuleUninitialize (void); . 37

IxVlanQosStatus ixVlanQosPortTxFrameSubmit (IxVlanQosPortId portId, IX_OSAL_MBUF *buffer,
UINT32 priority); . 37

IxVlanQosStatus ixVlanQosPortRxCallbackRegister (IxEthAccPortId portId, IxEthAccPortRxCallback
rxCallbackFn, UINT32 callbackTag); . 37

IxVlanQosStatus ixVlanQosPortTxDropCallbackRegister (IxEthAccPortId portId,
IxVlanQosCallbackFn txDropCallbackFn,UINT32 callbackTag); . 39

IxVlanQosStatus ixVlanQosReservedBufferGetCallbackRegister (IxVlanQosPortId portId,
IxVlanResvBufGetCallbackFn callbackFn, UINT32 callbackTag); . 39

IxVlanQosStatus ixVlanPortEnable (IxVlanQosPortId pid); . 39

IxVlanQosStatus ixVlanPortDisable (IxVlanQosPortId pid); . 40

IxVlanQosStatus ixVlanPortEnabledGet (IxVlanQosPortId pid, BOOL *enabled); 40

IxVlanQosStatus ixVlanEgressTypeSet (IxVlanQosPortId pid, IxVlanVlanId vid,
IxVlanEgressType type); . 40

IxVlanQosStatus ixVlanEgressTypeGet (IxVlanQosPortId pid, IxVlanVlanId vid,
IxVlanEgressType *type); . 41

IxVlanQosStatus ixVlanMembershipSet (IxVlanQosPortId pid, IxVlanVlanId vid, BOOL isMember); . . 41

IxVlanQosStatus ixVlanMembershipGet (IxVlanQosPortId pid, IxVlanVlanId vid, BOOL *isMember); . 41

IxVlanQosStatus ixVlanPortAcceptFrameTypeSet (IxVlanQosPortId pid,
IxVlanAcceptbaleFrameType type); . 42

IxVlanQosStatus ixVlanPortAcceptFrameTypeGet (IxVlanQosPortId pid,
IxVlanAcceptbaleFrameType *type); . 42

IxVlanQosStatus ixVlanPortMembershipFilterSet (IxVlanQosPortId pid, IxVlanQosDirection dir, BOOL
enabled); . 42

IxVlanQosStatus ixVlanPortMembershipFilterGet (IxVlanQosPortId pid, IxVlanQosDirection dir, BOOL
*enabled); . 43

IxVlanQosStatus ixVlanPortVlanTagSet (IxVlanQosPortId pid, IxVlanVlanId vid,
IxEthDBPriority priority); . 43

IxVlanQosStatus ixVlanPortVlanTagGet (IxVlanQosPortId pid, IxVlanVlanId *vid,
IxEthDBPriority *priority); . 43

IxVlanQosStatus ixVlanMacRuleAdd (IxVlanMacRule *mac_rule, RULE_ID *rid); 44

IxVlanQosStatus ixVlanMacRuleDelete (RULE_ID rid); . 44

IxVlanQosStatus ixVlanMacRuleGet (RULE_ID rid, IxVlanMacRule *mac_rule); 44

IxVlanQosStatus ixVlanMacRuleFind (IxVlanMacRule *mac_rule, RULE_ID *rid); 44

IxVlanQosStatus ixVlanFirstMacRuleIdGet (RULE_ID *rid); . 45

IxVlanQosStatus ixVlanNextMacRuleIdGet (RULE_ID *rid); . 45

IxVlanQosStatus ixVlanMacRuleHitGet (RULE_ID rid, UINT32 *hit); . 45

IxVlanQosStatus ixVlanMacRuleHitReset (RULE_ID rid); . 46

IxVlanQosStatus ixVlanMacRuleResetAll (void); . 46

IxVlanQosStatus ixVlanMacClassifierSet (IxVlanQosPortId pid, BOOL enabled); 46

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
32 Document Number: 301925, Revision: 002

6.1 Data Type Definitions

This section contains the data type definitions and data structure descriptions that will be used in
the VLAN and QOS application programmer interface.

IxVlanQosStatus ixVlanMacClassifierGet (IxVlanQosPortId pid, BOOL *enabled); 46

IxVlanQosStatus ixVlanProtocolRuleAdd (IxVlanIpRule *ip_rule, RULE_ID *rid); 47

IxVlanQosStatus ixVlanProtocolRuleDelete (RULE_ID rid); .47

IxVlanQosStatus ixVlanProtocolRuleGet (RULE_ID rid, IxVlanIpRule *ip_rule); 47

IxVlanQosStatus ixVlanProtocolRuleFind (IxVlanIpRule *ip_rule, RULE_ID *rid);48

IxVlanQosStatus ixVlanFirstProtocolRuleIdGet (RULE_ID *rid); .48

IxVlanQosStatus ixVlanNextProtocolRuleIdGet (RULE_ID *rid); .48

IxVlanQosStatus ixVlanProtocolRuleHitGet (RULE_ID rid, UINT32 *hit); .49

IxVlanQosStatus ixVlanProtocolRuleHitReset (RULE_ID rid); .49

IxVlanQosStatus ixVlanProtocolRuleResetAll (void); .49

IxVlanQosStatus ixVlanProtocolClassifierSet (IxVlanQosPortId pid, BOOL enabled);49

IxVlanQosStatus ixVlanProtocolClassifierGet (IxVlanQosPortId pid, BOOL *enabled); 50

IxVlanQosStatus ixQosShaperEnable (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid); . .50

IxVlanQosStatus ixQosShaperDisable (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid); . .50

IxVlanQosStatus ixQosShaperEnabledGet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
BOOL *enabled); .51

IxVlanQosStatus ixQosShaperRateSet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 fps, UINT32 bps); .51

IxVlanQosStatus ixQosShaperRateGet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 *fps, UINT32 *bps); .51

IxVlanQosStatus ixQosShaperCeilSet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 fps, UINT32 bps); .52

IxVlanQosStatus ixQosShaperCeilGet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 *fps, UINT32 *bps); .52

IxVlanQosStatus ixQosShaperBurstSizeSet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 frames, UINT32 bits); .53

IxVlanQosStatus ixQosShaperBurstSizeGet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId
tcid, UINT32 *frames, UINT32 *bits); .53

IxVlanQosStatus ixQosPriorityMappingSet (IxVlanQosPortId pid, IxVlanQosDirection dir,
IxVlanQosPriority priority, IxQosTcId tcid); .53

IxVlanQosStatus ixQosPriorityMappingGet (IxVlanQosPortId pid, IxVlanQosDirection dir,
IxVlanQosPriority priority, IxQosTcId *tcid); .54

IxVlanQosStatus ixQosPriorityMappingTableSet (IxVlanQosPortId pid, IxVlanQosDirection dir,
IxQosTcId tcid[]); .54

IxVlanQosStatus ixQosPriorityMappingTableGet (IxVlanQosPortId pid, IxVlanQosDirection dir,
IxQosTcId tcid[]); .55

Table 3. API Index (Sheet 2 of 2)

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 33

Direction Type for Data Path

Description:
Define the identifiers to be used as a function parameter for specifying the direction in the
data path.

Status Type

Description:
Define the identifiers to be used as the status value returning from calling function.

Acceptable Frame Type

Description:
Define the identifiers to be used as a function parameter for specifying the acceptable frame
type.

Egress Frame Type

Description:
Define the identifiers to be used as a function parameter for specifying the frame type as
egress.

typedef enum {

 IX_VLAN_QOS_INGRESS = 0,

 IX_VLAN_QOS_EGRESS

} IxVlanQosDirection;

typedef enum {

 IX_VLAN_QOS_SUCCESS = 0,

 IX_VLAN_QOS_FAIL

} IxVlanQosStatus;

typedef enum {

 ACCEPT_TAGGED_ONLY,

 ACCEPT_ALL_FRAME,

} IxVlanAcceptbaleFrameType;

typedef enum {

 TAGGED_FRAME_TYPE,

 UNTAGGED_FRAME_TYPE,

} IxVlanEgressType;

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
34 Document Number: 301925, Revision: 002

Data Types of Rule Content

Description:
Define data types which are used in the content of a rule for MAC-Based VLAN
classification or Protocol-Based VLAN classification.

Definition:
MAC_ADDRESS: MAC address of an Ethernet frame.
IP_ADDRESS: The IP address of a frame in IP or IPv6 protocol types. If it is used for

specifying an IPv4 address, only the first 4 bytes are used and the rest bytes will not be considered.
PROTOCOL_TYPE: This carries the layer 3 and layer 4 protocol types.
PORT_NUM: Port number in a TCP or UDP header. The range for valid value is from 0 to

65535.
TC: Traffic class specified in an IPv6 header. The range for valid value is from 0 to 255.
SPI: Security Parameter Index in an AH or an ESP header. The numbers within the range

which be represented by a 32 bits unsigned integer are all valid for SPI.

Data Type for VLAN and QoS functionality

Definition:
IxQosTcId: Identifier of traffic class for QoS. The valid values are 0, 1, 2, and 3.
IxVlanQosPortId: Identifier of a NPE Ethernet port.
IxVlanQosPriority: User priority defined in IEEE802.1Q
RULE_ID: Identifier of a rule for MAC-Based or Protocol-Based VLAN classifications.

Data Structure for MAC Rule

Description:
Define the data structure be used as the function parameter to specify a rule for MAC-Based

typedef unsigned char MAC_ADDRESS[6];

typedef unsigned char IP_ADDRESS[16];

typedef signed long PROTOCOL_TYPE;

typedef signed long TC;

typedef signed long PORT_NUM;

typedef unsigned long SPI;

typedef unsigned short RULE_ID;

typedef UINT32 IxQosTcId; /* valid values: 0, 1, 2, 3 */

typedef UINT32 IxVlanQosPortId;

typedef UINT32 IxVlanQosPriority;

typedef struct {

 UINT32 vid;

 UINT32 priority;

 MAC_ADDRESS src_mac;

} IxVlanMacRule;

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 35

VLAN classification. The frame whose source MAC address is identical to the MAC address
specified in the rule is called it matches to the rule. The VLAN group of the frame which
matches to the rule is assigned to the VLAN ID specified in the rule.

Structure member:
vid: Specifying the VLAN ID for the frames which match to the rule.
priority: Specifying the 802.1Q user priority for the frames which match to the rule.
src_mac: The MAC address used to match to source MAC address of an Ethernet frame.

Data Structure for Protocol Rule

Description:
Define the data structure be used as the function parameter to specify a rule for Protocol-
Based VLAN classification. The rule describes an Ethernet frame by specifying the ranges of
value for some fields of protocol headers of a frame in layer 3 and layer 4. The frame which
is identical to the describing by the rule is called it matches to the rule. The VLAN group of
the frame which matches to the rule is assigned to the VLAN ID specified in the rule.

Structure member:
vid: Specifying the VLAN ID for the frames which match to the rule.
priority: Specifying the 802.1Q user priority for the frames which match to the rule.

src_ip, src_ip_mask: The IP address and mask used to specifying a range of the source IP
address for an IP or IPv6 protocol frame.
dst_ip, dst_ip_mask: The IP address and mask used to specifying a range of the destination
IP address for an IP or IPv6 protocol frame.
protocol: This specifies the protocol type of an Ethernet frame. The high word specifies the
protocol type in layer 3. It shall use the identifiers ETH_IP and ETH_IPV6 to represent IP
and IPv6 protocol types respectively. The low word specifies the protocol type in layer 4. It
shall be filled with the value of protocol type directly. The software only supports TCP and
UDP for an IP protocol frame and support TCP, UDP, ESP and AH for an IPv6 frame.
tc: This specifies the traffic class in the IPv6 protocol header. Use UNSPECIFIED_TC to
indicate software not to care this field.
src_port: This specifies the number of source port for a TCP or UDP header. Use
UNSPECIFIED_PORT for src_port indicates software not to care this field.
src_port_end: This specifies the end of a range of port numbers which starting with src_port.
Use UNSPECIFIED_PORT to indicate software none or a single port is specified by

typedef struct {

 UINT32 vid;

 UINT32 priority;

 IP_ADDRESS src_ip, src_ip_mask;

 IP_ADDRESS dst_ip, dst_ip_mask;

 PROTOCOL_TYPE protocol;

 TC tc;

 PORT_NUM src_port, src_port_end;

 PORT_NUM dst_port, dst_port_end;

 SPI spi;

} IxVlanIpRule;

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
36 Document Number: 301925, Revision: 002

src_port.
dst_port: This specifies the number of destination port for the TCP or UDP header. Use
UNSPECIFIED_PORT for dst_port indicates software not to care this field.
dst_port_end: This specifies the end of a range of port numbers which starting with dst_port.
Use UNSPECIFIED_PORT to indicate software none or a single port is specified by
dst_port.
spi: This specifies the value of Security Parameter Index for the ESP or AH header. Use
UNSPECIFIED_SPI to indicate software not to care this field.

Data Type for Call Back Functions

Definition:
IxVlanQosCallbackFn: The callback function used to drop an Ethernet frame. Once the

VLAN and QoS modules discard a TX or RX frame, the module calls this function, which is
registered by Ethernet driver or client software.

IxVlanResvBufGetCallbackFn: The callback function used to retrieve a reserved buffer
once the VLAN modules save the VLAN information of a received frame. This callback function is
offered and registered by the Ethernet driver or client software. The allocation for reserved spaces
and maintenance of the linkage to each MBUF is the responsibility of the software that registered
this callback function.

typedef void (*IxVlanQosCallbackFn)(UINT32 callbackTag,
IX_OSAL_MBUF *buffer);

typedef void (*IxVlanResvBufGetCallbackFn)(UINT32 callbackTag,

IX_OSAL_MBUF *buffer,

UINT8 **retBuffer);

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 37

6.2 Function Prototype Definitions

This section contains the VLAN and QoS Example Code APIs and data structures.

Prototype: IxVlanQosStatus ixVlanQosModuleInitialize (void);

Parameters: Description: I/O:

n/a None

Return:
IX_VLAN_QOS_SUCCESS: Success on initialization.
IX_VLAN_QOS_FAIL: Fail on initialization.

Description: Initialize the VLAN and QoS modules. This function is called when the client software or Ethernet driver,
which use the VLAN and QoS modules, is started.

Prototype: IxVlanQosStatus ixVlanQosModuleUninitialize (void);

Parameters: Description: I/O:

n/a

Return:
IX_VLAN_QOS_SUCCESS: Success on un-initialization.
IX_VLAN_QOS_FAIL: Fail on un-initialization.

Description: Un-initialize the VLAN and QoS modules. This function is called when the client software or Ethernet driver,
which use the VLAN and QoS modules, is exiting or being removed.

Prototype: IxVlanQosStatus ixVlanQosPortTxFrameSubmit (IxVlanQosPortId portId, IX_OSAL_MBUF *buffer,
UINT32 priority);

Parameters: Description: I/O:

portId
buffer

priority

The identifier of the NPE Ethernet port to transmit Ethernet frame on.
Address of an MBUF which representing the Ethernet frame to be transmitted.
Relative priority used to transmit a frame.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on transmission.
IX_VLAN_QOS_FAIL: Failed on transmission.

Description:
This function shall be used to submit MBUFs buffers for transmission on a particular MAC device. Software
shall use this function instead of ixEthAccPortTxFrameSubmit to applying processing of VLAN and QoS
functionality for the Egress frames.

Prototype: IxVlanQosStatus ixVlanQosPortRxCallbackRegister (IxEthAccPortId portId, IxEthAccPortRxCallback
rxCallbackFn, UINT32 callbackTag);

Parameters: Description: I/O:

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
38 Document Number: 301925, Revision: 002

portId
rxCallbackFn

callbackTag

The identifier of the NPE Ethernet port the callback is registered to.
Function to be called when Ingress Ethernet frames are received.
This tag shall be provided to the callback function.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on registration.
IX_VLAN_QOS_FAIL: Failed on registration.

Description:
Register a callback function to allow the reception of frames. The registered callback function is called once
a frame is received by this service. This function is used to replace ixEthAccPortRxCallbackRegister when
software expects the processing for VLAN and QoS functionality to be applied on Ingress frames.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 39

Prototype: IxVlanQosStatus ixVlanQosPortTxDropCallbackRegister (IxEthAccPortId portId,
IxVlanQosCallbackFn txDropCallbackFn,UINT32 callbackTag);

Parameters: Description: I/O:

portId
txDropCall-

backFn
callbackTag

The identifier of the NPE Ethernet port the callback is registered to.

Function to be called when Egress frames are discarded.

This tag shall be provided to the callback function.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on registration.
IX_VLAN_QOS_FAIL: Failed on registration.

Description: Register a callback function to drop an Egress frame requested either by VLAN or QoS modules. The
registered callback function is called once a frame being transmitted is to be dropped by this software.

Prototype: IxVlanQosStatus ixVlanQosReservedBufferGetCallbackRegister (IxVlanQosPortId portId,
IxVlanResvBufGetCallbackFn callbackFn, UINT32 callbackTag);

Parameters: Description: I/O:

portId
callbackFn

callbackTag

The identifier of the NPE Ethernet port the callback is registered to.
Function to be called when the reserved buffer is requested.
This tag shall be provided to the callback function.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on registration.
IX_VLAN_QOS_FAIL: Failed on registration.

Description:

Register a callback function to retrieve a reserved buffer associated with a MBUF. The software uses this
buffer to save the VLAN information of a frame which represented by a MBUF. The VLAN information is
determined during the VLAN processing is applying on the received frame. Once the frame has been
bridged to another NPE Ethernet port, the VLAN information will be extracted from the buffer by software on
Egress.
NOTE: The client software or Ethernet driver shall reserve 16 bytes space for each MBUF.

Prototype: IxVlanQosStatus ixVlanPortEnable (IxVlanQosPortId pid);

Parameters: Description: I/O:

pid The identifier of the NPE Ethernet port to be enabled. I

Return:
IX_VLAN_QOS_SUCCESS: Success on enabling the port.
IX_VLAN_QOS_FAIL: Fail on enable the port.

Description: Enable the VLAN functionality for a given NPE Ethernet port. The functionality is disabled by default.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
40 Document Number: 301925, Revision: 002

Prototype: IxVlanQosStatus ixVlanPortDisable (IxVlanQosPortId pid);

Parameters: Description: I/O:

pid The identifier of the NPE Ethernet port to be enabled. I

Return:
IX_VLAN_QOS_SUCCESS: Success on disabling the port.
IX_VLAN_QOS_FAIL: Fail on disabling the port.

Description: Disable the VLAN functionality for a given NPE Ethernet port.

Prototype: IxVlanQosStatus ixVlanPortEnabledGet (IxVlanQosPortId pid, BOOL *enabled);

Parameters: Description: I/O:

pid

*enabled

The identifier of the NPE Ethernet port to retrieve from.
Address of the space used to retrieve the port is whether enabled. Zero value indicates the
port is disabled and nonzero value indicates the port is enabled. The address cannot be
NULL.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving status from the port.
IX_VLAN_QOS_FAIL: Fail on retrieving status from the port.

Description: Retrieve the Boolean value from a given NPE Ethernet port indicating whether the VLAN functionality on the
port is enabled.

Prototype: IxVlanQosStatus ixVlanEgressTypeSet (IxVlanQosPortId pid, IxVlanVlanId vid, IxVlanEgressType
type);

Parameters: Description: I/O:

pid
vid

type

The identifier of the NPE Ethernet port to be set.
The identifier of the VLAN to be set.
The frame type of a frame being transmitted in. Use TAGGED_FRAME_TYPE for tagging the
frames and use UNTAGGED_FRAME_TYPE for un-tagging the frames.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the egress type.
IX_VLAN_QOS_FAIL: Fail on setting the egress type.

Description:

Set the VLAN egress tagging or un-tagging for a given NPE Ethernet port and VLAN ID. If egress VLAN
tagging is set, the untagged frame will be transmitted in a tagged format. If egress VLAN un-tagging is set,
the tagged frame will be transmitted in untagged format. The egress type is un-tagging by default.
NOTE: If the VLAN ID of the frame is not joined in the membership table of the egress port, the frame will

be transmitted without being changed.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 41

Prototype: IxVlanQosStatus ixVlanEgressTypeGet (IxVlanQosPortId pid, IxVlanVlanId vid, IxVlanEgressType
*type);

Parameters: Description: I/O:

pid
vid

*type

The identifier of the NPE Ethernet port to retrieve from.
The identifier of the VLAN to be retrieved.
Address of the space used to retrieve the egress frame type. TAGGED_FRAME_TYPE
indicates the egress frames will be tagging and UNTAGGED_FRAME_TYPE indicates the
egress frames will be un-tagging. The address cannot be NULL.

I
I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the egress type.
IX_VLAN_QOS_FAIL: Fail on retrieving the egress type.

Description: Retrieve the egress type from a given NPE Ethernet port and VLAN ID. Egress type indicates the format of
the egress frames to be transmitted in.

Prototype: IxVlanQosStatus ixVlanMembershipSet (IxVlanQosPortId pid, IxVlanVlanId vid, BOOL isMember);

Parameters: Description: I/O:

pid
vid

isMember

The identifier of the NPE Ethernet port to be set.
The identifier of the VLAN to be set.
The Boolean value to indicate the VLAN ID whether to be the member of the NPE Ethernet
port or not. Use TRUE value demands the VLAN ID joining into the VLAN membership of the
port and FALSE value demands the VLAN ID leaving from the VLAN membership of the port.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the membership.
IX_VLAN_QOS_FAIL: Fail on setting the membership.

Description:
Demand a VLAN id to join to or leave from the VLAN membership of a given NPE Ethernet port.
NOTE: The PVID (default VLAN ID of the port) cannot leave the VLAN membership of the port.

Prototype: IxVlanQosStatus ixVlanMembershipGet (IxVlanQosPortId pid, IxVlanVlanId vid, BOOL *isMember);

Parameters: Description: I/O:

pid
vid

*isMember

The identifier of the NPE Ethernet port to retrieve from.
The identifier of the VLAN to be retrieved.
Address of the space to retrieve the Boolean value which indicating the membership of the
VLAN ID on the port. TRUE value indicates the VID is joined in the VLAN membership of the
port and FALSE value indicates not. The address cannot be NULL.

I
I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the membership.
IX_VLAN_QOS_FAIL: Fail on retrieving the membership.

Description: Retrieve the VLAN membership of a VLAN ID from a given NPE Ethernet port.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
42 Document Number: 301925, Revision: 002

Prototype: IxVlanQosStatus ixVlanPortAcceptFrameTypeSet (IxVlanQosPortId pid, IxVlanAcceptbaleFrameType
type);

Parameters: Description: I/O:

pid
type

The identifier of the NPE Ethernet port to be set.
The acceptable frame type. Use ACCEPT_TAGGED_ONLY to accept VLAN tagged frames
only and use ACCEPT_ALL_FRAME to accept all type of frames.

I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the acceptable frame type
IX_VLAN_QOS_FAIL: Fail on setting the acceptable frame type.

Description: Set the acceptable frame type for a given NPE Ethernet port. Use ACCEPT_TAGGED_ONLY to accept
VLAN tagged frames only and use ACCEPT_ALL_FRAME to accept all type of frames.

Prototype: IxVlanQosStatus ixVlanPortAcceptFrameTypeGet (IxVlanQosPortId pid,
IxVlanAcceptbaleFrameType *type);

Parameters: Description: I/O:

pid
*type

The identifier of the NPE Ethernet port to retrieve from.
Address of the space used to retrieve the acceptable frame type.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the acceptable frame type.
IX_VLAN_QOS_FAIL: Fail on retrieving the acceptable frame type.

Description: Retrieve the acceptable frame type from a given NPE Ethernet port. The type can be accepting all type of
frames or accepting VLAN tagged frames only.

Prototype: IxVlanQosStatus ixVlanPortMembershipFilterSet (IxVlanQosPortId pid, IxVlanQosDirection dir,
BOOL enabled);

Parameters: Description: I/O:

pid
dir

enabled

The identifier of the NPE Ethernet port to be set.
Which direction of data path to be set. IX_VLAN_QOS_INGRESS indicates the ingress side
and IX_VLAN_QOS_EGRESS indicates the egress side.
The Boolean value indicating the filter to be enabled or disabled. TRUE value indicates
enabling the filter and FALSE value indicates disabling the filter.

I
I

I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the filter.
IX_VLAN_QOS_FAIL: Fail on setting the filter.

Description: Enable or disable the VLAN membership filter for a given NPE Ethernet port at the given direction. The
Ingress and Egress VLAN membership filter of the port are both enabled by default.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 43

Prototype: IxVlanQosStatus ixVlanPortMembershipFilterGet (IxVlanQosPortId pid, IxVlanQosDirection dir,
BOOL *enabled);

Parameters: Description: I/O:

pid
dir

*enabled

The identifier of the NPE Ethernet port to retrieve from.
Which direction of data path to be set. IX_VLAN_QOS_INGRESS indicates the ingress side
and IX_VLAN_QOS_EGRESS indicates the egress side.
Address of the space used to retrieve the Boolean value, which indicates if the filter is
enabled. Zero value indicates the port is disabled and nonzero value indicates the filter is
enabled. The address cannot be NULL.

I
I

O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the filter status.
IX_VLAN_QOS_FAIL: Fail on retrieving the filter status.

Description: Retrieve whether the VLAN membership filter is enabled for a given NPE Ethernet port at the given direction.

Prototype: IxVlanQosStatus ixVlanPortVlanTagSet (IxVlanQosPortId pid, IxVlanVlanId vid, IxEthDBPriority
priority);

Parameters: Description: I/O:

pid
vid

priority

The identifier of the NPE Ethernet port to be set.
VLAN id of the default VLAN tag.
User priority of the default VLAN tag.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the default VLAN tag.
IX_VLAN_QOS_FAIL: Fail on setting the default VLAN tag.

Description: Set the default VLAN tag for a given NPE Ethernet port. The VLAN tag consists of IEEE 802.1Q user priority
and VLAN ID. The default VLAN tag of the port is (priority=0, vid=1).

Prototype: IxVlanQosStatus ixVlanPortVlanTagGet (IxVlanQosPortId pid, IxVlanVlanId *vid, IxEthDBPriority
*priority);

Parameters: Description: I/O:

pid
*vid

*priority

The identifier of the NPE Ethernet port to retrieve from.
Address of the space used to retrieve the VLAD id of the default VLAN tag.
Address of the space used to retrieve the user priority of the default VLAN tag.

I
O
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the default VLAN tag.
IX_VLAN_QOS_FAIL: Fail on retrieving the default VLAN tag.

Description: Retrieve the default VLAN tag from a given NPE Ethernet port. The VLAN tag consists of IEEE 802.1Q user
priority and VLAN ID.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
44 Document Number: 301925, Revision: 002

Prototype: IxVlanQosStatus ixVlanMacRuleAdd (IxVlanMacRule *mac_rule, RULE_ID *rid);

Parameters: Description: I/O:

mac_rule
rid

The MAC rule to be added. The content of the rule shall be filled before to be added.
Address of the space used to retrieve the rule identifier if the requested adding is successful.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on adding the rule.
IX_VLAN_QOS_FAIL: Fail on adding the rule.

Description: Add a rule to the database for MAC-based VLAN classification. On success, a unique identifier that
associates with the newly added rule will be returned.

Prototype: IxVlanQosStatus ixVlanMacRuleDelete (RULE_ID rid);

Parameters: Description: I/O:

rid The rule identifier specifying the rule to be removed. I

Return:
IX_VLAN_QOS_SUCCESS: Success on removing the rule.
IX_VLAN_QOS_FAIL: Fail on removing the rule.

Description: Remove a rule from the database for MAC-Based VLAN classification. The rule identifier shall be given to
specify the rule.

Prototype: IxVlanQosStatus ixVlanMacRuleGet (RULE_ID rid, IxVlanMacRule *mac_rule);

Parameters: Description: I/O:

rid
*mac_rule

The rule identifier specifying the rule whose content to be retrieved.
Address of the space used to retrieve the content of the rule.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the rule.
IX_VLAN_QOS_FAIL: Fail on retrieving the rule.

Description: Retrieve the content of a MAC-Based VLAN classification rule specified by a given identifier.

Prototype: IxVlanQosStatus ixVlanMacRuleFind (IxVlanMacRule *mac_rule, RULE_ID *rid);

Parameters: Description: I/O:

*mac_rule
*rid

Address of the rule content used to be matched to the rules in the classifier database.
Address of the space used for retrieving the identifier of the rule which matched to the given
content, if existed. On fail, there will be no change on that address.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on finding the rule.
IX_VLAN_QOS_FAIL: Fail on finding the rule.

Description:
Find the MAC-based VLAN classification rule from the database by matching a given content. The content of
the rule shall be filled before calling the function. The member fields, vid and priority, will be ignored during
the content matching.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 45

Prototype: IxVlanQosStatus ixVlanFirstMacRuleIdGet (RULE_ID *rid);

Parameters: Description: I/O:

*rid Address of the space used to retrieve the identifier of the first rule if there is any in the
database. O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the rule identifier.
IX_VLAN_QOS_FAIL: Fail on finding the rule.

Description:
Retrieve the first MAC-Based VLAN classification rule in the classifier database. When the user wants to
retrieve all rules in the classifier, the user has to call this function at first and then call the
ixVlanNextMacRuleIdGet for retrieving the consequent rules. This function will return the rule identifier of the
first rule, instead of returning the content.

Prototype: IxVlanQosStatus ixVlanNextMacRuleIdGet (RULE_ID *rid);

Parameters: Description: I/O:

*rid
Address of the space used to retrieve the identifier of the rule in the database which is in
sequence to the previous one. The address cannot be NULL.

O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the rule identifier.
IX_VLAN_QOS_FAIL: Fail on finding the rule.

Description:
Retrieve the MAC-Based VLAN classification rule which is consequent to the rule be retrieved by calling this
function or calling ixVlanFirstMacRuleIdGet at previous. This function will return the rule identifier instead of
returning the rule content.

Prototype: IxVlanQosStatus ixVlanMacRuleHitGet (RULE_ID rid, UINT32 *hit);

Parameters: Description: I/O:

rid
*hit

The rule identifier specifying the rule whose hit count to be retrieved.
Address of the space used to retrieve the hit counter. The address cannot be NULL.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the hit counter.
IX_VLAN_QOS_FAIL: Fail on retrieving the hit counter.

Description: Retrieve the hit counter of a MAC-based VLAN classification rule. The hit count records the number of times
the rule was able to be matched to the ingress or egress frames being classified in the data path.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
46 Document Number: 301925, Revision: 002

Prototype: IxVlanQosStatus ixVlanMacRuleHitReset (RULE_ID rid);

Parameters: Description: I/O:

rid The rule identifier specifying the rule whose hit count is to be reset. I

Return:
IX_VLAN_QOS_SUCCESS: Success on resetting the hit counter.
IX_VLAN_QOS_FAIL: Fail on resetting the hit counter.

Description: Reset the hit counter of a MAC-based VLAN classification rule to zero.

Prototype: IxVlanQosStatus ixVlanMacRuleResetAll (void);

Parameters: Description: I/O:

n/a None

Return:
IX_VLAN_QOS_SUCCESS: Success on resetting the hit counter.
IX_VLAN_QOS_FAIL: Fail on resetting the hit counter.

Description: Reset the database of the MAC-based classification. This action will remove all rules from the database.

Prototype: IxVlanQosStatus ixVlanMacClassifierSet (IxVlanQosPortId pid, BOOL enabled);

Parameters: Description: I/O:

pid
enabled

Identifier of the NPE Ethernet port to be set.
The Boolean value indicating whether the classifier is to be enabled or disabled. TRUE value
indicates enabling the classifier and FALSE value indicates disabling it.

I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the classifier.
IX_VLAN_QOS_FAIL: Fail on setting the classifier.

Description: Enable or disable the MAC-based VLAN classification for the incoming or outgoing frames on a given NPE
Ethernet port.

Prototype: IxVlanQosStatus ixVlanMacClassifierGet (IxVlanQosPortId pid, BOOL *enabled);

Parameters: Description: I/O:

pid
*enabled

Identifier of the NPE Ethernet port to be set.
Address of the space used to retrieve the port is whether enabled. Zero value indicates the
port is disabled and nonzero value indicates the port is enabled. The address cannot be
NULL.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the classifier.
IX_VLAN_QOS_FAIL: Fail on retrieving the classifier.

Description:
Retrieve the Boolean value from a given NPE Ethernet port indicating that the MAC-based VLAN
classification on the port is enabled.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 47

Prototype: IxVlanQosStatus ixVlanProtocolRuleAdd (IxVlanIpRule *ip_rule, RULE_ID *rid);

Parameters: Description: I/O:

*ip_rule
*rid

The Protocol rule to be added. The content of the rule shall be filled before to be added.
Address of the space used to retrieve the rule identifier if the requested adding is successful.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on adding the rule.
IX_VLAN_QOS_FAIL: Fail on adding the rule.

Description: Add a rule to the database for Protocol-Based VLAN classification. On success, a unique identifier which
associates with the newly added rule is returned.

Prototype: IxVlanQosStatus ixVlanProtocolRuleDelete (RULE_ID rid);

Parameters: Description: I/O:

rid The rule identifier specifying the rule to be removed. I

Return:
IX_VLAN_QOS_SUCCESS: Success on removing the rule.
IX_VLAN_QOS_FAIL: Fail on removing the rule.

Description: Remove a rule from the database for Protocol-Based VLAN classification. The rule identifier shall be given to
specify the rule.

Prototype: IxVlanQosStatus ixVlanProtocolRuleGet (RULE_ID rid, IxVlanIpRule *ip_rule);

Parameters: Description: I/O:

rid
*ip_rule

The rule identifier specifying the rule whose content to be retrieved.
Address of the space used to retrieve the content of the rule.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the rule.
IX_VLAN_QOS_FAIL: Fail on retrieving the rule.

Description: Retrieve the content of a Protocol-Based VLAN classification rule specified by a given identifier.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
48 Document Number: 301925, Revision: 002

Prototype: IxVlanQosStatus ixVlanProtocolRuleFind (IxVlanIpRule *ip_rule, RULE_ID *rid);

Parameters: Description: I/O:

*ip_rule
*rid

Address of the rule content used to be matched to the rules in the classifier database.
Address of the space used for retrieving the identifier of the rule which matched to the given
content, if existed. On fail, there will be no change on that address.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on finding the rule.
IX_VLAN_QOS_FAIL: Fail on finding the rule.

Description:
Find the Protocol-Based VLAN classification rule from the database by matching a given content. The
content of the rule shall be filled before calling the function. The member fields, vid and priority, will be
ignored during the content matching.

Prototype: IxVlanQosStatus ixVlanFirstProtocolRuleIdGet (RULE_ID *rid);

Parameters: Description: I/O:

*rid Address of the space used to retrieve the identifier of the first rule if there is any in the
database. O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the rule.
IX_VLAN_QOS_FAIL: Fail on retrieving the rule.

Description:
Retrieve the first Protocol-Based VLAN classification rule in the classifier database. When the user wants to
retrieve all rules in the classifier, the user has to call this function at first and then call the
ixVlanNextProtocolRuleIdGet for retrieving the consequent rules. This function will return the rule identifier of
the first rule, instead of returning the content.

Prototype: IxVlanQosStatus ixVlanNextProtocolRuleIdGet (RULE_ID *rid);

Parameters: Description: I/O:

*rid Address of the space used to retrieve the identifier of the rule in the database which is
consequent to the previous one. The address cannot be NULL. O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the rule.
IX_VLAN_QOS_FAIL: Fail on retrieving the rule.

Description:
Retrieve the Protocol-Based VLAN classification rule which is consequent to the rule be retrieved by calling
this function or calling ixVlanFirstProtocolRuleIdGet at previous. This function will return the rule identifier
instead of returning the rule content.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 49

Prototype: IxVlanQosStatus ixVlanProtocolRuleHitGet (RULE_ID rid, UINT32 *hit);

Parameters: Description: I/O:

rid
*hit

The rule identifier specifying the rule whose hit count to be retrieved.
Address of the space used to retrieve the hi counter. The address cannot be NULL.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the hit counter.
IX_VLAN_QOS_FAIL: Fail on retrieving the hit counter.

Description: Retrieve the hit counter of a Protocol-Based VLAN classification rule. The hit count records the times the rule
is matched to the ingress or egress frames needs be classified in data path.

Prototype: IxVlanQosStatus ixVlanProtocolRuleHitReset (RULE_ID rid);

Parameters: Description: I/O:

rid The rule identifier specifying the rule whose hit count to be reset. I

Return:
IX_VLAN_QOS_SUCCESS: Success on resetting the hit counter.
IX_VLAN_QOS_FAIL: Fail on resetting the hit counter.

Description: Reset the hit counter of a Protocol-Based VLAN classification rule to zero.

Prototype: IxVlanQosStatus ixVlanProtocolRuleResetAll (void);

Parameters: Description: I/O:

n/a None

Return:
IX_VLAN_QOS_SUCCESS: Success on resetting the Protocol-Based classification database.
IX_VLAN_QOS_FAIL: Fail on resetting the Protocol-Based classification database.

Description: Reset the database of the Protocol-Based classification. This action will remove all rules from the database.

Prototype: IxVlanQosStatus ixVlanProtocolClassifierSet (IxVlanQosPortId pid, BOOL enabled);

Parameters: Description: I/O:

pid
enabled

Identifier of the NPE Ethernet port to be set.
The Boolean value indicating the classifier to be enabled or disabled. TRUE value indicates
enabling the classifier and FALSE value indicates disabling it.

I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the classifier.
IX_VLAN_QOS_FAIL: Fail on setting the classifier.

Description: Enable or disable the Protocol-Based VLAN classification for the incoming or outgoing frames on a given
NPE Ethernet port.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
50 Document Number: 301925, Revision: 002

Prototype: IxVlanQosStatus ixVlanProtocolClassifierGet (IxVlanQosPortId pid, BOOL *enabled);

Parameters: Description: I/O:

pid
*enabled

Identifier of the NPE Ethernet port to retrieve from.
Address of the space used to retrieve the port is whether enabled. Zero value indicates the
port is disabled and nonzero value indicates the port is enabled. The address cannot be
NULL.

I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the classifier.
IX_VLAN_QOS_FAIL: Fail on retrieving the classifier.

Description:
Retrieve the Boolean value from a given NPE Ethernet port which indicating whether
the Protocol-Based VLAN classification on the port is enabled.

Prototype: IxVlanQosStatus ixQosShaperEnable (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid);

Parameters: Description: I/O:

pid
dir

tcid

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on enabling the shaper.
IX_VLAN_QOS_FAIL: Fail on enabling the shaper.

Description:
Enable the shaper on a given NPE Ethernet port and a given traffic class at a given direction. As the shaper
is enabled, the rate of traffic corresponding to the shaper will be limited on the behavior described by the
shaper configuration. The shaper is disabled by default.

Prototype: IxVlanQosStatus ixQosShaperDisable (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid);

Parameters: Description: I/O:

pid
dir

tcid

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on disabling the shaper.
IX_VLAN_QOS_FAIL: Fail on disabling the shaper.

Description: Disable the shaper on a given NPE Ethernet port and a given traffic class at a given direction. As the shaper
is disabled, the rate of traffic corresponding to the shaper will not be limited.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 51

Prototype: IxVlanQosStatus ixQosShaperEnabledGet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId
tcid, BOOL *enabled);

Parameters: Description: I/O:

pid
dir

tcid
*enabled

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.
Address of the space used to retrieve the Boolean value. Zero value indicates the port is
disabled and nonzero value indicates the port is enabled. The address cannot be NULL.

I
I
I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the shaper status.
IX_VLAN_QOS_FAIL: Fail on retrieving the shaper status.

Description: Return whether the shaper on a given NPE Ethernet port and a given traffic class at a given direction is
enabled.

Prototype: IxVlanQosStatus ixQosShaperRateSet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 fps, UINT32 bps);

Parameters: Description: I/O:

pid
dir

tcid
fps

bps

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.
The average frame number per second (frame rate).
The average bits number per second (bit rate).

I
I
I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on enabling the shaper.
IX_VLAN_QOS_FAIL: Fail on enabling the shaper.

Description:

Set the average rate for a given shaper. Average rate of the traffic class corresponding to the shaper will be
limited to under below the given number. The rate can be specified in the unit of “frame number per second”
or/and in the unit of “bit number per second”. If rates in both units were specified, the traffic class will be
limited by which has been exceeded first. If the user wants to specify the frame rate to under a certain
number and does not care the bit rate, for example, the user has to use IX_QOS_RATE_UNLIMIT to specify
the bit rate. In the case that does not care the frame rate, use the same identifier for the parameter either.

Prototype: IxVlanQosStatus ixQosShaperRateGet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 *fps, UINT32 *bps);

Parameters: Description: I/O:

pid
dir

tcid
*fps

*bps

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.
Address of the space used to retrieve the average frame rate.
Address of the space used to retrieve the average bit rate.

I
I
I
O
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the rate.
IX_VLAN_QOS_FAIL: Fail on retrieving the rate.

Description: Retrieve the average frame rate and average bit rate from a given shaper.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
52 Document Number: 301925, Revision: 002

Prototype: IxVlanQosStatus ixQosShaperCeilSet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 fps, UINT32 bps);

Parameters: Description: I/O:

pid
dir
tc

fps
bps

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.
The ceil frame rate.
The ceil bit rate.

I
I
I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the ceil rate.
IX_VLAN_QOS_FAIL: Fail on setting the ceil rate.

Description:

Set the ceil traffic rate for a given shaper. Ceil rate is the transient maximum rate the traffic was allowed to
pass through the shaper. The time length that the traffic can be allowed to pass in the ceil rate is determined
by how many traffic less than the average rate were accumulated before. For example, consider the
condition that the average rate was set to 100 frames/sec and the ceil rate was set to 500 frames/sec for a
shaper. If traffic rate was generated in 20 frames per second and was lasted for 10 seconds, there were 80
frames less than average rate per second and totally 800 frames were accumulated for the burst size during
the 10 seconds. When the traffic suddenly increases to over 500 frames per second, the shaper can allow
the traffic to pass through in the ceil rate, which is 400 frames larger than the average rate (over 400 frames
were in burst per second), and it can last for 2 (800 / 400) seconds. The ceil rate can be specified in frame
rate and/or bit rate. The traffic will be bounded by the rate which is exceeded at first.

Prototype: IxVlanQosStatus ixQosShaperCeilGet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId tcid,
UINT32 *fps, UINT32 *bps);

Parameters: Description: I/O:

pid
dir

tcid
*fps

*bps

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.
Address of the space used to retrieve the ceil of frame rate.
Address of the space used to retrieve the ceil of frame rate.

I
I
I
O
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the ceil rate.
IX_VLAN_QOS_FAIL: Fail on retrieving the ceil rate.

Description: Retrieve the ceil frame rate and the ceil bit rate from a given shaper.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 53

Prototype: IxVlanQosStatus ixQosShaperBurstSizeSet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId
tcid, UINT32 frames, UINT32 bits);

Parameters: Description: I/O:

pid
dir

tcid
frames

bits

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.
Amount of frames for burst.
Amount of bits for burst.

I
I
I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the burst size.
IX_VLAN_QOS_FAIL: Fail on setting the burst size.

Description:
Set the burst size for a given shaper. The burst size means how many amount of traffic addition to the traffic
under average rate can be allowed to pass through the shaper in the ceil rate. Refer to the example in the
description for ixQosShaperCeilSet.

Prototype: IxVlanQosStatus ixQosShaperBurstSizeGet (IxVlanQosPortId pid, IxVlanQosDirection dir, IxQosTcId
tcid, UINT32 *frames, UINT32 *bits);

Parameters: Description: I/O:

pid
dir

tcid
*frames

*bits

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.
Traffic class which the shaper is working for.
Address of the space to retrieve the burst size for frames.
Address of the space to retrieve the burst size for bits.

I
I
I
O
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the burst size.
IX_VLAN_QOS_FAIL: Fail on retrieving the burst size.

Description: Retrieve the burst size of frames and bits for a given shaper.

Prototype: IxVlanQosStatus ixQosPriorityMappingSet (IxVlanQosPortId pid, IxVlanQosDirection dir,
IxVlanQosPriority priority, IxQosTcId tcid);

Parameters: Description: I/O:

pid
dir

priority
tcid

Identifier of the NPE Ethernet port the traffic class is standing on.
Direction which the traffic class is standing on.
The user priority to be mapped.
Traffic class which the user priority is mapped to.

I
I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the traffic class.
IX_VLAN_QOS_FAIL: Fail on setting the traffic class.

Description: Set for which traffic class that a given user priority is mapped to on a given NPE Ethernet port and a given
direction.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
54 Document Number: 301925, Revision: 002

Prototype: IxVlanQosStatus ixQosPriorityMappingGet (IxVlanQosPortId pid, IxVlanQosDirection dir,
IxVlanQosPriority priority, IxQosTcId *tcid);

Parameters: Description: I/O:

pid
dir

priority
*tcid

Identifier of the NPE Ethernet port the traffic class is standing on.
Direction which the traffic class is standing on.
The user priority to be mapped.
Address of the space to retrieve the traffic which the user priority is mapped to.

I
I
I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the traffic class.
IX_VLAN_QOS_FAIL: Fail on retrieving the traffic class.

Description: Retrieve the traffic class that a given user priority is mapped to on a given NPE Ethernet port and a given
direction.

Prototype: IxVlanQosStatus ixQosPriorityMappingTableSet (IxVlanQosPortId pid, IxVlanQosDirection dir,
IxQosTcId tcid[]);

Parameters: Description: I/O:

pid
dir

tcid

Identifier of the NPE Ethernet port the mapping table is for.
Direction that the mapping table is for.
Array of traffic classes for mapping the eight user priorities. The first element in the array
specifies the traffic that user priority 0 is mapped to, and so on.

I
I
I

Return:
IX_VLAN_QOS_SUCCESS: Success on setting the table.
IX_VLAN_QOS_FAIL: Fail on setting the table.

Description: Set the table for specifying which traffic classes that eight user priorities are mapped to.

API Reference

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 55

Prototype: IxVlanQosStatus ixQosPriorityMappingTableGet (IxVlanQosPortId pid, IxVlanQosDirection dir,
IxQosTcId tcid[]);

Parameters: Description: I/O:

pid
dir

tcid

Identifier of the NPE Ethernet port the mapping table is from.
Direction that the mapping table is from.
Array of traffic classes for mapping the eight user priorities.

I
I
O

Return:
IX_VLAN_QOS_SUCCESS: Success on retrieving the table.
IX_VLAN_QOS_FAIL: Fail on retrieving the table.

Description: Retrieve the table for specifying which traffic classes that eight user priorities are mapped to.

API Reference

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
56 Document Number: 301925, Revision: 002

This page is intentionally left blank.

	Contents
	Figures
	1 Intel® IXP400 Software and Ethernet Device Driver Overview 11
	2 Software Architecture with the VLAN and QoS Example Code 12
	3 802.1Q VLAN Module - Component View 13
	4 802.1Q Frame Types 15
	5 Flow Diagram for Acceptable Frame Type Filtering 16
	6 Flow Diagram for Ingress VLAN Membership Filtering 17
	7 Flow Diagram for VLAN Classification 18
	8 Flow Diagram for Egress VLAN Membership Filtering 19
	9 Flow Diagram for Rebuilding the Frame Header 20
	10 Port Database Dependencies 22
	11 VLAN Database Dependencies 23
	12 Classification Rules Database 24
	13 Management Interface Interactions 25
	14 802.1p User Priority to Traffic Class Mapping 28
	15 Interactions of the QoS Module Management Interface Sub-Component 29
	16 System View of IOCTL Utilities and Parser 30

	Tables
	1 Rules for Rebuilding Frame Headers 20
	2 User Priority to Traffic Class Defaults and Recommendations 28
	3 API Index 31

	Revision History

	1.0 Introduction
	1.1 What’s New
	1.2 Scope and Purpose
	1.3 Acronyms
	1.4 Related Documents

	2.0 Software Overview
	2.1 Functionality Overview
	2.1.1 VLAN Functionality
	2.1.2 QoS Functionality

	2.2 Software Architecture and High-Level Design

	3.0 802.1Q VLAN Module
	3.1 Ingress Rules Component
	3.1.1 External Interactions and Dependencies
	3.1.2 Key Assumptions

	3.2 VLAN Classification Component
	3.2.1 External Interactions and Dependencies

	3.3 Egress Rules Component
	3.3.1 External Interactions and Dependencies
	3.3.2 Key Assumptions

	3.4 Database Component
	3.4.1 External Interactions and Dependencies
	3.4.1.1 Port Database
	3.4.1.2 VLAN Database

	3.4.2 Classification Rules Database

	3.5 Management Interface Component

	4.0 802.1p User Priority and QoS Module
	4.1 Traffic Shaper Component
	4.1.1 External Interactions and Dependencies

	4.2 Priority Mapping Component
	4.2.1 External Interactions and Dependencies
	4.2.2 Key Assumptions

	4.3 Management Interface Component

	5.0 IOCTL Enhancements for Ethernet Drivers
	6.0 API Reference
	6.1 Data Type Definitions
	6.2 Function Prototype Definitions

