
Intel® IXP400 Software: VLAN and
QoS Application Version 1.0
Programmer’s Guide

September 2004

Document Number: 301925-001

2 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, Sound Mark, The Computer Inside., The Journey
Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2004

http://www.intel.com

Contents

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 3

Contents
1.0 Introduction..7

1.1 Scope and Purpose ..7
1.2 Acronyms..7
1.3 Related Documents ..8

2.0 Software Architecture and High-Level Design...8

3.0 802.1Q VLAN Module..10
3.1 Ingress Rules Component (ixVlanIngress) ...12

3.1.1 External Interactions and Dependencies ...14
3.1.2 Key Assumptions ...14

3.2 VLAN Classification Component (ixVlanClassification) ..14
3.2.1 External Interactions and Dependencies ...15
3.2.2 Key Assumptions ...16

3.3 Egress Rules Component (ixVlanEgress) ..16
3.3.1 External Interactions and Dependencies ...17
3.3.2 Key Assumptions ...18

3.4 Database Component (ixVlanDb) ...18
3.4.1 External Interactions and Dependencies ...19

3.4.1.1 Port Database ..19
3.4.1.2 VLAN Database ...19

3.4.2 Classification Rules Database ...20
3.4.3 Key Assumptions ...21

3.5 Management Interface Component (ixVlanMgmt) ..21
3.5.1 Key Dependencies...22

4.0 802.1p User Priority and QoS Module...22
4.1 Traffic Shaper Component..25

4.1.1 External Interactions and Dependencies ...26
4.1.2 Key Assumptions ...27

4.2 Priority Mapping Component ..28
4.2.1 External Interactions and Dependencies ...29
4.2.2 Key Assumptions ...30

4.3 Ingress Queues ..30
4.3.1 External Interactions and Dependencies ...31
4.3.2 Key Assumptions ...31

4.4 Management Interface Component ..32
4.4.1 Key Dependencies...33

5.0 IOCTL Enhancements for Ethernet Drivers...33

6.0 API Reference ...35
6.1 VLAN Module..37

6.1.1 VLAN Module Interface..37
6.1.2 VLAN Database Control Interface ...38
6.1.3 Port Database Control Interface ..42
6.1.4 MAC Rule Database Control Interface...44

4 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

Contents

6.1.5 Protocol Rule Database Control Interface ... 48
6.1.6 VLAN Classifier Control Interface .. 52
6.1.7 VLAN Module Data Path.. 54
6.1.8 VLAN Module Types.. 56

6.2 Ingress QoS Module ... 57
6.2.1 General Control Path Interface .. 57
6.2.2 802.1p to Traffic Class Interface.. 58
6.2.3 Ingress Queue Interface .. 60
6.2.4 Ingress Traffic Shaper Interface .. 62
6.2.5 Timer Configuration Interface .. 66
6.2.6 Ingress QoS Data Path.. 67

Figures
1 IXP400 Software and Ethernet Device Driver Overview ..8
2 Software Architecture with the VLAN and QoS Application v1.0.. 9
3 802.1Q VLAN Module – Component View ... 10
4 802.1Q Frame Types.. 12
5 Flow Diagram for Acceptable Frame Type Filtering ... 13
6 Flow Diagram for Ingress VLAN Membership Filtering .. 14
7 Flow Diagram for VLAN Classification.. 15
8 Flow Diagram for Egress VLAN Membership Filtering ... 16
9 Flow Diagram for Rebuilding the Frame Header .. 17
10 Port Database Dependencies... 19
11 VLAN Database Dependencies.. 20
12 Classification Rules Database.. 21
13 Management Interface Interactions ..22
14 802.1p User Priority to Traffic Class Mapping and Ingress QoS Modules – Component View ..24
15 Traffic Shaper Component Interactions and Dependencies... 27
16 802.1p User Priority to Traffic Class Mapping .. 28
17 Priority Mapping Interactions and Dependencies ... 29
18 Ingress Queues .. 30
19 Dependencies and Interactions for Ingress Queues Component ...32
20 Interactions of the QoS Module Management Interface Sub-Component33
21 System View of IOCTL Utilities and Parser .. 34

Tables
1 Rules for Rebuilding Frame Headers ... 17
2 User Priority to Traffic Class Defaults and Recommendations... 28
6.0 API Index .. 35

Contents

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 5

Revision History
Date Revision Description

September 2004 001 Initial release.

This page intentionally left blank.

Contents

6 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

Introduction

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 7

1.0 Introduction

1.1 Scope and Purpose

The purpose of this document is to provide high-level technical design information for the Intel®
IXP400 Software VLAN and QoS Application. Based on Intel® IXP400 Software v1.4, this
example code is provided to implement IEEE 802.1Q VLAN (Virtual Local Area Networks), IEEE
802.1p User Priority to Traffic Class (TC) mappings, and Ingress Quality of Services (QoS)
functionality for IPv4 traffic using the IXP400 software.

This document covers the high-level functionality of the various modules, and describes their
behavioral links. For a more complete understanding, you should review the API reference
information provided in Section 6.0, “API Reference” on page 35, and review the VLAN and QoS
Application v1.0 user interface (as described in the Release Notes) and source code.

It is assumed that you are familiar with IEEE 802.1D Ethernet bridging and IEEE 802.1Q/p VLAN
and Priority functionality.

1.2 Acronyms

FIFO First In, First Out

ID Identification

IEEE Institute of Electrical and Electronics Engineers

IO Input / Output

IOCTL I/O Control

LAN Local Area Network

MAC Media Access Controller

NPE Network Processing Engine

OS Operating System

TC Traffic Class

QoS Quality of Service

VLAN Virtual LAN

Software Architecture and High-Level Design

8 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

1.3 Related Documents

Additional Intel documents listed below are available from your field representative or from the
following Web site:

http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm

2.0 Software Architecture and High-Level Design

As depicted in Figure 1, the software architecture of Intel® IXP400 Software VLAN and QoS
Application is designed to integrate with the IXP400 software.

Document Title Document #

Intel ® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s
Guide 301925

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Release Notes N/A

Intel® IXP400 Software Release 1.4 Software Release Notes N/A

Intel® IXP400 Software Programmer’s Guide (for Release v1.4) 252539-005

Intel® IXP400 Software Specification Update 273795

IEEE Standards (IEEE Std 802.1D-1998) for Local Area and Metropolitan Networks,
Media Access Control (MAC) Bridge N/A

IEEE Standards (IEEE Std 802.1Q-1998) for Local Area and Metropolitan Networks,
Virtual Bridged Local Area Networks N/A

IEEE Standards (IEEE Std 802.1p-1998) for Traffic class expediting and dynamic
multicast filtering N/A

Figure 1. IXP400 Software and Ethernet Device Driver Overview

http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm
http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm

Software Architecture and High-Level Design

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 9

The Intel® IXP4XX Product Line of Network Processors and IXC1100 Control Plane Processor
contain Network Processing Engines (NPEs), which provide physical connectivity and processing
of data to various interfaces. One function of the IXP400 software is to provide OS and upper-level
applications access to these interfaces via a set of APIs. In the case of the VLAN and QoS
Application v1.0, the two Ethernet NPE ports are the two physical links of an Ethernet bridge. The
Ethernet device driver is the OS-specific code that provides access to these NPEs via the services
of the IXP400 software.

The IEEE 802.1Q/p and QoS functionality is provided by a set of software modules for 802.1Q
VLAN and QoS (including 802.1p Priority Mapping and Ingress QoS). These modules interface
with the IXP400 software, the OS-specific device driver for the NPE ports, and the OS-specific
bridging software.

The modules do contain a minimal amount of OS-dependent code. When OS-specific code is used,
it is enclosed by a compiler definition typically passed through to the makefiles from the IXP400
software build system.

Figure 2 closely resembles Figure 1, but includes the VLAN and QoS Application v1.0. The two
modules, one for 802.1Q VLAN and another for QoS processing, are inserted into the data path of
the system. The Ethernet device driver uses these modules when VLAN-capable Ethernet frames
are received or need to be sent.

The VLAN and QoS Application v1.0 also provides control path capabilities. The Ethernet device
driver’s IOCTL parser is enhanced to recognize and execute the additional VLAN and QoS
functionality.

Figure 2. Software Architecture with the VLAN and QoS Application v1.0

802.1Q VLAN Module

10 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

3.0 802.1Q VLAN Module

This module implements the IEEE 802.1Q VLAN functionality. The module includes five software
sub-components, which are briefly described below; later sections provide more sub-component
detail. Ingress Rules, Egress Rules, and VLAN Classification deal with frame processing, the
Database records all information supported by 802.1Q VLAN module, while the Management
Interface deals with configuration for each component and provides public APIs for external
modules. The general flow, shown in Figure 3, is described below.

LAN Module Sub-Components

• Ingress Rules
Two Ingress Rule filterings are supported: Acceptable Frame Types and Ingress VLAN
Membership filterings. For Acceptable Frame Types filtering, it determines if received frames
are “VLAN-tagged”, “priority-tagged” or “non VLAN tagged”. Frames are discarded if the
reception port is not allowed to receive these types of frames. For Ingress VLAN Membership
filtering, the frames are discarded if the port of the received frames is not in the member set of
VLAN group.

• VLAN Classification
Determines VLAN Identification (VID) and User Priority of received frames (in ingress path)
and transmission frames (in egress path).

Figure 3. 802.1Q VLAN Module – Component View

VLAN VLAN
ClassificationClassification IEEE 802.1QIEEE 802.1Q

DatabaseDatabase

Management InterfaceManagement Interface

IXP400 IXP400
EthernetEthernet
Device Device
DriverDriver

Ethernet FramesEthernet Frames
Data FlowData Flow

Ethernet VLANEthernet VLAN
Control FlowControl Flow

Ingress Rules Ingress Rules

Egress RulesEgress Rules

In
gr

es
s

In
gr

es
s

Egress
E

gress

802.1Q VLAN Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 11

• Egress Rules
Two major features are supported: Egress VLAN Membership filtering and Rebuild Packet
Header. The function of the Egress VLAN Membership filtering is the same as Ingress VLAN
Membership filtering, except that it executes at the egress port. Rebuild Packet Header
supports the ability to determine if transmission frames should be tagged or untagged, and then
adds/removes/modifies the VLAN-tag header for the outbound frames.

• Management Interface
Interface for maintaining database and public APIs.

• Databases
Records all information and rules for the 802.1Q VLAN module. Three sub-databases are
supported: Port database, VLAN database and Classification Rules database. The port
database is for port-related information such as PVID (Port VLAN Identification) and
Acceptable Frame Types parameter. VLAN database is for VLAN information such as VLAN
membership, and Egress port attributes (tagged or untagged). Classification Rules database is
for classification rules such as MAC-based classification rules and Protocol (Layer 3/4)-based
classification rules.

Private Frame Buffer Memory

16 or 32 bytes of extra memory is reserved for each frame buffer that is used by the VLAN module
for storing per-frame VID and user priority information. Additionally, this private memory can be
used to append the VLAN header information on to a transmission frame. This private memory is
transparent to the IXP400 software.

Receive Path

For inbound Ethernet Frames, the device driver calls the API of the Ingress Rules component for
VLAN ingress processing. The Ingress Rules component analyzes the frame type (VLAN-tagged,
priority-tagged or non VLAN-tagged, see Figure 4) of received frames and commences
Acceptance Frame Type Check filtering. Frames are discarded if their frame types are not allowed
on the reception port. If frames pass the Acceptance Frame Type Check filtering, the Ingress Rules
component then calls the services of the VLAN Classification component to determine VLAN
Identification (VID) and user priority of received frames. Next, the Database component is queried
to get the (port) member set of the detected VLAN group and decide if the reception port is in the
member set of that VLAN group or not. Frames are discarded if the reception port is not in the
member set of the detected VLAN group. For frames that pass the VLAN Ingress Rules
(Acceptable Frame Type Check and VLAN Membership filtering), the VID and user priority are
saved into the private area and frames are relayed to the kernel for the bridging process. In addition
to the VID and User Priority data, the module also calculates a signature and checksum and stores
this information in the private area to help ensure data intregrity.

Transmit Path

For outbound Ethernet frames, the device driver calls the API of the Egress Rules component for
VLAN Egress processing if the Egress Rules component determines frames are bridged from the
other NPE/Ethernet port or from an upper-layer application. If frames come from the bridge,
ingress-determined VLAN Identification (VID) and user priority (both saved in the private area)
are retrieved. Otherwise, the Egress Rules component calls the services of VLAN classification
component to determine the VID and user priority of transmission frames. When VID and user
priority of transmission frames are determined, the Database component provides the (port)
member set of the VLAN group and decides whether or not the transmission port is in the member
set of VLAN group. Frames are discarded if the transmission port is not in the member set of the
VLAN group. If the transmission port is in the member set, egress attributes (VLAN-tagged or

802.1Q VLAN Module

12 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

VLAN-untagged) of the transmission port in the VLAN group and the frame type of the outbound
frames are used to determine whether or not the frame header of transmission frames should be
rebuilt (insert or remove VLAN header). After completing all egress processes, the device driver
calls the IXP400 software APIs required to transmit the frames.

3.1 Ingress Rules Component (ixVlanIngress)

This component supports the functionality of IEEE 802.1Q Acceptable Frame Types and Ingress
VLAN Membership filtering. In the IEEE 802.1Q standard, three frame types are defined —
VLAN tagged, priority-tagged, and non VLAN-tagged.

The Acceptable Frame Types parameter associated with each port controls the reception of the
types of frames on that port. Valid values for this parameter are: “Admit Only VLAN-tag Frames”
and “Admit All Frames”. If it is set to “Admit Only VLAN-tag Frames”, any frames received on
that port which do not contain VID tagging information (i.e., untagged frames and priority-tagged
frames) are discarded.

Figure 4. 802.1Q Frame Types

802.1Q VLAN Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 13

Ingress VLAN Membership filtering discards any frames received on that port whose VLAN group
does not include that port in its member set.

Figure 5. Flow Diagram for Acceptable Frame Type Filtering

Start Entry of
Acceptable Frame Types Filter

Return FALSE
(Rx frame should be

discarded)
Return TRUE

“Acceptable Frame Types” of
Rx port is “Admit only VLAN-tag

frames”?

Yes

Rx frames is VLAN
tagged?

YesNo

No

802.1Q VLAN Module

14 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

3.1.1 External Interactions and Dependencies

The Ethernet device driver utilizes this component to perform IEEE 802.1Q Ingress Rules
(Acceptable Frame Types and VLAN Membership) filtering. It is heavily dependent on VLAN
information in the Database component. Depending on whether or not Ingress Filtering is enabled,
information about Acceptable Frame Types parameters (and the member set of the VLAN group) is
queried from the Database component.

3.1.2 Key Assumptions

• The Database component in VLAN module is initialized and available for query.

• Default value of Acceptable Frame Types parameter for all ports is “Admit All Frames”.

• “VLAN_DEBUG” definition is used to determine whether or not the code is operating under a
debugging environment. If “VLAN_DEBUG” is not defined, all input parameters to this
component should be valid. For performance reasons, under normal operation no routines in
this component perform any input parameter checking.

3.2 VLAN Classification Component (ixVlanClassification)

VLAN Classification component is used to determine VLAN Identification (VID) and User
Priority of reception/transmission frames in accordance with established classification rules. Four
kinds of classification rules are supported: 802.1Q tag-based, port-based, MAC-based and Protocol
(Layer 3/4) -based classifications. 802.1Q tag-based classification determines VID and priority

Figure 6. Flow Diagram for Ingress VLAN Membership Filtering

Start Entry of
Ingress VLAN Membership

Filter

Yes

Ingress Filtering of the
port is enabled?

Is the port in the member set of
VLAN group?

Return FALSE
(Rx frame should be

discarded)

No

Return TRUE

Retrieve VLAN’s port-
membership from VLAN

information database

802.1p/Q
information
database

Database Query

Yes

No

802.1Q VLAN Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 15

from the VLAN-tag header of received frames. Port-based classification uses the reception port of
frames to decide VID and priority. MAC-based classification uses source MAC address, and
Protocol (Layer 3/4) -based classification uses information in IP/UDP/TCP headers to determine a
frames VID and priority.

3.2.1 External Interactions and Dependencies

The Ethernet device driver utilizes the VLAN Classification component to perform Ingress and
Egress VLAN Classification. The driver also utilizes services in the Database component to
determine if any classification rules should be applied to frames.

Figure 7. Flow Diagram for VLAN Classification

VLAN-tagged frame?

Rx Ethernet Frame In

Retrieve VID and User Priority
information from VLAN tag

header of Rx frame

Yes

No

Retrieve User Priority
information from VLAN tag

header of Rx frame

Src MAC of Rx frame
meet any MAC-based

VLAN rule?

No

Apply received port’s PVID
(Port VLAN ID) and default

Priority (if it is not determined
yet) to Rx frame

Return

VLAN enabled or not?

Yes

No

MAC-based VLAN
enable?

VLAN-priority-tagged
frame?

No

Yes

L3/L4-based VLAN
enable?

No

Yes

No

Retrieve VID and user priority
(if it is not determined yet)
information from matched
MAC-based VLAN entry

Yes

L3/L4 info of Rx frame
meet any L3/L4-based

VLAN rule?

Yes

Retrieve VID and user priority
(if it is not determined yet)

information from matched L3/
L4-based VLAN entry

No

Yes

No

802.1Q VLAN Module

16 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

3.2.2 Key Assumptions

• “VLAN_DEBUG” definition is used to determine whether or not the code is operating under a
debugging environment. If “VLAN_DEBUG” is not defined, all input parameters to this
component should be valid. For performance considerations, under normal operation no
routines in this component perform any input parameter checking.

3.3 Egress Rules Component (ixVlanEgress)

This component provides functionality for IEEE 802.1Q VLAN Egress Rules. Two features are
supported: Egress VLAN Membership filtering and Rebuild the Frame Header. Egress VLAN
Membership filtering discards frames whose transmission ports are not present in a frame's VID
member set.

In the IEEE 802.1Q Standard, on a given link a VLAN-aware bridge can transmit untagged frames
for some VLANs and VLAN-tagged frames for others, but cannot transmit both formats for the
same VLAN. A feature is provided for adding, modifying, or removing VLAN tag headers from
transmission frames in accordance with tagging requirements on egress for each port. This
behavior is described in Figure 9 and Table 1.

Figure 8. Flow Diagram for Egress VLAN Membership Filtering

Start Entry of
Egress VLAN Membership

Filter

Is the port in the member
set of VLAN group?

Return FALSE
(Rx frame should be

discarded)

No

Return TRUE

Retrieve VLAN’s port-
membership from VLAN

information database

VLAN enabled or not?

No
802.1p/Q

information
database

Database Query

Yes

Yes

802.1Q VLAN Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 17

3.3.1 External Interactions and Dependencies

The NPE Ethernet device driver utilizes this component to perform 802.1Q Egress Rules functions.
It is heavily dependent on VLAN information in the Database component. Information about
whether Egress Filtering is enabled or not and the member set of VLAN group are queried from the
Database component.

Figure 9. Flow Diagram for Rebuilding the Frame Header

Table 1. Rules for Rebuilding Frame Headers

Transmit Port
Transmits Frame as:

Receive Port Receives frame as:

VLAN-Tagged Priority-Tagged Untagged

untagged Remove tag header Remove tag header N/A

VLAN tagged N/A Modify VLAN header Add VLAN tag header

Start Entry of
Rebuild Packet Header

Tagged port?

Return

Retrieve VLAN’s port-
membership from VLAN
information database

Check the transmission port in
VLAN membership is tagged or

untagged port

YesNo

Tx frame is VLAN-
tagged?

Tx frame is VLAN-
tagged?

Modify VLAN header
to Tx frame

No

Remove VLAN
header from Tx

frame

No

No

Yes

802.1p/Q
information
database

Tx frame is priority-
tagged?

Yes

Tx frame is priority-
tagged?

Yes

Add VLAN header to
Tx frame

No Yes

802.1Q VLAN Module

18 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

3.3.2 Key Assumptions

• Database component in VLAN module is initialized and available for query.

• Frames that may require the insertion of VLAN-tag headers should reserve enough memory
space for VLAN-tag header. If, in the original transmission buffer, not enough memory is
available, the driver will allocate memory as needed.

• “VLAN_DEBUG” definition is used to determine whether or not the code is operating under a
debugging environment. If “VLAN_DEBUG” is not defined, all input parameters to this
component should be valid. For performance considerations, under normal operation no
routines in this component perform any input parameter checking.

3.4 Database Component (ixVlanDb)

This component contains all VLAN information for 802.1Q VLAN operations. There are three
categories (sub-database) of information in this database: Port Database, VLAN Database, and
Classification Database.

Port Database

This database contains information about port configurations as follows:

• PVID (Port VLAN Identification) and Default User Priority

• Status of Ingress Filtering (enable or disable)

• Acceptable frame types (AdmitAllFrames or AdmitOnlyVlanTaggedFrames)

VLAN Database

This database contains the following information about port configurations:

• VLAN function is enabled or not.

• Existing VLAN groups.

• VLAN (port) membership

• Egress attributes (VLAN-tagged or VLAN-untagged) of ports in VLAN group.

Note: VLAN membership includes the ports that belong to a VLAN group, egress attributes
(VLAN-tagged or VLAN-untagged) of a port in the VLAN group, etc. Please
reference the IEEE 802.1Q standard for more information.

Classification Rules Database

This database contains the following classification rules:

• Rules for MAC-based classification

• Rules for Protocol (Layer 3/4) -based classification.

There are several general characteristics and functions provided by the Database component:

• Services to configure and query information of Port Database, VLAN Database, and
Classification Rules Database.

• Up to 32 VLAN groups are supported simultaneously.

802.1Q VLAN Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 19

• Up to 16 MAC-based classification rules and up to 16 Protocol (Layer 3/4) -based
classification rules are supported, for up to 32 simultaneous rules.

3.4.1 External Interactions and Dependencies

The Database component houses critical information attributes used by other sub-components of
the VLAN module. Those interactions (detailed in this section) depend on which sub-database is
used.

3.4.1.1 Port Database

Depending on the desired service, the Port database is used by the following sub-components:

• Ingress Rules: Ingress Filtering and Acceptable Frame Types attributes for each port.

• Packet Classifier: The PVID and Default User Priority for each port.

• Management Interface: Supports interactions from the component APIs.

3.4.1.2 VLAN Database

For the services described, the VLAN database is used by the following sub-components:

• Ingress Rules: VLAN port membership

• Egress Rules: VLAN port membership. Port attributes (tagged or untagged) for egress ports in
a VLAN group.

Figure 10. Port Database Dependencies

Ingress Rules
(Acceptable Frame

Type Filter)

Packet Classification

Ingress Rules
(Membership Filter)

Header Re-builder
(Option: for removing VLAN tag)

Egress Rules (Header
Re-builder)

Packet Classification

Egress Rules
(Membership Filter)

Ingress Pipe Egress Pipe

VLAN Module

VLAN
Database

Port Database

Classification
Rules

Database
(for L2/L3/L4)

Management
Interface

802.1Q VLAN Module

20 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

• Management Interface: Supports interactions from the component APIs

3.4.2 Classification Rules Database

Depending on the desired service, the Classification Rules database is used by the following sub-
components:

• VLAN Classification: VID and User Priority of frames.

• Management Interface: Supports interactions from the component APIs.

Figure 11. VLAN Database Dependencies

Ingress Rules
(Acceptable Frame

Type Filter)

Packet Classification

Ingress Rules
(Membership Filter)

Header Re-builder
(Option: for removing VLAN tag)

Egress Rules (Header
Re-builder)

Packet Classification

Egress Rules
(Membership Filter)

Ingress Pipe Egress Pipe

VLAN Module

VLAN
Database

Port
Database

Classification
Rules

Database
(for L2/L3/L4)

Management
Interface

802.1Q VLAN Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 21

3.4.3 Key Assumptions

• “VLAN_DEBUG” definition is used to determine whether or not the code is operating under a
debugging environment. If “VLAN_DEBUG” is not defined, all input parameters to this
component should be valid. For performance considerations, under normal operation no
routines in this component perform any input parameter checking.

3.5 Management Interface Component (ixVlanMgmt)

This component provides a unique interface (i.e., control path) for external modules to configure
the behavior of the 802.1Q VLAN module. For example, the IOCTL parser in the Ethernet device
driver should utilize this interface to access services in 802.1Q VLAN module. Direct accesses to
services (or APIs) in other components in this module are not supported.

The features provided by the Management Interface component are:

• Enable & Disable 802.1Q VLAN function.

• Add & Delete VLAN groups.

• Assignment VLAN membership and associated (tagged/untagged) attributes of egress ports.

• Set port’s PVID and Default User Priority.

Figure 12. Classification Rules Database

Ingress Rules
(Acceptable Frame

Types Filter)

Packet Classification

Ingress Rules
(Membership Filter)

Header Re-builder
(Option: or removing VLAN tag)

Egress Rules (Header
Re-builder)

Packet Classification

Egress Rules
(Membership Filter)

Ingress Pipe Egress Pipe

VLAN Module

VLAN
Database

Port
Database

Classification
Rules

Database
(for L2/L3/L4)

Management
Interface

802.1p User Priority and QoS Module

22 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

• Configure Acceptable Frame Types filtering of reception port.

• Enable & Disable Ingress (VLAN) Membership filtering.

• Enable & Disable MAC-based VLAN Classification.

• Enable & Disable Protocol (Layer 3/4) -based VLAN Classification.

• Configure MAC-based VLAN Classification Rules.

• Configure Protocol (Layer 3/4) -based VLAN Classification Rules.

3.5.1 Key Dependencies

Regardless of whether or not “VLAN_DEBUG” is defined, all routines in this component perform
necessary input parameter checking.

4.0 802.1p User Priority and QoS Module

This purpose of this software module is to implement IEEE 802.1p User Priority to Traffic Class
Mappings, and Ingress QoS functionality. According to IEEE 802.1p, there are a maximum of
eight traffic classes supported. This module can be configured to support fewer than eight traffic
classes. The numerically highest traffic class is real-time traffic class, while all others are non-real-
time traffic class. The real-time and non-real-time classification is performed by a combination of
two subsystems: the VLAN Classifier module that provides the priority field in VLAN tag, and by
the Ingress QoS - Priority Mapping Module that maps port number and VLAN priority to a traffic
class. Real-time traffic is relayed promptly to the next module. Non-real-time traffic could be
forwarded to the next module, buffered in a priority queue, or get dropped depending on the
frame’s traffic class. If the frame is classified as realtime, or the traffic class for that frame does not

Figure 13. Management Interface Interactions

Management Management
InterfaceInterface

VLAN ClassificationVLAN Classification

Ingress RulesIngress Rules

ExternalExternal
ModuleModule

Egress RulesEgress Rules

DatabaseDatabase

802.1p User Priority and QoS Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 23

have shaper enabled, or "the shaper for that traffic class has available queues AND there are no
frames buffered in the input queue for that traffic class", then that frame is forwarded to the next
module.

Traffic shaping applies to those traffic classes that are not specified as “real-time”. For each traffic
class, there are two types of shapers: Data Bytes shaper (D-type), and Frame Count shaper (F-
type). There are two parameters associated with each shaper: Average Rate (avgD/avgF), and Peak
Rate (peakD/peakF). The shaper is designed with the concept of a token bucket. The shaper design
controls the long-term rate of traffic while also allowing some short-term bursts. The notation of
the D-type shaper is used extensively in the network community, as it monitors the bandwidth of a
certain traffic class. The purpose for an F-type shaper is to control the number of frames allowed
for further processing. The F-type shaper is commonly used to limit the number of table lookups
required by the host CPU, which is often a system bottleneck. The upper-layer user interface,
however, can be configured to use both shapers simultaneously, one of the two shaper types at a
time, or disable the shaper for some particular traffic class. When the shaper for a traffic class is
disabled, frames belonging to that traffic class are passed to the next module directly.

When the shaper type (D-type, F-type, or both) is enabled for a traffic class, frames that are
classified to this traffic class have to go through its corresponding shaper. When the corresponding
shaper still has available quota and no frames are buffered in the priority queue, the frame is passed
to the next module. Alternately, when there are frames buffered in the respective priority queue, a
new frame is sent to the priority queue (regardless of the shaper status) as long as the priority queue
is below its watermark threshold. If any of the enabled shapers is over-quota, then the frame is sent
to priority queue for that traffic class. Before that frame is physically pushed to a priority queue,
the water level of the priority queue corresponding to that traffic class is examined. If the water
level is over-threshold (configurable), the frame is dropped instantly, otherwise the frame is pushed
to the priority queue.

Periodically, the timer module is triggered and updates shapers that are enabled. After updating all
enabled shapers, a signal is sent to the priority queue service routine, which pops frames from the
high-priority traffic class queue to the low-priority traffic queue. For each frame at the head of a
certain queue, the shaper status is checked before sending to the next module. If the shaper has
available queues, the frame is popped and sent to the next module, after that the corresponding
shapers are updated. If the shapers are already over-quota, then the priority queue service routine
goes to the next priority queue for service.

802.1p User Priority and QoS Module

24 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

Four software components are defined for 802.1p User Priority to Traffic Class Mappings and
Ingress QoS. Those components are briefly described below and detailed in later sections. Traffic
Shaper, Priority Mapping, and Ingress Queues deal with frame processing, while the Management
Interface deals with configuration for each component and provides public APIs for other modules
access.

Figure 14. 802.1p User Priority to Traffic Class Mapping and Ingress QoS Modules –
Component View

7 6 5 4 3 2 1 0

NPE

IXP400 Software Access Layer

Ethernet Driver

User Space InQosCfg utility

 Kernel

C
on

tr
ol

Pa
th

(IO
C

TL
)

VLAN Classifier

Ingress Non-rt traffic (data)
Ingress Real-time traffic (voice)

Pri_Q6_hd
Pri_Q5_hd
Pri_Q4_hd

Shaper

802.1p
Priority

Mapping
COS Traffic-Class Map

(port, vlan_prio) tc

7 6 5 4 3 2 1 0

Pri_Q3_hd
Pri_Q2_hd
Pri_Q1_hd
Pri_Q1_hd

Watchdog
timer

interrupt
General

purpose timer
task

Priority Queue
Serv

Thread

Priority
Queue

Timer

Ingress conforming traffic
Ingress Non-conforming traffic
Traffic from Priority Queue
Shaper w/ available quota

Shaper already over-quota

Shaper disabled

802.1p User Priority and QoS Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 25

802.1p Priority Mapping and Ingress QoS Sub-Components

• Traffic Shaper
Ingress traffic rate control for kernel process.

• Priority Mapping
Processes for IEEE 802.1Q/p User Priority to Traffic Class Mappings is handled in this
component.

• Ingress Queues
Up to eight priority queues for ingress frames.

• Management Interface
Control path for maintaining associated database as well as shaper configuration.

The modularization of 802.1p User Priority to Traffic Class Mappings and Ingress QoS
components (such as ingress queues and traffic shaper) makes it easy for updating/enhancing
Ingress QoS functions. No effort is required for design changes in 802.1p User Priority to Traffic
Class Mappings when a new queueing discipline is added into the ingress queue module, or when a
new traffic control algorithm is defined for the traffic shaper.

4.1 Traffic Shaper Component

The purpose of the Traffic Shaper component is to control the rate of traffic sent to the next
software module. In general, the highest traffic class is treated as real-time traffic. Real-time traffic
is relayed promptly to the next software module. For non-real-time traffic, the Traffic Shaper
determines if the frame should be passed to next module directly, queued in the ingress priority
queues, or if the frame should be dropped. As previously stated, frames are sent to the priority
queue under the condition that either traffic rate exceeds the shaper's configured rate or there are
frames waiting in the corresponding priority queue. If rate limitation is not exceeded, and there are
no frames buffered in the respective queue, frames are relayed to the next module. In the case
where the frame must be delayed, the module first checks the water level of the particular priority
queue. If the water level is above the high threshold, then the frame is discarded; otherwise frames
are pushed to the corresponding priority queue.

If shapers for a traffic class are disabled, then traffic classified to this traffic class is treated as real-
time traffic. Frames are passed to the next module directly.

Each time a frame is sent to the next software module, the shapers are updated accordingly. If both
D-type and F-type shapers are enabled, then the quota for both types are updated. If only D-type is
enabled, then only the quota for D-type is updated. The F-type shaper quota update process is the
same.

Periodically, the timer (either timer task or interrupt) updates shaper parameters. The shaper
parameters are:

• traffic class number: tc

• average data rate in byte-per-sec (BPS): aBPS

• average packet count in frame-per-sec (FPS): aFPS

• peak data rate in BPS: pBPS

• peak packet count per sec: pFPS

• type of shaper (D-type or F-type): type

802.1p User Priority and QoS Module

26 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

The timer parameters are:

• type of timer: timer task or interrupt

• period of timer: in millisecond

The functionality provided by the Traffic Shaper component includes:

• Initialize Traffic shaper and unload traffic shaper.

• Determine if the frame conforms the shaper configuration.

• Configure the traffic rate to next software module/component by

— Number of frames

— Number of bytes

• Provide/Reset statistical data on the number of serviced frames/conformed frames/frame
buffered/frame dropped, etc.

• Register a callback function for the next software component.

4.1.1 External Interactions and Dependencies

This software component is initialized and configured by the Management Interface component.
The Management Interface component is required to register a proper callback function for the
Traffic Shaper component to enable passing frames to the next software module/component. The
Traffic Shaper component utilizes services of Ingress Queues to retrieve frames from its queues
and to push frames from Ingress Queues to Priority Queues. Interactions and dependencies are
illustrated in Figure 15.

802.1p User Priority and QoS Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 27

1. The device driver (via Management Interface) calls the API (ixQosIngressShaperInit) to
initialize the Traffic Shaper component.

2. The device driver calls the API (ixQoSIngressShaperCallbackRegister) to register the callback
function.

3. The device driver calls the API (ixQosIngressProcess) to initiate the Ingress QoS process.

4. Traffic Shaper calls the API (ixQos1pPriority2TCFrameMap) to determine if frames are real-
time. If frames are real-time, or non real-time traffic with traffic rate not exceeding the
configured rate and no frames in the corresponding queue, execute next step. Otherwise,
execute step 6.

5. Call the registered callback function to relay frames to next software module.

6. Call the API (ixQosIngressQAllowPush) to check water level. If the water level is below high
water mark, drop the packet. Otherwise, go to step 7.

7. Call the API (ixQosIngressQPush) of Ingress Queue component to queue the frame.

8. Priority Queue Service routine is executed by scheduler and de-queue frames from queues.

4.1.2 Key Assumptions

• “IXE_DRV_IN_QOS_DEBUG” definition is used to determine whether or not the code is
operating under debugging environment. If “IXE_DRV_IN_QOS_DEBUG” is not defined, all
input parameters to this component should be valid. For performance considerations, under
normal operation no routines in this component perform any input parameter checking.

Figure 15. Traffic Shaper Component Interactions and Dependencies

802.1p User Priority and QoS Module

28 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

4.2 Priority Mapping Component

This component maps the user priority (0~ 7) (determined in VLAN classification) of a received
frame into the corresponding traffic class value. Frames are classified into different classes and call
the services of the Traffic Shaper component to determine if frames should be queued or not.

The functionality provided by the Priority Mapping component includes:

• Initialize and unload Priority Mapping component.

• Support 802.1Q/p User Priority to Traffic Class Mappings of received frames.

Figure 16. 802.1p User Priority to Traffic Class Mapping

Table 2. User Priority to Traffic Class Defaults and Recommendations

User Priority Traffic Class
(Default)

Traffic Class
(Recommended for 2
Traffic Class Queues)

Traffic Class
(Recommended for 4
Traffic Class Queues)

0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 1

4 0 0 1

5 0 0 2

6 0 0 2

7 0 1 (highest priority) 3 (highest priority)

802.1p User Priority and QoS Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 29

• Interface to configure values of User Priority to Traffic Class Mappings.

• Call services of Traffic Shaper component to determine if received frames are queued or not.

4.2.1 External Interactions and Dependencies

This software component is initialized and configured by the Management Interface component.
The device driver utilizes services of this component for Ingress QoS data processing. The Traffic
Shaper component uses the Priority Mapping component to determine the traffic class of received
frames.

1. The Traffic Shaper component calls the API (ixQos1pPriority2TCFrameMap) to determine the
traffic class of received frames. If it is real-time traffic or non real-time but decide to relay to
next module/component promptly, execute step 2. Otherwise execute step 3.

2. Traffic Shaper calls the registered callback function to relay frames to the next software
module.

3. Traffic Shaper calls the API (ixQosIngressQPush) of Ingress Queue component to queue the
received frames into related priority queues.

Figure 17. Priority Mapping Interactions and Dependencies

802.1p User Priority and QoS Module

30 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

4.2.2 Key Assumptions

• “IXE_DRV_IN_QOS_DEBUG” definition is used to determine whether or not the code is
operating under a debugging environment. If “IXE_DRV_IN_QOS_DEBUG” is not defined,
all input parameters to this component should be valid. For performance considerations, under
normal operation no routines in this component perform any input parameter checking.

• The Number of Traffic Classes supported in this component and the Number of Queues
supported in the Ingress Queues component are identical.

4.3 Ingress Queues

As per the IEEE 802.1Q/p standard, the “Forwarding Process” may provide more than one
transmission queue for a given port. Frames are assigned to storage queue(s) on the basis of their
user priority using a traffic class table. This component simulates these queues in the ingress path.
There are two advantages from these ingress queues:

• It is compliant with the 802.1Q/p standard.

• By queueing different priority frames into different queues, more computing power of the host
processor is reserved to service frames in a higher priority queue.

The functionality provided by the Ingress Queues component is:

• Initialize and unload Ingress Queue components

• Support up to eight queues

Figure 18. Ingress Queues
u

802.1p User Priority and QoS Module

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 31

• Push a frame to the specific queue

• Pop a frame from the specific queue

• Obtain information for a specific queue

4.3.1 External Interactions and Dependencies

This software component is initialized and configured by Management Interface component.
Frames are pushed into (and popped from) queues by the Traffic Shaper component.

4.3.2 Key Assumptions

• “IXE_DRV_IN_QOS_DEBUG” definition is used to determine whether or not the code is
operating under a debugging environment. If “IXE_DRV_IN_QOS_DEBUG” is not defined,
all input parameters to this component should be valid. For performance considerations, under
normal operation no routines in this component perform any input parameter checking.

• The Number of Traffic Classes in this component and the Number of Queues in Ingress
Queues component are identical.

802.1p User Priority and QoS Module

32 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

4.4 Management Interface Component

This component provides the public interface (i.e., control path) for external modules to configure
the behavior of 802.1p User Priority to Traffic Class Mappings and Ingress QoS module. The
IOCTL parser in Ethernet device driver should utilize this interface to access services of the QoS
module. Direct access to services (or APIs) in other components of this module is not supported.

Figure 19. Dependencies and Interactions for Ingress Queues Component

Revision 001

Traffic
Shaper

Component
(determined if

frames are queued
or not)

Ingress
Queues

Component

Queue the received
frames

Management Interface

Not initialized yet

Initialized

Initialize Ingress
Queues

Traffic Shaper
Component

(fetch frames
from queues)

Dequeue the received
frames

Drop the received frame Dequeue the received
frames

IOCTL Enhancements for Ethernet Drivers

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 33

4.4.1 Key Dependencies

Regardless of whether or not “IXE_DRV_IN_QOS_DEBUG” is defined, all routines in this
component perform necessary input parameter checking.

5.0 IOCTL Enhancements for Ethernet Drivers

The purpose of this software is to extend existing IOCTL functionality in the IXP400 Ethernet
device drivers. New IOCTL commands are defined to support new features for 802.1Q VLAN and
QoS Modules. These commands are grouped into a pair of IOCTL utilities, vconf and qconf,
which are used to access VLAN and QoS services in the IXP400 Ethernet device driver. The
modified IOCTL Parser recognizes these IOCTL commands and in turn executes associated
services in the VLAN and QoS modules.

Figure 20. Interactions of the QoS Module Management Interface Sub-Component

IOCTL Enhancements for Ethernet Drivers

34 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

The vconf utility sends management API calls via IOCTL commands to the VLAN Module, while
qconf does the same for the QoS Module. More detailed information regarding the syntax of these
utilities is available in the Intel® IXP400 Software: VLAN and QoS Application Version 1.0
Release Notes.

Figure 21. System View of IOCTL Utilities and Parser

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 35

6.0 API Reference

This section contains the VLAN and QoS Application v1.0 APIs and data structures.

API Index (Sheet 1 of 3)

VLAN Module Interface

IX_STATUS ixVlanModuleInitialize (void); . 37

IX_STATUS ixVlanModuleEnableStatusSet (BOOL status); . 38

IX_STATUS ixVlanModuleEnableStatusGet (BOOL *status); . 38

VLAN Database Control Interface

IX_STATUS ixVlanDBVlanCreate (VLAN_ID vid); . 38

IX_STATUS ixVlanDBVlanDestroy (VLAN_ID vid); . 39

IX_STATUS ixVlanDBMembershipSet (VLAN_ID vid, PORT_BITMAP member_bmp PORT_BITMAP
egress_bmp); . 39

IX_STATUS ixVlanDBMembershipGet (VLAN_ID vid, PORT_BITMAP *member_bmp PORT_BITMAP
*egress_bmp); . 40

IX_STATUS ixVlanDBMemberSet (VLAN_ID vid, PORT_ID pid, BOOL is_member, BOOL,
is_untagged_egress); . 40

IX_STATUS ixVlanDBMemberGet (VLAN_ID vid, PORT_ID pid, BOOL *is_member, BOOL,
*is_untagged_egress);. 41

IX_STATUS ixVlanDBFirstVlanIdGet (VLAN_ID *vid); . 41

IX_STATUS ixVlanDBNextVlanIdGet (VLAN_ID *vid); . 41

Port Database Control Interface

IX_STATUS ixVlanDBPortAcceptFrameTypeSet (PORT_ID pid, ACCEPT_TYPE type); 42

IX_STATUS ixVlanDBPortAcceptFrameTypeGet (PORT_ID pid, ACCEPT_TYPE *type); 42

IX_STATUS ixVlanDBPortIngressFilterStatusSet (PORT_ID pid, BOOL status); . 42

IX_STATUS ixVlanDBPortIngressFilterStatusGet (PORT_ID pid, BOOL *status); . 43

IX_STATUS ixVlanDBPortRuleSet (PORT_ID pid, VLAN_ID vid, PRIORITY priority); 43

IX_STATUS ixVlanDBPortRuleGet (PORT_ID pid, VLAN_ID *vid, PRIORITY *priority); 43

IX_STATUS ixVlanDBPortRuleReset (PORT_ID pid); . 44

MAC Rule Database Control Interface

IX_STATUS ixVlanDBMacRuleAdd (MAC_RULE *mac_rule, RULE_ID *rid); . 44

IX_STATUS ixVlanDBMacRuleDelete (RULE_ID rid); . 44

IX_STATUS ixVlanDBMacRuleGet (RULE_ID rid, MAC_RULE *mac_rule); . 45

IX_STATUS ixVlanDBMacRuleFind (MAC_RULE *mac_rule, RULE_ID *rid); . 45

IX_STATUS ixVlanDBMacRuleActivateStatusGet (RULE_ID rid, BOOL activate); 46

IX_STATUS ixVlanDBFirstMacRuleIdGet (RULE_ID *rid); . 46

IX_STATUS ixVlanDBNextMacRuleIdGet (RULE_ID *rid); . 46

IX_STATUS ixVlanDBMacRuleGroupChange (RULE_ID rid, GROUP_ID gid); . 47

IX_STATUS ixVlanDBMacRuleGroupGet (RULE_ID rid, GROUP_ID *gid); . 47

IX_STATUS ixVlanDBMacRuleHitGet (RULE_ID rid, unsigned long *hit); . 47

API Reference

36 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

IX_STATUS ixVlanDBMacRuleResetAll (); .48

Protocol Rule Database Control Interface

IX_STATUS ixVlanDBProtocolRuleAdd (IP_RULE *ip_rule, RULE_ID *rid); .48

IX_STATUS ixVlanDBProtocolRuleDelete (RULE_ID rid); .48

IX_STATUS ixVlanDBProtocolRuleGet (RULE_ID rid, IP_RULE *ip_rule); .49

IX_STATUS ixVlanDBProtocolRuleFind (IP_RULE *ip_rule, RULE_ID *rid); .49

IX_STATUS ixVlanDBProtocolRuleActivateStatusSet (RULE_ID rid, BOOL activate);49

IX_STATUS ixVlanDBProtocolRuleActivateStatusGet (RULE_ID rid, BOOL *activate); 50

IX_STATUS ixVlanDBFirstProtocolRuleIdGet (RULE_ID *rid); .50

IX_STATUS ixVlanDBNextProtocolRuleIdGet (RULE_ID *rid); .50

IX_STATUS ixVlanDBProtocolRuleGroupChange (RULE_ID rid, GROUP_ID gid); .51

IX_STATUS ixVlanDBProtocolRuleGroupGet (RULE_ID rid, GROUP_ID *gid); .51

IX_STATUS ixVlanDBProtocolRuleHitGet (RULE_ID rid, unsigned long *hit); .51

IX_STATUS ixVlanDBProtocolRuleResetAll (); .52

VLAN Classifier Control Interface

IX_STATUS ixVlanClassMacClassifierStatusSet (BOOL status); .52

IX_STATUS ixVlanClassMacClassifierStatusGet (BOOL *status); .52

IX_STATUS ixVlanClassProtocolClassifierStatusSet (BOOL status); .53

IX_STATUS ixVlanClassProtocolClassifierStatusGet (BOOL *status); .53

VLAN Module Data Path

IX_STATUS ixVlanClassPacketClassify (IX_MBUF *pMblk, PORT_ID pid, DIRECTION direction, VLAN_ID
*vid, PRIORITY *priority); .54

IX_STATUS ixVlanClassPacketClassify (IX_MBUF *pMblk, PORT_ID pid, DIRECTION direction, VLAN_ID
*vid, PRIORITY *priority); .54

IX_STATUS ixVlanIngressProcess (PORT_ID pid, IX_MBUF *pMblk , BOOL *discard); 55

IX_STATUS ixVlanEgressProcess (PORT_ID pid, IX_MBUF **pMblk , BOOL *discard);55

General Control Path Interface

IX_STATUS ixIngressQosInit (UINT8 numTrafficClass); .57

IX_STATUS ixIngressQosDown (void); .58

802.1p to Traffic Class Interface

IX_STATUS ixQos1pPriority2TCMapSet (UINT8 port, UINT8 priority, UINT8 tc); .58

IX_STATUS ixQos1pPriority2TCMapGet (UINT8 port, UINT8 priority, UINT8 *tc); .59

IX_STATUS ixQos1pPriority2TCMapShow (UINT8 *buf); .59

Ingress Queue Interface

IX_STATUS ixQosIngressQIsEmpty (UINT8 q); .60

IX_STATUS ixQosIngressQNumQGet (UINT8 *numQ); .60

IX_STATUS ixQosIngressQThresholdSet (UINT8 q, UINT16 low, UINT16 high); .61

IX_STATUS ixQosIngressQThresholdGet (UINT8 q, UINT16 *low, UINT16 *high);62

API Index (Sheet 2 of 3)

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 37

6.1 VLAN Module

6.1.1 VLAN Module Interface

Ingress Traffic Shaper Interface

IX_STATUS ixQosIngressShaperInit (void); . 62

IX_STATUS ixQosIngressShaperInit (void); . 62

IX_STATUS ixQosIngressShaperCfgSet (UINT8 q, UINT32 avgD, UINT32 avgF, UINT32 PeakD, UINT32
PeakF, UINT32 type, UINT32 parMA); . 63

IX_STATUS ixQosIngressShaperCfgGet (UINT8 q, UINT32 *avgD, UINT32 *avgF, UINT32 *PeakD, UINT32
*PeakF, UINT32 *type, UINT32 *parMA); . 64

IX_STATUS ixQosIngressShaperTypeChange (UINT8 q, UINT32 typeNew); . 64

IX_STATUS ixQosIngressShaperCfgReset (UINT8 q); . 65

IX_STATUS ixQosIngressShaperCfgShow (UINT8 *buf); . 65

Timer Configuration Interface

IX_STATUS ixQosIngressTimerCfgSet (UINT8 type, UINT16 msNew); . 66

IX_STATUS ixQosIngressTimerCfgGet (UINT8 *type, UINT16 *ms, UINT32 *id); . 66

IX_STATUS ixQosIngressTimerCfgRemove (void); . 67

Ingress QoS Data Path

IX_STATUS ixQosIngressProcess (IX_MBUF *pMblk, UINT8 port, UINT8 priority, UINT32 drop_cnt, UINT32
*pkt_cnt, UINT32 *byte_cnt, UINT32 len); . 67

IX_STATUS ixIngressQosShaperConfigDone (void); . 68

API Index (Sheet 3 of 3)

Prototype: IX_STATUS ixVlanModuleInitialize (void);

Parameters: Description: I/O:

n/a

Return: IX_SUCCESS

Description: This function is used to startup the VLAN module, including all VLAN databases. No parameter is required
for this function.

API Reference

38 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.1.2 VLAN Database Control Interface

Prototype: IX_STATUS ixVlanModuleEnableStatusSet (BOOL status);

Parameters: Description: I/O:

status VLAN module is to be enabled or disabled according to its value, TRUE or FALSE
respectively. I

Return: IX_SUCCESS

Description: This function is used to enable/disable the VLAN module.

Prototype: IX_STATUS ixVlanModuleEnableStatusGet (BOOL *status);

Parameters: Description: I/O:

*status VLAN module status is enabled or disabled according to its value, TRUE or FALSE
respectively. O

Return: IX_FAIL

IX_SUCCESS

Description: This function is used to get the status of enabling of VLAN module.

Prototype: IX_STATUS ixVlanDBVlanCreate (VLAN_ID vid);

Parameters: Description: I/O:

vid The VLAN of vid 1 is always created whenever the VLAN module is enabled. The legal
range of "vid" is from 1 to 4094. I

Return: IX_FAIL – Illegal VLAN id, VLAN already exists; or no VLAN entry available

IX_SUCCESS

Description: This function is used to create a VLAN.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 39

Prototype: IX_STATUS ixVlanDBVlanDestroy (VLAN_ID vid);

Parameters: Description: I/O:

vid The VLAN of vid 1 is always created whenever the VLAN module is enabled. The legal
range of "vid" is from 1 to 4094. I

Return: IX_FAIL – Illegal VLAN id, VLAN does not exist.

IX_SUCCESS

Description: This function is used to delete an existing VLAN.

Prototype: IX_STATUS ixVlanDBMembershipSet (VLAN_ID vid, PORT_BITMAP member_bmp
PORT_BITMAP egress_bmp);

Parameters: Description: I/O:

vid The VLAN of vid 1 is always created whenever the VLAN module is enabled. The legal
range of "vid" is from 1 to 4094. I

member_bmp Specifies the member ports to add to the VLAN. I

egress_bmp Set tagged or untagged egress status. I

Return: IX_FAIL – VLAN does not exist.

IX_SUCCESS

Description: This function is used to join ports as members of a VLAN. This function is also used to define the egress
type of each port.

API Reference

40 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

Prototype: IX_STATUS ixVlanDBMembershipGet (VLAN_ID vid, PORT_BITMAP *member_bmp
PORT_BITMAP *egress_bmp);

Parameters: Description: I/O:

vid The VLAN of vid 1 is always created whenever the VLAN module is enabled. The legal
range of "vid" is from 1 to 4094. I

*member_bmp Receives the member ports to add to the VLAN. O

*egress_bmp Tagged or untagged egress status. O

Return: IX_FAIL – VLAN does not exist.

IX_SUCCESS

Description: This function is used to get the membership ports of a VLAN, and the egress type of these members

Prototype: IX_STATUS ixVlanDBMemberSet (VLAN_ID vid, PORT_ID pid, BOOL is_member, BOOL,
is_untagged_egress);

Parameters: Description: I/O:

vid The VLAN of vid 1 is always created whenever the VLAN module is enabled. The legal
range of "vid" is from 1 to 4094. I

pid Specifies the port I

is_member TRUE == add port to VLAN, FALSE == remove port from VLAN I

is_untagged_e
gress Tagged or untagged egress status TRUE == tagged, FALSE ==- untagged. I

Return: IX_FAIL – Illegal Port ID, port has PVID for this VLAN, VLAN does not exist.

IX_SUCCESS

Description: This function is used to add or remove ports to or from an existing VLAN

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 41

Prototype: IX_STATUS ixVlanDBMemberGet (VLAN_ID vid, PORT_ID pid, BOOL *is_member, BOOL,
*is_untagged_egress);

Parameters: Description: I/O:

vid The VLAN of vid 1 is always created whenever the VLAN module is enabled. The legal
range of "vid" is from 1 to 4094. I

pid Specifies the port I

*is_member TRUE == add port to VLAN, FALSE == remove port from VLAN O

*is_untagged_
egress Tagged or untagged egress status TRUE == tagged, FALSE ==- untagged. O

Return: IX_FAIL – Illegal Port ID.

IX_SUCCESS

Description: This function is used to determine whether a port is the member of a particular VLAN.

Prototype: IX_STATUS ixVlanDBFirstVlanIdGet (VLAN_ID *vid);

Parameters: Description: I/O:

*vid The VLAN of vid 1 is always created whenever the VLAN module is enabled. The legal
range of "vid" is from 1 to 4094. O

Return: IX_FAIL – No VLAN exists.

IX_SUCCESS

Description: This function provides the VLAN id of the first VLAN in the database.

Prototype: IX_STATUS ixVlanDBNextVlanIdGet (VLAN_ID *vid);

Parameters: Description: I/O:

*vid The VLAN of vid 1 is always created whenever the VLAN module is enabled. The legal
range of "vid" is from 1 to 4094. O

Return: IX_FAIL – No additional VLANs exist.

IX_SUCCESS

Description:
This function provides the VLAN ids of all VLANs in the database. On each call, it returns the next vid in
the VLAN database. If there are no additional VLANs, it returns IX_FAIL. It is OK to call this function
without first calling ixVlanDbFirstVlanIdGet.

API Reference

42 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.1.3 Port Database Control Interface

Prototype: IX_STATUS ixVlanDBPortAcceptFrameTypeSet (PORT_ID pid, ACCEPT_TYPE type);

Parameters: Description: I/O:

pid Specifies the port I

type Specifies the acceptable frame type,0 == ALL_FRAME, 1 == ONLY_TAGGED_FRAME. I

Return: IX_FAIL – Illegal Port.

IX_SUCCESS

Description: This function is used to set the acceptable frame type of a port.

Prototype: IX_STATUS ixVlanDBPortAcceptFrameTypeGet (PORT_ID pid, ACCEPT_TYPE *type);

Parameters: Description: I/O:

pid Specifies the port I

type Specifies the acceptable frame type,0 == ALL_FRAME, 1 == ONLY_TAGGED_FRAME. O

Return: IX_FAIL – Illegal Port.

IX_SUCCESS

Description: This function is used to determine whether a port can accept VLAN-tagged frames.

Prototype: IX_STATUS ixVlanDBPortIngressFilterStatusSet (PORT_ID pid, BOOL status);

Parameters: Description: I/O:

pid Specifies the port I

status Specifies ingress filtering,0 == enabled, 1 == disabled. I

Return: IX_FAIL – Illegal Port.

IX_SUCCESS

Description: This function is used to set whether a port should use ingress filtering.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 43

Prototype: IX_STATUS ixVlanDBPortIngressFilterStatusGet (PORT_ID pid, BOOL *status);

Parameters: Description: I/O:

pid Specifies the port I

*status Specifies ingress filtering,0 == enabled, 1 == disabled. O

Return: IX_FAIL – Illegal Port.

IX_SUCCESS

Description: This function is used to determine whether a port uses ingress filtering.

Prototype: IX_STATUS ixVlanDBPortRuleSet (PORT_ID pid, VLAN_ID vid, PRIORITY priority);

Parameters: Description: I/O:

pid Specifies the port I

vid Default VLAN ID of the port I

priority 802.1q priority level. I

Return: IX_FAIL – Illegal port or VLAN does not exist.

IX_SUCCESS

Description: This function is used to set the default VLAN id (PVID) and priority for a port.

Prototype: IX_STATUS ixVlanDBPortRuleGet (PORT_ID pid, VLAN_ID *vid, PRIORITY *priority);

Parameters: Description: I/O:

pid Specifies the port I

*vid Default VLAN ID of the port O

*priority 802.1q priority level. O

Return: IX_FAIL – Illegal Port.

IX_SUCCESS

Description: This function is used to determine the default VLAN id (PVID) and priority for a port.

API Reference

44 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.1.4 MAC Rule Database Control Interface

Prototype: IX_STATUS ixVlanDBPortRuleReset (PORT_ID pid);

Parameters: Description: I/O:

pid Specifies the port I

Return: IX_FAIL – Illegal Port.

IX_SUCCESS

Description: This function is used to reset the default VLAN id (PVID), priority, ingress filter status and frame type
accept status.

Prototype: IX_STATUS ixVlanDBMacRuleAdd (MAC_RULE *mac_rule, RULE_ID *rid);

Parameters: Description: I/O:

*mac_rule Structure containing the MAC-based rule. I

*rid Rule ID number. O

Return: IX_FAIL – Illegal rule contents (illegal priority, illegal VLAN), rule pool is full.

IX_SUCCESS

Description: This function is used to add a new MAC-based rule to the VLAN classifier.

Prototype: IX_STATUS ixVlanDBMacRuleDelete (RULE_ID rid);

Parameters: Description: I/O:

rid Rule ID number. I

Return: IX_FAIL

IX_SUCCESS

Description: This function is remove an existing MAC-based rule from the VLAN classifier.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 45

Prototype: IX_STATUS ixVlanDBMacRuleGet (RULE_ID rid, MAC_RULE *mac_rule);

Parameters: Description: I/O:

rid Rule ID number. I

*mac_rule Structure containing the MAC-based rule. O

Return: IX_FAIL – Rule ID does not exist.

IX_SUCCESS

Description: This function is used to read the contents of an existing MAC-based rule to the VLAN classifier.

Prototype: IX_STATUS ixVlanDBMacRuleFind (MAC_RULE *mac_rule, RULE_ID *rid);

Parameters: Description: I/O:

*mac_rule Structure containing the MAC-based rule to match. I

*rid Rule ID number. O

Return: IX_FAIL – No matching rule found.

IX_SUCCESS

Description: This function is used to get an existing MAC-based rule ID from the VLAN classifier. The seach will
attempt to find an existing rule that matches to content of *mac_rule.

Prototype: IX_STATUS ixVlanDBMacRuleActivateStatusSet (RULE_ID rid, BOOL activate);

Parameters: Description: I/O:

rid Rule ID number. I

activate Specifies if rule is active,0 == disabled, 1 == active. I

Return: IX_FAIL — Rule ID does not exist.

IX_SUCCESS

Description:
This function is used to activate an existing MAC-based rule ID in the VLAN classifier. Entries can be
activated even when the MAC-based classifier is disabled. (ixVlanClassMacClassifierStatusSet). Those
entries will then be used by the classified once the classifier is enabled.

API Reference

46 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

Prototype: IX_STATUS ixVlanDBMacRuleActivateStatusGet (RULE_ID rid, BOOL activate);

Parameters: Description: I/O:

rid Rule ID number. I

*activate Specifies if rule is active,0 == disabled, 1 == active. O

Return: IX_FAIL — Rule ID does not exist.

IX_SUCCESS

Description: This function is used to detect whether an existing MAC-based rule ID in the VLAN classifier is active.

Prototype: IX_STATUS ixVlanDBFirstMacRuleIdGet (RULE_ID *rid);

Parameters: Description: I/O:

*rid Rule ID number. O

Return: IX_FAIL – No MAC-based rules exist.

IX_SUCCESS

Description: This function provides the rule id of the first MAC-based rule in the VLAN classifier.

Prototype: IX_STATUS ixVlanDBNextMacRuleIdGet (RULE_ID *rid);

Parameters: Description: I/O:

*rid Rule ID number. O

Return: IX_FAIL – No MAC-based rules exist.

IX_SUCCESS

Description:
This function provides the rule id of all MAC-based rules in the VLAN classifier. On each call, it returns the
next MAC-rule in the VLAN database. If there are no additional rules, it returns IX_FAIL. It is OK to call
this function without first calling ixVlanDbFirstMacRuleIdGet.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 47

Prototype: IX_STATUS ixVlanDBMacRuleGroupChange (RULE_ID rid, GROUP_ID gid);

Parameters: Description: I/O:

rid Rule ID number. I

gid Group ID number for the rule. Default value = 8, legal values 0 to 15. I

Return: IX_FAIL – Illegal Rule ID.

IX_SUCCESS

Description:
This function is used to activate an existing MAC-based rule ID in the VLAN classifier. A group is a
collection of MAC or Protocol-based rules. A group with a higher gid is searched before lower-gid-value
groups. The classified stops rule searching for a frame as soon as the first rule match is made.

Prototype: IX_STATUS ixVlanDBMacRuleGroupGet (RULE_ID rid, GROUP_ID *gid);

Parameters: Description: I/O:

rid Rule ID number. I

*gid Group ID number for the rule. Default value = 8, legal values 0 to 15. O

Return: IX_FAIL – Illegal Rule ID.

IX_SUCCESS

Description: This function is used to determine which group an existing MAC-based rule belongs to in the VLAN
classifier.

Prototype: IX_STATUS ixVlanDBMacRuleHitGet (RULE_ID rid, unsigned long *hit);

Parameters: Description: I/O:

rid Rule ID number. I

*hit Number of packets. O

Return: IX_FAIL – Illegal Rule ID.

IX_SUCCESS

Description: This function is used to retrieve the number of frames that have matched the specified MAC-based rule by
the VLAN classifier.

API Reference

48 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.1.5 Protocol Rule Database Control Interface

Prototype: IX_STATUS ixVlanDBMacRuleResetAll ();

Parameters: Description: I/O:

Return: IX_SUCCESS

Description: This function is used to remove all MAC-based rules from the VLAN classifier.

Prototype: IX_STATUS ixVlanDBProtocolRuleAdd (IP_RULE *ip_rule, RULE_ID *rid);

Parameters: Description: I/O:

*ip_rule Structure containing the Protocol-based rule. I

*rid Rule ID number. O

Return: IX_FAIL – Illegal rule contents (illegal priority, illegal VLAN), rule pool is full.

IX_SUCCESS

Description: This function is used to add a new Protocol-based rule to the VLAN classifier.

Prototype: IX_STATUS ixVlanDBProtocolRuleDelete (RULE_ID rid);

Parameters: Description: I/O:

rid Rule ID number. I

Return: IX_FAIL — Rule ID does not exist.

IX_SUCCESS

Description: This function is remove an existing Protocol-based rule from the VLAN classifier.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 49

Prototype: IX_STATUS ixVlanDBProtocolRuleGet (RULE_ID rid, IP_RULE *ip_rule);

Parameters: Description: I/O:

rid Rule ID number. I

*ip_rule Structure containing the Protocol-based rule. O

Return: IX_FAIL – Rule ID does not exist.

IX_SUCCESS

Description: This function is used to read the contents of an existing Protocol-based rule to the VLAN classifier.

Prototype: IX_STATUS ixVlanDBProtocolRuleFind (IP_RULE *ip_rule, RULE_ID *rid);

Parameters: Description: I/O:

*ip_rule Structure containing the Protocol-based rule to match. I

*rid Rule ID number. O

Return: IX_FAIL – No matching rule found.

IX_SUCCESS

Description: This function is used to get an existing Protocol-based rule ID from the VLAN classifier. The seach will
attempt to find an existing rule that matches to content of *ip_rule.

Prototype: IX_STATUS ixVlanDBProtocolRuleActivateStatusSet (RULE_ID rid, BOOL activate);

Parameters: Description: I/O:

rid Rule ID number. I

activate Specifies if rule is active,0 == disabled, 1 == active. I

Return: IX_FAIL — Rule ID does not exist.

IX_SUCCESS

Description:
This function is used to activate an existing Protocol-based rule ID in the VLAN classifier. Entries can be
activated even when the Protocol-based classifier is disabled. (ixVlanClassProtocolClassifierStatusSet).
Once the classifier is enabled, those entries will then be used by the classifier.

API Reference

50 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

Prototype: IX_STATUS ixVlanDBProtocolRuleActivateStatusGet (RULE_ID rid, BOOL *activate);

Parameters: Description: I/O:

rid Rule ID number. I

*activate Specifies if rule is active,0 == disabled, 1 == active. O

Return: IX_FAIL — Rule ID does not exist.

IX_SUCCESS

Description: This function is used to detect whether an existing Protocol-based rule ID in the VLAN classifier is active.

Prototype: IX_STATUS ixVlanDBFirstProtocolRuleIdGet (RULE_ID *rid);

Parameters: Description: I/O:

*rid Rule ID number. O

Return: IX_FAIL – No Protocol-based rules exist.

IX_SUCCESS

Description: This function provides the rule id of the first Protocol-based rule in the VLAN classifier.

Prototype: IX_STATUS ixVlanDBNextProtocolRuleIdGet (RULE_ID *rid);

Parameters: Description: I/O:

*rid Rule ID number. O

Return: IX_FAIL – No Protocol-based rules exist.

IX_SUCCESS

Description:
This function provides the rule id of all Protocol-based rules in the VLAN classifier. On each call, it returns
the next Protocol-rule in the VLAN database. If there are no additional rules, it returns IX_FAIL. It is OK to
call this function without first calling ixVlanDbFirstProtocolRuleIdGet.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 51

Prototype: IX_STATUS ixVlanDBProtocolRuleGroupChange (RULE_ID rid, GROUP_ID gid);

Parameters: Description: I/O:

rid Rule ID number. I

gid Group ID number for the rule. Default value = 8, legal values 0 to 15. I

Return: IX_FAIL — Rule ID does not exist.

IX_SUCCESS

Description:
This function is used to activate an existing Protocol-based rule ID in the VLAN classifier. A group is a
collection of MAC or Protocol-based rules. A group with a higher gid is searched before lower-gid-value
groups. The classified stops rule searching for a frame as soon as the first rule match is made.

Prototype: IX_STATUS ixVlanDBProtocolRuleGroupGet (RULE_ID rid, GROUP_ID *gid);

Parameters: Description: I/O:

rid Rule ID number. I

*gid Group ID number for the rule. Default value = 8, legal values 0 to 15. O

Return: IX_FAIL — Rule ID does not exist.

IX_SUCCESS

Description: This function is used to determine which group an existing Protocol-based rule belongs to in the VLAN
classifier.

Prototype: IX_STATUS ixVlanDBProtocolRuleHitGet (RULE_ID rid, unsigned long *hit);

Parameters: Description: I/O:

rid Rule ID number. I

*hit Number of packets. O

Return: IX_FAIL – Illegal Rule ID.

IX_SUCCESS

Description: This function is used to retrieve the number of frames that have matched the specified Protocol-based
rule by the VLAN classifier.

API Reference

52 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.1.6 VLAN Classifier Control Interface

Prototype: IX_STATUS ixVlanDBProtocolRuleResetAll ();

Parameters: Description: I/O:

Return: IX_SUCCESS

Description: This function is used to remove all Protocol-based rules from the VLAN classifier.

Prototype: IX_STATUS ixVlanClassMacClassifierStatusSet (BOOL status);

Parameters: Description: I/O:

status The status is enabled or disabled according to its value, TRUE or FALSE, respectively. I

Return: IX_SUCCESS

Description: This function is used to set the status of the MAC-based VLAN classifier.

Prototype: IX_STATUS ixVlanClassMacClassifierStatusGet (BOOL *status);

Parameters: Description: I/O:

*status The status is enabled or disabled according to its value, TRUE or FALSE, respectively. O

Return: IX_FAIL — Status == NULL.

IX_SUCCESS

Description: This function is used to get the status of the MAC-based VLAN classifier.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 53

Prototype: IX_STATUS ixVlanClassProtocolClassifierStatusSet (BOOL status);

Parameters: Description: I/O:

status The status is enabled or disabled according to its value, TRUE or FALSE, respectively. I

Return: IX_FAIL

IX_SUCCESS

Description: This function is used to set the status of the Protocol-based VLAN classifier.

Prototype: IX_STATUS ixVlanClassProtocolClassifierStatusGet (BOOL *status);

Parameters: Description: I/O:

*status The status is enabled or disabled according to its value, TRUE or FALSE, respectively. O

Return: IX_FAIL

IX_SUCCESS

Description: This function is used to get the status of the Protocol-based VLAN classifier.

API Reference

54 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.1.7 VLAN Module Data Path

Prototype: IX_STATUS ixVlanClassPacketClassify (IX_MBUF *pMblk, PORT_ID pid, DIRECTION
direction, VLAN_ID *vid, PRIORITY *priority);

Parameters: Description: I/O:

pMblk The mbuf for that frame. IX_MBUF for VxWorks, sk_buff for Linux*. IO

pid The port where the frame is received or send, depending on direction. I

direction INGRESS or EGRESS I

*vid VLAN ID or Port VLAN ID (PVID) if no VID. O

*priority User Priority tag O

Return: IX_FAIL – Illegally tagged frame.

IX_SUCCESS – The frame was successfully classified.

Description: This function is used to classify a frame/packet according to any applicable rules in the VLAN
classification database.

Prototype: IX_STATUS ixVlanClassPacketClassify (IX_MBUF *pMblk, PORT_ID pid, DIRECTION
direction, VLAN_ID *vid, PRIORITY *priority);

Parameters: Description: I/O:

*pMblk The mbuf for that frame. IX_MBUF for VxWorks, sk_buff for Linux. IO

pid The port where the frame is received or send, depending on direction. I

direction INGRESS or EGRESS I

*vid VLAN ID or Port VLAN ID (PVID) if no VID. O

*priority User Priority tag O

Return: IX_FAIL – Illegally tagged frame.

IX_SUCCESS – The frame was successfully classified.

Description: This function is used to classify a frame/packet according to any applicable rules in the VLAN
classification database.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 55

Prototype: IX_STATUS ixVlanIngressProcess (PORT_ID pid, IX_MBUF *pMblk , BOOL *discard);

Parameters: Description: I/O:

pid The port where the frame is received. I

*pMblk The mbuf for that frame. IX_MBUF for VxWorks, sk_buff for Linux. I

*discard TRUE if VLAN module makes decision to drop this frame. O

Return: IX_FAIL – Fails frame filter on ingress port, not member of Ingress VLAN, Illegally tagged frame.

IX_SUCCESS – The upper level should be notified that a new frame is received.

Description: This function is used to receive a frame/packet, and check it against applicable filters, VLAN membership,
and submit to the classifier.

Prototype: IX_STATUS ixVlanEgressProcess (PORT_ID pid, IX_MBUF **pMblk , BOOL *discard);

Parameters: Description: I/O:

pid The port where the frame is being sent. I

**pMblk The mbuf for that frame. IX_MBUF for VxWorks, sk_buff for Linux. I

*discard TRUE if VLAN module makes decision to drop this frame. O

Return: IX_FAIL – Could not add VLAN tag info, not member of Egress VLAN, Illegally tagged frame.

IX_SUCCESS – Transmit the frame.

Description: This function is used to check a frame against applicable filters, VLAN membership, apply VLAN tag
information and submit to network driver.

API Reference

56 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.1.8 VLAN Module Types

TypeDef Type Description

ACCEPT_TYPE enum ALL_FRAME,
ONLY_TAGGED_FRAME

DIRECTION enum INGRESS, EGRESS

GROUP_ID unsigned short 0-15

IP_ADDRESS[4] unsigned char

MAC_ADDRESS[6] unsigned char

PORT_BITMAP unsigned short Bit 0 for port 0, and so on

PORT_ID unsigned short 0,1

PRIORITY unsigned short 802.1q priority level. Acceptable
values: 0 to 7.

RULE_ID unsigned short

VLAN_ID unsigned short Acceptable values: 0 to 4095

PROTOCOL_TYPE signed long TCP=0x06, UDP=0x11.

PORT_NUM signed long TCP or UDP protocol port
number.

Struct: IP_RULE

TypeDef: Elements: Description:

VLAN_ID vid

PRIORITY priority

IP_ADDRESS src_ip, src_ip_mask

IP_ADDRESS dst_ip, dst_ip_mask

PROTOCOL_TYPE protocol

PORT_NUM src_port

PORT_NUM dst_port

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 57

6.2 Ingress QoS Module

6.2.1 General Control Path Interface

Struct: MAC_RULE

TypeDef: Elements: Description:

VLAN_ID vid

PRIORITY priority

MAC_ADDRESS src_ip

MAC_ADDRESS src_ip_mask

Prototype: IX_STATUS ixIngressQosInit (UINT8 numTrafficClass);

Parameters: Description: I/O:

numTraffic-
Class

number of traffic classes (number of priority queues) to use for Ingress Qos. The range of
numTrafficClass is from 1 through 8, inclusively.

I

Return: IX_FAIL

IX_SUCCESS

Description:

This function is used to initialize the Ingress QoS module with a number of traffic classes. This in turn sets
up numTrafficClass ingress queues, the priority mapping, and initializes default shaper utilities. The
threshold of each ingress priority queue, and the priority mapping which maps (port, vlan_priority) to
(traffic class) are set to default states.
The default priority mapping consists of one real-time traffic class (real-time_traffic_class =
numTrafficClass-1. Higher numeric value means higher priority), equivalent number of traffic class 0, 1, 2,
…, (real-time_traffic_class -1), with exception that traffic class 0 may have more mappings. For example,
if numTrafficClass=4, then real-time_trafffic_class=3, and the mapping for port 0, vlan_priority (0,¡K,7) to
traffic class is like ((port, vlan_priority)->(tc)): (0,0) -> (0), (0,1) -> (0), (0,2) -> (0), (0,3) -> (1), (0,4) ->
(1), (0,5) -> (2), (0,6) -> (2), (0,7) -> (3).
For each ingress priority queue, there are low threshold and high threshold associated with each queue.
This function initializes these queue and their corresponding thresholds with default values. Those
defaults are configurable in header file. Currently only high threshold are of significant to IxIngress Qos,
low threshold is left for future implementation. If the number of frames buffered in the ingress priority
queue reaches high threshold, that frames are dropped. The number of traffic classes and the number of
ingress queues are equivalent in IxIngress QoS module and are used interchangeably.
This function only initializes basic shaper utilities, it does not configure any shaper and does not enable
the timer. The default settings of shapers and timers are to use maximum allowed parameters for
shapers, and to use 100ms timer task. Since there are no shapers being configured in this function,
frames are still processed by original Ethernet driver after invoking this function.

API Reference

58 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.2.2 802.1p to Traffic Class Interface

Prototype: IX_STATUS ixIngressQosDown (void);

Parameters: Description: I/O:

n/a

Return: IX_FAIL

IX_SUCCESS

Description:

Bring down the Ingress QoS module.
All active shapers are initialized to their initial states and then disabled. Timer, whether in form of task or
interrupt, is disabled. All frames buffered in ingress priority queues are flushed out. The priority mapping
is also initialized to its default state. Frames received after the invocation of this function are processed
by original Ethernet driver.

Prototype: IX_STATUS ixQos1pPriority2TCMapSet (UINT8 port, UINT8 priority, UINT8 tc);

Parameters: Description: I/O:

port Port number 0 or 1. I

priority Vlan Priority, 0-7. I

tc Traffic Class. Must be between 0 and [numTrafficClass-1] I

Return: IX_FAIL

IX_SUCCESS

Description:

Set the traffic class according to (port, vlan_priority).
This function sets up priority mapping of (port, vlan_priority) -> (traffic class). This mapping is first setup
when IxIngressQosInit(numTrafficClass) is invoked. The mapping set here overwrites the previous
setting. The mapping can be set on the fly when the traffic is still flowing. The input parameter should be
in legal range; notably the tc parameter must not exceed numTrafficClass set previously. There is no
constraint as to how the mapping is defined; multiple (port, vlan_priority) can map to the same (tc). This
function returns IX_FAIL if IxIngress QoS module is not enabled by (IxIngressQosInit).

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 59

Prototype: IX_STATUS ixQos1pPriority2TCMapGet (UINT8 port, UINT8 priority, UINT8 *tc);

Parameters: Description: I/O:

port Port number 0 or 1. I

priority Vlan Priority, 0-7. I

*tc Traffic Class. Cannot be NULL. O

Return: IX_FAIL

IX_SUCCESS

Description:

Get the traffic class according to (port, vlan_priority).
This function obtain the traffic based on the inputs of (port, vlan_priority) pair. The *tc cannot be NULL,
otherwise the function returned IX_FAIL. This function is mostly used for inquiring traffic class for some
(port, vlan_priority) combination. This function returns IX_FAIL if IxIngress QoS module is not enabled by
(IxIngressQosInit).

Prototype: IX_STATUS ixQos1pPriority2TCMapShow (UINT8 *buf);

Parameters: Description: I/O:

*buf Pointer to buffer receiving the map O

Return: IX_FAIL

IX_SUCCESS

Description:

Show the traffic class mapping.
The shown message can be referred from *buf pointer. The caller can use *buf to obtain the messages
exported from IxIngress QoS module. The message shown includes (port, vlan_priority)->(tc) mapping,
as well as the low and high threshold for each ingress queue. If the compilation option IX_QOS_STAT is
defined, it also shows total number of frames classified to different traffic classes, the number of frames
currently buffered in the ingress priority queue, the total number of frames that are been put in a particular
ingress queue and then transmitted, and the total number of frames that are dropped.
The priority mapping, high/low threshold, and the statistics are reset when the QoS module is
disabled (IxIngressQosDown()) and then enabled (IxIngressQosInit()).

API Reference

60 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.2.3 Ingress Queue Interface

Prototype: IX_STATUS ixQosIngressQIsEmpty (UINT8 q);

Parameters: Description: I/O:

q Priority Queue Number. It should be between 0 and real_time_traffic_class. I

Return: IX_FAIL – Queue contains at least one frame

IX_SUCCESS – Queue is empty

Description:

Check if a particular priority queue is empty.
This function is used both in data path and in control path, thus is does not perform a check for input
parameter q. The caller from control path should be aware of this and check the parameter before
invocation.

Prototype: IX_STATUS ixQosIngressQNumQGet (UINT8 *numQ);

Parameters: Description: I/O:

*numQ Number of priority queues. O

Return: IX_FAIL – IxIngress QoS module not intialized, no queues exist.

IX_SUCCESS

Description:
Get the number of priority queues.
This function obtains the number of ingress priority queues in IxIngress QoS module. It must be called
only after the IxIngress QoS module is initialized; otherwise IX_FAIL is returned.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 61

Prototype: IX_STATUS ixQosIngressQThresholdSet (UINT8 q, UINT16 low, UINT16 high);

Parameters: Description: I/O:

q Priority Queue Number. It should be between 0 and real_time_traffic_class. I

low Low Threshold. Must be > 0 and < total number of available mbufs allowed. I

high High Threshold. Must be >= 0 and < total number of available mbufs allowed. I

Return: IX_FAIL – Ingress QoS Priority queue not initialized, q out of range, threshold out of range.

IX_SUCCESS

Description:

Set the watermark threshold for priority queue q.
This function sets the low and high threshold for a particular ingress priority queue q. In the current design
only high threshold is used. If the number of frames buffered in a particular ingress priority queue reaches
high threshold, no frames are allowed to be buffered in this queue until some frames are transmitted. The
rationale behind this design is to ease the headroom congestion of mbuf in the memory pool, so that
NPEs can still get some mbufs when there are higher priority or real-time traffic influx from networks. The
high/low threshold has no significance for some ingress priority queues, including those for real-time
traffic class, and those classes whose shapers are not configured (those queues are called inactive
ingress queues, in contrast to active ingress queues where frames may be buffered in those queue if
tokens in corresponding shapers are depleted). Note if the total of high thresholds of all active queues are
more than total available mbuf allowed in the system, higher priority or real-time traffic may be rejected by
the NPE. One scenario that makes this happen is when the input rates for all active queues (traffic
classes) are much higher than their corresponding shapers’ rate. All available mbuf are buffered in
ingress priority queues and the NPE cannot obtain any free mbuf from the free mbuf pool. In other words,
all mbuf’s are stuck in IxIngress QoS ingress priority queue, and higher priority or real-time traffic are
dropped partially or entirely, depending on the traffic condition.
It is therefore the upper layer’s responsibilityt to make arrangements for those high/low thresholds to meet
the expected QoS requirement. Larger high thresholds allow more tolerance for traffic perturbation when
the input rate are about the configured rate, but provide less room for other queues. Alternatively, smaller
high thresholds pose more strict conditions for input traffic, but allow more flexibility for other queues.
Applications with real-time or interactive properties may map to higher priority traffic with smaller high
threshold; applications that are of best-effort properties are better mapped to lower priority traffic with a
larger high threshold.

API Reference

62 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.2.4 Ingress Traffic Shaper Interface

Prototype: IX_STATUS ixQosIngressQThresholdGet (UINT8 q, UINT16 *low, UINT16 *high);

Parameters: Description: I/O:

q Priority Queue Number. It should be between 0 and real_time_traffic_class. I

*low Low Threshold. Cannot be NULL. O

*high High Threshold. Cannot be NULL. O

Return: IX_FAIL – Ingress QoS Priority queue not initialized, q out of range.

IX_SUCCESS

Description:

Get the watermark threshold for priority queue q.
This function is used to obtain the low and high thresholds for a particular ingress priority queue. It does
not matter if the corresponding traffic class (ingress queue) is real-time traffic class, or the shaper for that
traffic class is not configured.

Prototype: IX_STATUS ixQosIngressShaperInit (void);

Parameters: Description: I/O:

n/a

Return: IX_FAIL – Shaper module is already initialized, Ingress QoS Priority mapping or Priority queue not
initialized, timer failed to initialize.

IX_SUCCESS

Description:
Initialize the shaper module. The Ingress QoS mapping and priority queues must be initialized before the
shaper module. This function will also initialize the timer, but the timer will not be enabled (and traffic wil
not use the shaper) until at least one shaper has been configured.

Prototype: IX_STATUS ixQosIngressShaperDown (void);

Parameters: Description: I/O:

n/a

Return: IX_FAIL – Shaper module is not initialized.

IX_SUCCESS

Description: Bring down the shaper module. All active shapers are reset. Traffic flows as if there were no shaper.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 63

Prototype: IX_STATUS ixQosIngressShaperCfgSet (UINT8 q, UINT32 avgD, UINT32 avgF, UINT32
PeakD, UINT32 PeakF, UINT32 type, UINT32 parMA);

Parameters: Description: I/O:

q Ingress shaper queue. It should be between 0 and real_time_traffic_class. I

avgD Average data bytes per second. Range [0 – (100*1,000,000/8)] The notation described is
the maximum number of uni-directional bytes per second on a 100Mbps interface. I

avgF
Average frame count per second. Range [0 – (100*1,000,000/8/64)]. The notation
described is the maximum number of uni-directional 64-byte Ethernet frames per second on
a 100Mbps interface.

I

peakD Peak data bytes per second. Range [avgD – (100*1,000,000/8)]. The notation described is
the maximum number of uni-directional bytes per second on a 100Mbps interface. I

peakF
Peak frame count per second. Range [avgF – (100*1,000,000/8/64)] The notation
described is the maximum number of uni-directional 64-byte Ethernet frames per second on
a 100Mbps interface.

I

type Type of shaper. 1 – data byte, 2 – frame count, 3 both. I

parMA Parameter for moving average. Not implemented. I

Return: IX_FAIL – Ingress QoS shaper not initialized, inputs out of range.

IX_SUCCESS

Description:

Configure the shaper for a particular traffic class (ingress queue).
This function is used to configure the shaper for a particular traffic class. In the current design, every
traffic class has a corresponding shaper. By default, when the IxIngress QoS module is first initialized,
the states for all shapers are set to default and are disabled (not configured). Invoking this function
enables and configures one of the shapers. If this is the first shaper being configured, then traffic entering
from the network goes into the IxIngress QoS module after the invocation of this function. In the
meantime, timers are enabled and running after the first shaper is configured. If there are already some
shapers running, this function only configures a new shaper (if the shaper for that traffic is not configured
yet), or modifies the old setting of originally configured shaper (if the shaper for that traffic class already
configured). The configuration or re-configuration of shapers can be performed on the fly, and it is not
required to stop traffic or to disable IxIngress QoS module before configuration or re-configuration. The
new configuration takes effect immediately after the next timer slot (refer to the timer module).
The design of the shaper follows the notation of token bucket, where each shaper of token bucket
comprises a bucket of depth depth, and a steady flow of tokens that influx into the bucket at rate rate.
Frames are allowed to transmit whenever there are available tokens in the bucket. The transmitted frame
also takes out tokens. The number of tokens consumed by a frame is determined by the type of shaper.
Currently there are two types of shapers implemented: Data-byte type, and Frame-count type. For data-
byte shaper, a frame takes length-of-frame tokens, while for frame-count shaper, one frame takes one
token. Shapers are updated at the beginning of timer slot, and the duration of the time slot is determined
by timer APIs described in this document. By default, it is 100 ms. Updating the shaper basically
increases the number of tokens by rate. If the number of tokens in the bucket after the update is more
than depth, then the total number of tokens in the bucket is limited to depth. If, on the contrary, the
number of tokens after the update is still below zero (which might be the case when one large frame takes
lots of tokens, given that the number of available tokens are just above zero), then no frames are allowed
to pass the shaper in the next timer slot.
Note that if an upper-layer application uses only one type of shaper, then only the corresponding set of
parameters are used, and the other set of parameters are ignored. The moving average of queue status
is not currently implemented.

API Reference

64 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

Prototype: IX_STATUS ixQosIngressShaperCfgGet (UINT8 q, UINT32 *avgD, UINT32 *avgF, UINT32
*PeakD, UINT32 *PeakF, UINT32 *type, UINT32 *parMA);

Parameters: Description: I/O:

q Ingress shaper queue. It should be between 0 and real_time_traffic_class. I

*avgD Average data bytes per second returned from IxIngress QoS module. Cannot be NULL. O

*avgF Average frame count per second returned from IxIngress QoS module. Cannot be NULL. O

*peakD Peak data bytes per second returned from IxIngress QoS module. Cannot be NULL. O

*peakF Peak frame count per second returned from IxIngress QoS module. Cannot be NULL. O

*type Type of shaper. 1 – data byte, 2 – frame count, 3 both returned from IxIngress QoS module.
Cannot be NULL. O

*parMA Parameter for moving average. Not implemented. Cannot be NULL. O

Return: IX_FAIL – Ingress QoS shaper not initialized.

IX_SUCCESS

Description:
Get the shaper configuration for a traffic class.
This function is used for obtaining the shaper configuration.

Prototype: IX_STATUS ixQosIngressShaperTypeChange (UINT8 q, UINT32 typeNew);

Parameters: Description: I/O:

q Ingress shaper queue. It should be between 0 and real_time_traffic_class. I

typeNew New type of shaper to be used. 1 – data byte, 2 – frame count, 3 both. I

Return: IX_FAIL.

IX_SUCCESS

Description:

Configure the shaper type of a pre-existing shaper.
This function is used to modify the type of shaper for a traffic class. It only changes the type of the shaper
but keeps all other parameters intact. For example, the upper layer application may first configure the
shaper by calling IxQosIngressShaperCfgSet(…) with parameters of aBPS/aFPS, pBPS/pFPS, and
designated type of Data-Byte shaper. The aFPS/pFPS pair are not used if the shaper type is Data-Byte.
Later on it may change the type to Frame-count shaper. And in this case, aFPS/pFPS are used and
aBPS/pBPS are ignored. This function can be invoked in the run time. The new type of shaper takes
effect immediatly after the next time slot. All parameters must be in their legal range, otherwise IX_FAIL is
returned. If the newType is identical to the original setting, nothing will happen.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 65

Prototype: IX_STATUS ixQosIngressShaperCfgReset (UINT8 q);

Parameters: Description: I/O:

q Ingress shaper queue. It should be between 0 and real_time_traffic_class. I

Return: IX_FAIL – Ingress QoS Shaper not initialized, Shaper q is not configured, q is out of range.

IX_SUCCESS

Description:

Reset the shaper configuration for a traffic class shaper.
This function resets the shaper for a traffic class, if the shaper for the traffic class is previously configured.
After the reset, the shaper parameters are reset to default, and that shaper is disabled. If after resetting
the shaper, there is no active shaper in the system, then the timer is disabled, and all traffic will be
handled by Ethernet driver as if there were no IxIngress QoS module.
Upon the reset of the shapers, frames buffered in the corresponding queue are dropped.
Traffic does not need to be stopped before issuing this function. There is no effect if the shaper to be
reset is not enabled.

Prototype: IX_STATUS ixQosIngressShaperCfgShow (UINT8 *buf);

Parameters: Description: I/O:

*buf Buffer to contain shaper configurations and statistics. Cannot be NULL. O

Return: IX_FAIL – Ingress QoS Shaper not initialized.

IX_SUCCESS

Description:

Show the shaper configurations of all active shapers.
The shown message can be referred from *buf pointer. The caller can use *buf to obtain the messages
exported from IxIngress QoS module. The message shown (per active shaper) includes type of the active
shaper, aBPS, aFPS, pBPS, pFPS, quota available in the current time slot, number of transmitted bytes/
frames in the current time slot. The timer resolution and timer type etc.

API Reference

66 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

6.2.5 Timer Configuration Interface

Prototype: IX_STATUS ixQosIngressTimerCfgSet (UINT8 type, UINT16 msNew);

Parameters: Description: I/O:

type Type of timer. 1 – timer task, 2 – watchdog timer interrupt. I

msNew New timer resolution in ms. To change timer type but keep original resolution, use 0. I

Return: IX_FAIL

IX_SUCCESS

Description:

Configure new type of timer or new timer resolution to use.
This function is used to set new timer type (when msNew = 0), or set new timer type and new timer
resolution. There are two types of timer available for use: timer task and watchdog timer interrupt. The
benefit of using timer task is it does not consume extra system resource to give one timer, but the
resolution is limited to 1 OS tick (in VxWorks, it is 17 ms, in Linux, it is 10 ms), and accuracy suffers when
the system is busy. Even though it consumes system resources, the watchdog interrupt timer is more
accurate and there is no limit on the timer resolution. By default, the timer type is timer task with a coarse
resolution of 100 ms.
This function must be invoked after the initialization of IxIngress QoS module. It is, however, not required
to be called after some shapers are configured. If this function is called when some shapers are active, in
which case the timer is running, the new setting first disables the old timer, re-configures the new timer,
and then enables the new timer, resulting in the timer running. If there are no shapers being configured at
that instant (that is, the timer is not enabled), then calling this function only changes the parameters to be
used. The timer is enabled automatically when the first shaper is configured.

Prototype: IX_STATUS ixQosIngressTimerCfgGet (UINT8 *type, UINT16 *ms, UINT32 *id);

Parameters: Description: I/O:

*type Type of timer. 1 – timer task, 2 – watchdog timer interrupt. Cannot be NULL. O

*ms Timer resolution in ms. Cannot be NULL. O

*id Timer task ID. Does not apply to watchdog timer interrupt type. O

Return: IX_FAIL

IX_SUCCESS

Description:
Get new configuration of the timer
This function is used to get the configuration of timer parameter. It does not matter whether the timer is
running or not. It must be called only after IxIngress QOs module is initialized.

API Reference

Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide 67

6.2.6 Ingress QoS Data Path

Prototype: IX_STATUS ixQosIngressTimerCfgRemove (void);

Parameters: Description: I/O:

n/a

Return: IX_FAIL

IX_SUCCESS

Description:

Remove the timer
This function is used to remove the timer. As a consequence, all the active shapers are disabled. While
explicitly calling this function forcefully dismisses all running shapers, this function may be invoked
implicitly when all the active shapers are disabled. If this function is called before IxIngress QoS module
is initialized, it returns IX_FAIL. There are no effect when this function is called and no shapers are
configured.

Prototype: IX_STATUS ixQosIngressProcess (IX_MBUF *pMblk, UINT8 port, UINT8 priority, UINT32
drop_cnt, UINT32 *pkt_cnt, UINT32 *byte_cnt, UINT32 len);

Parameters: Description: I/O:

*pMblk The mbuf for that frame. IX_MBUF for VxWorks, sk_buff for Linux. IO

port The port where the frame enters. I

priority The VLAN priority obtained from VLAN module. If VLAN is not enabled, this parameter is 0. I

drop_cnt The number of frames being dropped by the driver. NULL for VxWorks. I

*pkt_cnt The number of frames received by the driver. NULL for VxWorks. O

*byte_cnt The number of bytes transmitted by the driver. NULL for VxWorks. O

len The length of the frame. NULL for VxWorks. I

Return: IX_SUCCESS – the frame was successfully sent to the IxIngress QoS module.

IX_FAIL – the frame failed to be sent to the IxIngress QoS module.

Description:
This function is the entry point of IxIngress QoS module. The current design works for Linux and
VxWorks. It does not perform any input parameter checking. The caller is accountable for the validity of
the input parameters. All the parameters are used in Linux. In VxWorks, only the first three are of
significance. The last four parameters can be NULL.

API Reference

68 Intel® IXP400 Software: VLAN and QoS Application Version 1.0 Programmer’s Guide

Prototype: IX_STATUS ixIngressQosShaperConfigDone (void);

Parameters: Description: I/O:

n/a

Return: IX_FAIL – no shaper has been configured.

IX_SUCCESS

Description:
Check if there is at least one shaper configured. If this is the case, then all frames that hit the Ethernet
driver go into IxIngress QoS module. If there is no shaper configured, frames are processed by Ethernet
driver’s original data path.

	Contents
	Figures
	1 IXP400 Software and Ethernet Device Driver Overview 8
	2 Software Architecture with the VLAN and QoS Application v1.0 9
	3 802.1Q VLAN Module - Component View 10
	4 802.1Q Frame Types 12
	5 Flow Diagram for Acceptable Frame Type Filtering 13
	6 Flow Diagram for Ingress VLAN Membership Filtering 14
	7 Flow Diagram for VLAN Classification 15
	8 Flow Diagram for Egress VLAN Membership Filtering 16
	9 Flow Diagram for Rebuilding the Frame Header 17
	10 Port Database Dependencies 19
	11 VLAN Database Dependencies 20
	12 Classification Rules Database 21
	13 Management Interface Interactions 22
	14 802.1p User Priority to Traffic Class Mapping and Ingress QoS Modules - Component View 24
	15 Traffic Shaper Component Interactions and Dependencies 27
	16 802.1p User Priority to Traffic Class Mapping 28
	17 Priority Mapping Interactions and Dependencies 29
	18 Ingress Queues 30
	19 Dependencies and Interactions for Ingress Queues Component 32
	20 Interactions of the QoS Module Management Interface Sub-Component 33
	21 System View of IOCTL Utilities and Parser 34

	Tables
	1 Rules for Rebuilding Frame Headers 17
	2 User Priority to Traffic Class Defaults and Recommendations 28
	6.0 API Index 35

	Revision History

	1.0 Introduction
	1.1 Scope and Purpose
	1.2 Acronyms
	1.3 Related Documents

	2.0 Software Architecture and High-Level Design
	3.0 802.1Q VLAN Module
	3.1 Ingress Rules Component (ixVlanIngress)
	3.1.1 External Interactions and Dependencies
	3.1.2 Key Assumptions

	3.2 VLAN Classification Component (ixVlanClassification)
	3.2.1 External Interactions and Dependencies
	3.2.2 Key Assumptions

	3.3 Egress Rules Component (ixVlanEgress)
	3.3.1 External Interactions and Dependencies
	3.3.2 Key Assumptions

	3.4 Database Component (ixVlanDb)
	3.4.1 External Interactions and Dependencies
	3.4.1.1 Port Database
	3.4.1.2 VLAN Database

	3.4.2 Classification Rules Database
	3.4.3 Key Assumptions

	3.5 Management Interface Component (ixVlanMgmt)
	3.5.1 Key Dependencies

	4.0 802.1p User Priority and QoS Module
	4.1 Traffic Shaper Component
	4.1.1 External Interactions and Dependencies
	4.1.2 Key Assumptions

	4.2 Priority Mapping Component
	4.2.1 External Interactions and Dependencies
	4.2.2 Key Assumptions

	4.3 Ingress Queues
	4.3.1 External Interactions and Dependencies
	4.3.2 Key Assumptions

	4.4 Management Interface Component
	4.4.1 Key Dependencies

	5.0 IOCTL Enhancements for Ethernet Drivers
	6.0 API Reference
	6.1 VLAN Module
	6.1.1 VLAN Module Interface
	6.1.2 VLAN Database Control Interface
	6.1.3 Port Database Control Interface
	6.1.4 MAC Rule Database Control Interface
	6.1.5 Protocol Rule Database Control Interface
	6.1.6 VLAN Classifier Control Interface
	6.1.7 VLAN Module Data Path
	6.1.8 VLAN Module Types

	6.2 Ingress QoS Module
	6.2.1 General Control Path Interface
	6.2.2 802.1p to Traffic Class Interface
	6.2.3 Ingress Queue Interface
	6.2.4 Ingress Traffic Shaper Interface
	6.2.5 Timer Configuration Interface
	6.2.6 Ingress QoS Data Path

