Intel® IXP400 Digital Signal
Processing (DSP) Software
Library Release 1.1

Programmer’s Guide

March 2005

Document Number: 252725-001a

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 u

NFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® IXP400 DSP Software Library Release 1.1 may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECSs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,
ETOX, FlashFile, i386, 1486, i960, iICOMP, InstantlP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share,
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2005

2 Programmer’s Guide

Contents

int6I Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1
®

Contents

1 TaNd o To 1V Le3 10 o DA TSP PPPPPRRP 5

O 7= o =T - | SRS PRRER 5

S Tolo] o T TR P PP PPPPPPPP 5

R T V0 T 1= o o =SSP 5

1.4 Related DOCUMENTS ..o e e e e e e e e e et e e e e e e et e b a e e e e e eaaeaeaaaaaes 6

2 ATCRITECTUIE OVEIVIEW ..ot e e e e e e e e e e et et e e e e e e e ae et e st ae e e e e eeeeaaaaeens 7

3 RUN-TIME INTEITACES ... it e s e e e e e e e e eeeaeaaaaeeaeaeeees 11

70 R ©o T o1 (o N [0] 1T o 7= (o - USSPt 11

T OV DT = W [] =1 = (o = PO 12

R T - Vol =Y B [1 (=] 1 = T = PRSPt 13

4 Components, Features, and ParametersS it e 15

R 1= 4110 Q= T | oo | S 15

A = (oo Lo [=] ST P PP PPUPT PP PPPPPP 16

G B B L= Tolo o =] PP PPUPT PP PPPPP 17

N o g TN 1=ty (=T = (o] PP TP 18

S T o o< BT (=T ot (o PP TP 18

5 Programming GUIOEcooiiiiiiiiieee s e e e e e e e e et e et e e s s e s e s e e e eaeaaaaaeaaeeeeeaennes 21

5.1 INIHANZALIONottt a e e e e e e aaaaaeeeaeaa e aaaearata 21

5.2 Programming MOEIueeiiiiiiiiiiei ettt e e ae e 21

6 OS-SPECITIC ISSUBS ..ttt e e e e e e s et e e et e e e e e e s aa s s st b baeeeeeeeeaeeesanansnsrnrneaeees 25

L0 R 5 Y 0T SRRt 25

L2 IR o U G PPt 26
Figures

1 Intel® IXP400 DSP Software Library Release 1.1 Software Architecture.............ccccceeeeeviviiviennns 7

2 Data Flow and Data-Processing FUNCHONSuuiiiiiiiiii e e e e e e e e e e e e eeeeeeaaennens 8

3 Intel® IXP400 DSP Software Library Release 1.1 Message, Data and Taskscccceevvveeenns 9

4 Control Interface and MeSSage QUEUESccceieieeeieie i eeeeeeiieete e e e e e e e e e e e e e e e e e eeeeaeaeeaernnan s 12

5 PCM DAta INtEITACEoeiiiiiiiiieeete ettt et e e e e e e s e bbb e e e e e e e e enannnes 13

B PACKEL INTEITACEeeeiiiiiii et e e e e e e e e s s bbb e e e e e ee s e e e annnes 14

7 Flow Chart of General-State-Machine APProach............ooooiiiiiiiiiiecrcr e 23

8 Intel® IXP400 DSP Software Library Release 1.1 Client Driver in LINUXccccooveieieeeeiiiieieieeenn, 27

Programmer’s Guide 3

Contents

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 int6I
®

Tables

1 VxWorks* Tasks and Task Properties.......
2 Linux* Kernel-Mode Threads.....................

Revision History

Date Revision Description
March 2005 00la Branding and document-title updates.
March 2003 001 Initial release of this document.

Programmer’s Guide

intel.

Introduction 1

1.1

1.2

1.3

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 Programmer’s Guide

Intel® 1X P400 Digital Signal Processing (DSP) Software Library Release 1.1 (DSP 1.1) isa
software module that provides the basic voice and signal-processing functionalities for voice-over-
Internet-protocol (VolP) applications on the Intel® 1XP42X Product Line of Network Processors.
This document explains how to use the DSP API and provides the guideline and examplesto the
application developers.

General

DSP is a software module for media processing, targeted for next-generation integrated-access
devices (IADs) such as consumer-premise equipment (CPE). Specifically, DSP performs media
compression, echo cancellation, tone processing, jitter control, and other functions required in any
IP media gateway or real-time media streaming functionalities.

Thisdocument isintended to describe the control and datainterfaces of DSP to enable athird-party
developer to incorporate DSP into a media gateway or server system and to integrate with other
client software. Together with the Intel® IXP400 Digital Sgnal Processing Software Library
Release 1.1 API Reference Manual, this document provides sufficient detail — about the interfaces
and message and data delivery mechanisms — that a DSP software client can fully configure and
control DSP processing operations and services.

Scope

The DSP control and datainterfaceis a set of functions, macros, and message and packet formats
that determines how the applications access the media-processing resource components in DSP.

Audience

This document is intended for third-party software developers who are using DSP to build a
gateway or server application. It is assumed that the reader has general knowledge of Vol P
applications and products.

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 u

Introduction In
®

1.4 Related Documents
Document
Document
Number
Intel® IXP400 Digital Signal Processing Software Library Release 1.1 API Reference Manual 273811
Intel® IXP400 Digital Signal Processing Software Library Release 1.1 Release Notes 273810
Intel® IXP400 Product Line Programmer’s Guide (Version 1.1) 252539

6 Programmer’s Guide

intel.

Architecture Overview 2

DSP isimplemented as an independent module having its own tasks and run-time environment.
The software architecture is of atwo-layer hierarchy:

¢ A control layer — that handles the control interface
¢ A control logic and a data processing layer — where the media data streams are processed by
appropriate algorithms

Figure 1 shows the logic decomposition of DSP modules. The shaded blocks represent the control
and data interfaces between DSP and other software modules external to DSP.

Figure 1. Intel® IXP400 DSP Software Library Release 1.1 Software Architecture

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 Programmer’s Guide

(DSR Client)

A

Control Acknowledgements,
Messages § replies and events

(Control Message Interface)

A

Y

Common Control Logic and
Generic Control Engine

AN

/ \
\ A
Network Tone Tone
- Decoder
Endpoint Enc@ Generator Detector
; Control Layer

Data-Processing Layer
PCM \J DSR
SLIC Data Data-Processing Packets | packet
PCM Data
Interface e Algorithms > erface 1P Stack
and Components
C Real-Time Execution Environment)

\ /
From the control point of view, a DSP channel consists of a set of media-processing resource
(MPR) components. Each MPR is an addressabl e entity and can be controlled independently. This
provides the maximum flexibility for setting up a channel with various resource configurations —
for example, half-duplex call or asymmetric Rx and Tx CODEC types.

From the perspective of data flows, the data-processing functions are depicted in Figure 2. All the
functions are executed by real-time tasks that are set up by DSP, during initialization.

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1
Architecture Overview

intel.

Thereis onetask for each unique coder frame rate. For example, there will be a 10-mstask and a
30-mstask — if both G729 (10 ms frames) and G.723 (30 ms frames) are supported. The 10-ms
task also handles all other, non-coder voice processing, such as echo cancellation and tone
detection.

Currently, there is only one 10-ms, real-time task because only 10-ms coders are supported. The
real-time tasks are of higher priority than the control task and are synchronized (triggered) by the
high-speed serial (HSS) Network Processing Engine (NPE).

Note: Some of the necessary input and output functions also are performed in the context of the real-time
tasks set up by the DSP. Thisincludes buffering of datato and from the HSS interface, and the
external function — registered to DSP — to encode the DSP packetsinto RTP format for
forwarding to the IP stack.

Figure 2. Data Flow and Data-Processing Functions
Out-band signaling
) memmaA — I o

| Front-End Processing |
& I Li I Switch Jitt
N e G LG o G) G o
g | | g
IS @
g | | U (o) — — — — — £
E | Delay | Out-band signaling E
N O
g I I £
x | | o
® =
N | T *
c A, p-law one Enc

I

Out-band signaling

The relation among the messages, data, and tasks — inside and outside DSP — is illustrated by
Figure 3. That relationship can be summarized as.

* The control task is driven by the inbound messages from the user application.

* The real-time tasks are synchronized with the data from HSS interface. The HSS NPE signals
DSP's scheduler via | SR call-back routine, every 10 ms. The scheduler triggers the real -time
tasks according to the algorithms executed by the tasks.

* Real-time tasks generate and consume the DSP-encoded, audio packets at the fixed rates
essentially synchronized with PCM data.

* DSP-encoded, audio packets arrive at variable rate asynchronously, with the real-time tasks.
It isimportant to understand that the real-time tasks in DSP are characterized by their hard task
deadlines. If areal task cannot finish its processing before the next task period, datawill belost and

— consequently — voice quality is seriously degraded. That may happen if the real-timetask is
preempted for long periods time by ISR, or other tasks, of if the processor is overloaded.

Programmer’s Guide

u Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1
In ® Architecture Overview

Figure 3. Intel® IXP400 DSP Software Library Release 1.1 Message, Data and Tasks

DSR Client Application
Control Messages
- —_———
| l Ethernet
DSR Module | NPE
| Control Task | T
I T | Interrupti IP
| v ! Packets
I . I v
Interrupt 0
o | | LA | Scheduler Management I IP Stack
ARE ! ! :
L = = ! !
=717] - - ' ' Egress DSR IP ISR
3 @ | 8bit 1e-bit Y \/ 9 |
S| 1 [T pcm PCM Packets >
n | Data HSS Data H—J—l ! |
| e [[]] 25 e [
I Ingress DSR |
| Packets |
e e e e e e =

Programmer’s Guide 9

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 u
Architecture Overview In ®

10 Programmer’s Guide

intel.

Run-Time Interfaces 3

3.1

Intel® 1X P400 Digital Signal Processing (DSP) Software Library Release 1.1 (DSP) is
implemented as an independent module executed by its own tasks. User applications do not
directly access DSP'sinternal functions or data.

DSP provides three interfaces for the applications to communicate control information, PCM data,
and encapsul ated voi ce packets, respectively, in run-time. See Figure 1 on page 7 and Figure 2 on

page 8.

Control Interface

Applications communicate with DSP primarily through the control interface defined as a set of
functions, messages, and macros. There are two message queues in the control interface — for the
inbound messages, from applications to DSP and out-bound messages, going in the other direction.
(SeeFigure 4.)

Two interface functions — xMsgSend () and xMsgReceive () — can be used for the
application to send and receive messages to/from the queues, respectively.

DSP spawns a dedicated control task, pending on the inbound message queue, to handle the control
messages. DSPisisolated from user applications by message queues to keep DSP control functions
from being accessed by multiple tasks of the user application. Thisis because making the control
functions multi-task-safe involves extra complexity and performance penalty.

DSP sends the replies or events to the application through the out-bound message queue. The
application can retrieve the messages using xMsgReceive (). The caler'stask of
xMsgReceive () will beblocked forever or until time out if the out-bound queue is empty. (In
future DSP’s, an optional per-channel-basis out-bound queue mechanism may be implemented so
that the application can have multiple tasks and each task is associated with a channel.)

A third function of the DSP control interface — xMsgWrite () — alowsthe application to
directly post a user-defined message to the DSP's outbound message queue, if necessary. This
enables the user application to receive al channel-associated events from DSP, even though some
of these events are not controlled by DSP.

For instance, the application may hook a call-back function to the I SR that reportsthe SLIC
interface's on/off hook events. In the call-back function, a user-define message is sent to DSP's
outbound message queue to signal the event to the user application.

(In future DSPs, an enhancement may be added to allow the user application to hook a callback that
is called whenever amessage is put into the out-bound queue.)

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 Programmer’s Guide 11

Run-Time Interfaces In

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 u t6I
®

Figure 4. Control Interface and Message Queues

3.2

12

[MsgSend ()] (Mngeceive()J [XMsgWrite(')]
Control Replies or
Messages
g Events Other
Channel-
In-Bound Out-Bound Associated
Message Message Events
Queue Queue
[DSR Control Task]

Because of the limitation of the queue lengths, the queues may overflow and the messages may be
lost if the application keeps sending messages without waiting for the replies. In this case, the
inbound queue may overflow, if the user application is of higher priority than DSP control task.
Alternately, the outbound queue may overflow if the user application has lower priority.

DSP uses copy-based message delivery — the entire message context actually copied from the
deliverer to the receptor — rather than a pointer being passed. This avoids dynamically allocating
memory for the messages. Since no memory is shared between DSP and the application, the
application can reuse the memory of a message for any other purpose, immediately after the
message is sent.

To receive amessage, the application is responsible for preparing the memory that must be able to
accommaodate the maximum message size with the alignment at 4-byte boundary.

The message format consists of an 8-byte message header plus an optional message payload. The
message header contains the common information — like channel 1D, MPR ID, type, and size. A
4-bytetransaction ID is provided to alow the user application to keep track of the replies or events.

When DSP sends areply or event message to the user application, it copiesthe transaction ID from
the associated message originated from the user application. For details on the control message
format, see the Intel® 1XP400 Digital Signal Processing Software Library Release 1.1 API
Reference Manual.

PCM Data Interface

PCM data represents the audio data stream between DSP and the telephone interface, viathe TDM
databus. DSP's PCM data interface relies on the HSS hardware integrated in the IXP42X
processor.

In contrast to the data network interface — such as the Ethernet interface — the HSS interfaceis
integrated as part of DSP. This allows the most efficient transfer of real-time PCM datainput since
no other application is expected to need this data directly.

Programmer’s Guide

intel.

Figure 5.

3.3

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1
Run-Time Interfaces

The user application, however, controls how the HSS is being configured, through parameters
passed to DSP during initialization. From the user application’s perspective, the HSS can be
viewed as a piece of hardware to be properly configured. Once it is configured and started, thereis
no further user-application involvement.

PCM Data Interface

8-Bit, Compressed
PCM Samples

+ T % |le—o—Troe] 5|+

< = g2 DSR Real-
£ @] 3' = Time Tasks
o TDM|bus a HSS Buffers 583 and Data-
IS T = = Processing
= s s S -

3 S 42 Functions
e e e e

The user application configures the HSS by specifying the signal format to be presented on the
TDM bus of the HSS device, including the clock rate, time slots, frame sync, endian, etc. Such
information is organized in two data structures. IxHssAccConfigParams and
IxHssAccTdmSlotUsage.

Using this set of information, DSP initializes the HSS interface and starts data transfers. For more
details, see the Intel® 1XP400 Product Line Programmer’s Guide (Mersion 1.1).

Currently, DSP can only handle PCM datain 8-bit, compressed A-law or p-law format at the rate
of 8 K samples per second.

Internally, DSP's real-time tasks are synchronized with HSS data transfer. DSP's scheduler is
signaled by the HSS driver (in an interrupt context), each time a certain amount (10 ms) of datais
transferred. The real-time tasks may not be invoked at all, if the HSS interface is not configured
and started properly.

Packet Interface

Compared to PCM Data Interface, the Packet Interface is a pure software protocol that defines how
DSP and the I P packet interface exchange the encoded-audio data packets. There are two functions
and a packet format involved in the Audio Packet Interface as shown in Figure 6.

DSP defines the packet format and provides the packet receive function. The user application is
responsible for providing the transmit function.

During ingress (packets going from the | P interface to DSP), the | P interface converts each
incoming Vol P packet it receivesto a DSP data packet. It callsxPacketReceive () to déiver
the packet to DSP.

The user application needs to decode the incoming | P packets to forward the RTP packet payloads
with the proper DSP header format and the extracted RTP time stamp, to the proper DSP channel.
This function copies the packet to the jitter buffer without further processing.

Programmer’s Guide 13

Run-Time Interfaces

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 int6I
®

Figure 6.

14

This enables xPacketReceive () to be called from an interrupt-service routine context, but re-
entry is not allowed. Since the incoming DSP packets are copied by DSP, the caller of the
xPacketReceive () canfreeor reuse any memory it may have allocated to buffer theincoming
RTP packets upon return from the function.

During egress (packets going from DSP to the IP interface), the application registers a call-back
function with DSP. Thisfunction is supposed to deliver the DSP data packet to the | P interface and
sendsit out. DSP always prepares the memory for the packet and fills the packet header
information (including local timestamp) and packet payload before it calls the function. This user-
provided function should create and encode the RTP header with the time stamp provided in the
DSP data packet header.

After returning from the function, DSP will immediately reuse the memory for other purposes.
Therefore, it may be necessary for the call-back function to make a copy of the packet. Since the
function is called from DSP's real -time tasks — at regular basis each time when a packet is
generated — there are two additional requirements to the callback function:

* It must finish as soon as possible without any blocks inside. This allows real-time data to be
acquired and processed without datalossin DSP.

¢ |t must be multi-task-safe (i.e., allows re-entry).

Packet Interface

DSR data packets delivered
via two call-back functions

™ s N\

DSR P packetSendCB ()

\. J

To improve efficiency, another packet-delivery method is being considered in afuture DSP release
that can avoid copying the packet data. In that method, the packet receiver registers two call-back
functions with the deliverer. The packet deliverer callsthe first call-back function, to obtain the
memory supplied by the receiver for a packet and to deliver a packet. The memory block typically
resides in the working memory space of receiver. So it produces the packet directly in the
receiver’s memory space and calls another call-back function to indicate packet available.

Programmer’s Guide

intel.

Components, Features, and Parameters4

An Intel® 1XP400 DSP Software Library Release 1.1 channel consists of several media-processing
resource (MPR) components, which can be addressed independently by the application. Each
component has its particular processing functions and features that are controlled by the messages
and parameters.

This chapter discusses the MPR components and their features and parameters.

4.1 Network Endpoint

The Network Endpoint component is afront-end, data-processing unit connecting the high-speed
serial (HSS) interface to the rest of MPR components.

In the Tx direction (from DSP to HSS), the component converts the audio data from 16-bit, linear
format to 8-hit, A-law or u-law format and sendsit to the HSS output buffer. In the Rx direction,
the component receives the 8-bit, compressed audio data from the HSS buffer; convertsit to 16-bit,
linear format; and applies high-pass filter (HPF) and echo cancellation (EC). The HPF is of the
3-dB cut-off frequency at 270 Hz.

The application can specify A-law or p-law of the conversion by setting the parameter
XPARMID NET LAW. If thisparameter isset to XPARM NET PASSTHRU, al the front-end
processing mentioned above will be automatically bypassed. This may be useful for debugging
purposes.

In the bypass mode, no other processing can be applied by other MPR components except for the
pass-through type CODEC.

Echo cancellation (EC) is the most-significant function in this component. EC cancels the echo
generated by the hybrid of local telephone interface and telephone set, so the other party on the
channel will not hear the echo. In other words, the beneficiary of EC is the remote party.

EC performance is mainly affected by two parameters:
* Tail length— XPARMID NET ECTAIL
* Delay compensation — XPARMID NET DELAYCOMP

Depending on the hardware circuits and telephone set, the tail length of 4 ~ 8 msisusually good
enough if the telephone set is directly connected to the unit. Since EC is very computation-
intensive, alonger tail length resultsin higher CPU occupancy.

Changing the parameter of EC tail length requires the Network Endpoint component to be reset.
Thisis done by sending the XMSG_RESET message.

EC can be made the most effective if the reference signal is properly aligned with the delayed echo
signal. That isthe purpose of adjusting the parameter of delay compensation. The default value of
the parameter was determined according to DSP performance on the | ntel® 1X P425 Residential
Gateway Demonstration Platform. (A utility may be provided in future DSPs to automatically
determine the delay compensation in customized platforms.)

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 Programmer’s Guide 15

Components, Features, and Parameters

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 int6I
®

4.2

16

The Network Endpoint component is started automatically when DSPisinitialized. The
application can still start or stop it, using the XMSG START or XMSG_STOP message for debug
and test purpose. Stopping the component stops EC and HPF, but the audio data stream continues.

Encoder

The primary function of this component is to encode and packetize the audio data from HSS and
send that data to the IP interface. The audio CODEC supports G.711 and G.729 on 10-ms frame
size. Other features include Automatic Gain Control (AGC), Voice Activity Detector (VAD), and
Multiple Frame per Packet (MFPP).

This section discusses these encoder features and their effects on voice quality and system
performance.

There are two automatic gain control elementsin DSP:
* Inthe egress side (from HSS to DSP to IP interface) — AGC
¢ |ntheingressside (from IP interface to DSP to HSS) — Automatic Level Control (ALC)

Only one of these should be turned on, depending on what gain-control functions are implemented
in the remote party. In the completed audio path when two parties are connected, enabling both
AGC on one side and AL C on the other side may cause unexpected interaction and degrade voice
quality.

Typica Vol P equipment employs ALC, so it is recommended that AGC be turned off and ALC
turned on. Thisis the default.

The VAD algorithm can distinguish active speech signal from silence (background noise). During
the silence period, the encoder sends much smaller packets containing only the noise parameter at
much lower rate. This helps to reduce network traffic.

Enabling VAD dlightly impacts the voice quality. Another effect of VAD is the change of average
CPU occupancy. Enabling VAD with G729 will significantly reduce the average occupancy
because the most-complicated processing of G.729 encoder is eliminated during the silence and
background-noise period.

However, VAD increases the CPU occupancy when enabled with G.711 because the VAD
agorithm is much more complicated than just the G711 coder.

Packing more frames into a packet (i.e., MFPP) is another way to reduce network traffic. The
application specifies the number of frames per packet in XMSG_CODER_START message when it
starts the encoder. Obviously, having MFPP increases the total latency and voice quality is more
affected if the packet islost. Typically thistrade-off of network traffic versus latency/voice quality
is made depending on the target network and user preference.

Typically, the user application starts encoder when acall is set up and stops it when the call istorn
down.

Programmer’s Guide

In

4.3

tel.

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1
Components, Features, and Parameters

Decoder

The Decoder receives the encoded audio packets from the | P interface and converts them to the
audio stream and sends it to the HSS interface. Similar to the encoder, the decoder in DSP supports
G711 and G.729 coder types of 10-ms frame size and additional features like Comfort Noise
Generator (CNG), ALC, Packet L oss Concealment (PLC), and Jitter Buffer.

CNG isthe counterpart of VAD in the encoder. For G.729 coder, CNG is built into the decoder
algorithm and cannot be turned off. For G.711, disabling CNG will result in the pure silence
between active speech periods, if VAD is enabled in the remote party.

The PLC agorithm uses the previous speech signal to repair the lost frames, but cannot repair any
big chuck of consecutive frame lost. Because of the complexity of PLC algorithm, it will increase
the processor occupancy during packet loss, when using G.711 coder. But since G711 isalow-
computation coder, the resultant processor occupancy rate is still much lower than that of G.729.
The PLC agorithm is always enabled.

The decoder automatically handles MFPR, if areceived packet contains multiple frames. The
application starts decoder when acall is set up, using XMSG_CODER_START message
(frmsPerPkt field in the message isignored for the decoder).

Currently, both the encoder and decoder support MFPP frame counts that is limited by internal
buffer size. For G.711, the maximum number of frames per packet is three. For G.729, the
maximum number of frames per packet is 24.

Thejitter buffer regulates the flow of data from the IP interface to the HSS interface. Thisis
necessary since encoded audio packets from the |P interface are being transmitted on the P
network in real time, using the RTP protocol. This means packets can be delayed, out-of-order,
duplicated, or lost without re-transmission.

To perform this function, the jitter buffer delaysincoming packetsto allow delayed and out-of-
order packetsto arrive and be delivered correctly to the HSS interface. This delay is dynamically
adjusted by the jitter buffer, depending on IP network conditions.

Thejitter buffer monitors network conditions by checking the time stamps of the incoming DSP
packets against the local clock. (The correct sequencing of audio packets also is done with the help
of the time stamp.)

Thejitter buffer implements two agorithms for monitoring network conditions, one specified by
RFC 1889, the other one aproprietary delay-profiling algorithm. Because the proprietary algorithm
provides better tracking and improves voice quality, this algorithm is always enabled.

Thereistypically atrade-off of delay versus being able to recover more delayed packetsin real
data networks. The jitter buffer allows the user application to balance this by two parameters:

* XPARMID DEC JB MAXDLY — Specifies the maximum desired jitter delay, in ms
* XPARMID DEC JB_PLR — Specifiesthe alowable packet loss rate, in 0.1% units

Thejitter buffer automatically determinesthe jitter delay based on the network delay profileit
keeps from the desired packet loss rate — subject to the limit of the maximum allowed jitter delay
parameter. By setting the allowable packet |oss rate judiciously, a balance between voice quality
and latency can be achieved in real network conditions.

Programmer’s Guide 17

Components, Features, and Parameters

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 int6I
®

4.4

4.5

18

If a packet has not arrived after the allowable jitter delay, the packet is declared lost and the
decoder isinstructed to perform packet-loss concealment. The jitter buffer also handles VAD
packets and MFPP packets appropriately.

Thejitter buffer is at the front-end of the ingress side (from IP interface to HSS) of DSP. The user
application uses the xPacketReceive () function to copy the encoded-audio packets from the
IP interface directly into the jitter buffer memory.

Typically, the user application starts the decoder with the encoder, when acall is set up and stopsit
when the call istorn down.

Tone Generator

The tone generator is capable of generating single- or dual-frequency tone- and amplitude-
modul ated tone. Several tone segments can be combined as asingle tone signal. Thisisvery useful
to generate some special call-progress tones.

Internally, atoneis represented by atemplate that contains information like tone ID, frequencies,
amplitude, and cadence. All the tone templates, including DTMF and call progress tones, are pre-
defined. (An APl may be added in future DSPs to allow the application to create user-defined tone
templates.)

Since call-progress tones are country-specific, the application has to set the country code so that the
tone generator can select the correct template table.

The application can play tones by sending XMSG TG PLAY message with alist of tone IDsto be
played. The definition of tone ID is compliant to RFC 2833 standard.

If tones are played while the decoder has been started, the tone signal will overwrite or mix with
the speech signal from the decoder, according to the mode specified in the tone template. Most
tones are of the overwrite mode, so that speech is muted during the whole tone period.

However, some tones have the cadence of atone-on duration followed by a silence duration. For
example, a call-progress tone — such as the call-waiting notification tone — may require a short
tone, followed by along pause and the repetition of the tone-on tone-off sequence. For these tones,
the mix-mode is more appropriate, which allows the tone signal to be added to the speech so that
the speech is not suppressed during the silence duration, or non-activated part of the tone.

Currently, DSP only supports the overwrite mode. If a continuous tone (e.g., call-progress tone) is
played, the user application has to stop it explicitly using the XMSG STOP message.

Tone generator can also generate FSK modem signals compliant to V.23 and Bellcore-202
specifications. Thisisimplemented for caller-ID generation. To implement caller-ID functionality,
auser application hasto directly control the SLIC telephone interface and implement the caller-I1D
transmit sequence, which is beyond the scope of the current DSP.

Tone Detector

The tone detector is able to detect single- or dual-frequency tones with a frequency range from 300
~ 3,500 Hz, using an FFT analyzer. To reliably detect a dua tone, the frequencies of the dual tone
signal must be separated by at least 200 Hz. Internally, al the tones to be detected (i.e., DTMF

Programmer’s Guide

In

tel.

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1
Components, Features, and Parameters

tones and fax tones) are described by alist of templates that contain the criteria of frequencies,
energy, SNR, durations, and so on. (An APl — to allow the user application to add user-defined
tones— may be implemented in the future.)

To detect tones, the user application needs to start the tone detector by sending the XMSG _START
message and enabling tone-event reporting by setting the parameter
XPARMID TD RPT EVENTS. DSP will report tone-on and/or tone-off events, depending on the
parameter.

Instead of being notified by tone events, the user application may want to receiveaDTMF digit
string, e.g., atelephone number entered from the tel ephone set. For this purpose, the user
application can usethe XMSG TD RCV message and specify the number of digitsto expect and
the termination conditions. Tone detector will return the result viathe XMSG_TD RCV_CMPLT
message, once the digits are collected or the termination conditions are met. (Thisfeatureis
targeted for future DSPs and is not currently supported.)

Another feature of the tone detector is tone clamping. This features mutes the input audio stream
from the HSS interface during the period when atone signal is detected. For VoI P applications, this
featureis primarily used to implement out-band DTMF, because the tone signal is often distorted
by a speech coder like G.729.

Sinceit takes about 30 msto detect atone, up to 30-mstone signal may already leak out beforeitis
clamped. To prevent tone leakage, the user application can enable the look-ahead buffer by setting
the buffer size parameter XPARMID TD TC FRAMES to 1, 2, or 3 (in 10-ms units).

Enabling the look-ahead buffer, however, will increase the latency accordingly.

Programmer’s Guide 19

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 u
Components, Features, and Parameters In ®

20 Programmer’s Guide

intel.

Programming Guide 5

5.1

5.2

This chapter discusses the rules and guidelines for building user applications on top of Intel®
I XP400 Digital Signal Processing (DSP) Software Library Release 1.1 (DSP).

Initialization

Because DSP is a stand-alone module or alayer of mediaprocessing, it must beinitialized properly
before the application can interact with it. The initialization involves a few simple steps:

1. Before calling any DSP functions, the user application must first initialize DSP by calling
xDspInit ().
At thistime, DSP creates its tasks, algorithm, and component instances, message queues, etc.
Upon successful initialization, DSP is ready to receive control messages.

2. Download HSS NPE and initialize HSS dependents.
See the Intel® 1XP400 Product Line Programmer’s Guide (Version 1.1).

3. Set country code by calling xSetCountryCode ().
This enables the country-specific features. (Currently, that is the call-progress tones.)

4. Initialize PCM datainterface by calling xDspHssInit ().

The application must provide the description of the signal formats and time-slot assignment on
HSS's TDM bus, as defined by the data structures IxHssAccConfigParams and
IxHssAccTdmSlotUsage.

5. Register the callback function for the encoder to deliver encoded packets to the | P interface by
caling xRegistPktRcvFxn ().

Programming Model

A Vol P gateway application may contain several modules such as user interface, IP call stacks, and
DSP. The key functionality of the gateway application isto handle the call-progress procedure —
establishing calls and connecting the audio data path between two remote and local parties and
dropping the calls and disconnecting the data path, accordingly.

From control point of view, this procedure can be characterized as the interactions among DSP, IP
call stack, and SLIC driver — through asynchronous messages and commands. Such control logic
is best implemented by a message-driven state machine model. DSP’s control interface is suitably
designed to support this programming model.

To use the state machine approach, it is recommended that the user application spawn a dedicated
task to handle the call-progress procedures.

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 Programmer’s Guide 21

Programming Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 int6I
®

22

All the control messages, commands, and events from IP call stack and SLIC driver are
consolidated to the DSP message queue. They are formed as user-defined messages and are posted
to DSP's message queue by using xMsgWrite (). (In Linux, this can be donein DSP's client
driver module.) Thetask then is pending on the message queue, using xMsgReceve (), to handle
al the call progress-related messages from all these modules.

Figure 7 shows the general approach of such a state-machine model. In this programming model, a
call-progress scenario is represented by a sequence of states. Each state is characterized by:

* Theactionsit takes
* The messagesit expects
* The next state it goes to.

For example, the scenario of accepting aremote call can be represented by the following states:
1. Idle State — Waiting for call setup message from the IP call stack.
2. Ring State — Ringing the local telephone set and waiting for off-hook event.

3. Channel Set-Up State — Sending control messages to DSP to start encoder, decoder, and tone-
detector resources and waiting for the acknowledges.

4. Connected State — Acknowledging the IP call stack that alocal channel has been set up.
Waiting for a disconnect message from the call stack or on-hook event from local telephone
Set.

5. Tear-Down State — Sending control messages to DSP to stop the resources and waiting for
acknowledgements; acknowledging P call stack that the channel has been torn down; and
going back to the Idle State.

The actual state machine will be more complicated, considering all the possible error conditions.
For example, if the call is not answered, a time-out message must be handled in Ring State.

Programmer’s Guide

u Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1
In ® Programming Guide

Figure 7. Flow Chart of General-State-Machine Approach

* Creating task
e Initializing DSR
e Initializing state

>

e Sending control message to DSR
(or to SLIC driver and IP call stack
that will eventually result in a
message coming in through DSR
message queue)

v

Updating state Waiting for DSR replay and event
information or user-defined message

* Handling the reply, event, or message]

e Starting/initializing a new state }

according to the current state information
* Handling the error conditions
e Determining the next state

'

Yes /\ No

The major advantage of such programming model is the high efficiency and good performance. In
Linux*, it also helps the DSP to maintain its real-time behavior.

Programmer’s Guide 23

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 u
Programming Guide In ®

24 Programmer’s Guide

intel.

OS-Specific Issues 6

6.1

Table 1.

Because of the substantial difference between the VxWorks* and Linux* operating systems, Intel®
I XP400 Digital Signal Processing (DSP) Software Library Release 1.1's internal real-time
environment and interface are implemented differently. The exposed APIs, however, look identical.

Users need to understand some OS-specific issuesin order to design the overall software
appropriately.

VXWorks*

Implementation of DSP and user applicationsin VxWorks* is quite straightforward because of the
excellent real-time properties and devel opment tools provided by the OS. There are two aspects
that make the implementation in VxWorks simpler:

* It provides the preemptive, multi-tasking environment with enormous supporting
functionalities

¢ All the software modules reside under the same memory address space
In the current DSP release for VxWorks, two tasks are spawned and two sets of task properties are
reserved for future use, as shown in Table 1. (The higher the number, the lower the priority.) The

priorities of DSP's real-time tasks are assighed according to rate-monotonic scheduling (RMS) —
the higher-frequency periodic task getting the higher priority.

VxWorks* Tasks and Task Properties

Task Name Priority Description

Control task. Pending on inbound message queue.

Ctr_Task 44 . . .
- Triggered by incoming control messages.
Task30 43 (Reserved for future G.723 and fax-modem algorithms.)
Real-time task. Wake up every 30 ms, synchronously with PCM data.
(Reserved for future GSM algorithms.)
Task20 42

Real-time task. Wake up every 20 ms, synchronously with PCM data.

Real-time task. Wake up every 10 ms, synchronously with PCM data.

Task10 41 Execute all the DSP algorithms supported in current Intel® IXP400 DSP Software
Library Release 1.1.

Although user applications cannot change any properties of DSP tasks, they have to assign their
task priorities properly to coexist with DSP. The rules for the user applications are:

* A user’scontrol task — that is not involved in data and packet processing — should not have
higher priority than DSP's control task.

* A user’stime-critical task may have a higher priority than DSP's real time tasks, only if its
execution is predictable and does significantly affects DSP's real-time task — not preempting
DSP'sreal-time tasks for more than 1 mstotal, in each 10-ms period. (DSP takes about 5 msin
such period.)

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 Programmer’s Guide 25

0OS-Specific Issues

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 int6I
®

6.2

Table 2.

26

* The applications must not send a burst of control messages to DSP without waiting for the
replies. Otherwise, the message queues may overflow.

In future release, a configuration APl will be added to allow usersto reassign DSP'stask priorities
especialy if the user application aso has periodic real-time tasks to coexist with DSP.

Linux*

Linux will be the choice for DSP, if the cost of the target productsis the major consideration.
However, some extra development efforts and cautions must be taken. Thisis because:

* Linux isnot areal-time OS and does not support priority-based, preemptive multi-tasking

¢ User-mode applications cannot directly access DSP interfaces which reside in kernel-mode.

A shim layer of driver software must be developed to allow the user application to
communicate with DSP.

The DSPin Linux isfully in kernel mode. The DSP creates the kernel mode threads shown in
Table 2.

Linux* Kernel-Mode Threads

Thread Name Priority Description

Control thread. Pending on inbound message queue.

Ctr_Task kernel) . .
Triggered by incoming control messages.

Wakes up every 10 ms, synchronously with PCM data.

Task10 kernel Execute all the DSP algorithms supported in current Intel® IXP400 DSP
Software Library Release 1.1 (real-time thread).

The two threads have the same priorities and do not preempt each other. To enforce real-time
behavior of Task10, itisimportant that Ctr Task never takes too much time in any 10-ms
period. Although DSP is designed to avoid the burst executionin Ctr_Task, it can still be
affected by the user applications. The Linux real-time extension from MontaVista* will be
employed in future DSPs to enhance the real-time performance.

For the performance and reliability reasons, it is suggested that user applications that are non-time-
critical — such as call control and call progress modules— be implemented in Linux user mode. It
isthe user’s responsibility to develop a DSP client driver module as shown in Figure 8.

Asthe middleware, the primary responsibility of the driver moduleis to act as atransport layer
between DSP’s control interface and the user application and between DSP's packet interface and
the IP stack.

The driver module’s secondary responsibility isto perform DSP initialization, which can be done
as part of driver-module-initialization function. Additionally, the driver may also consolidate the
messages and events from DSP, SLIC, and other related modulesinto the same format and through
asingle queue to the user applications.

Programmer’s Guide

In

tel.

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1
0OS-Specific Issues

Figure 8. Intel® IXP400 DSP Software Library Release 1.1 Client Driver in Linux

[DSR Client Driver]

User Mode
V V Kernel Mode
Other Drivers, . .
[e.g., SLIC ’ | DSR Client Driver
DSR Control DSR Data
Messages Packets

| SR]

The driver can be implemented as an active or passive transport layer. In active mode, the driver
spawns a dedicated kernel thread pending on DSP's outbound queue and automatically pumps the
messages to applications, once there is a message in the queue. In passive mode, the driver
retrieves the message from DSP's queue, once the user application requestsiit.

Asdiscussed in “Programming Guide” beginning on page 21, the programming model for user
application is still recommended. The applications should not send a burst of control messages to
DSP without waiting for the replies, or the real-time behavior of DSP may be affected.

If the user application hasto create kernel threads for time-critical data processing, the execution of
the threads must be predictable and not impact DSP's real-time thread. As a guideline, the total
execution time of these other threads should not exceed 1 msin any 10-ms period.

Programmer’s Guide 27

Intel® IXP400 Digital Signal Processing (DSP) Software Library Release 1.1 u
0OS-Specific Issues In ®

28 Programmer’s Guide

	Contents
	Figures
	1 Intel® IXP400 DSP Software Library Release 1.1 Software Architecture 7
	2 Data Flow and Data-Processing Functions 8
	3 Intel® IXP400 DSP Software Library Release 1.1 Message, Data and Tasks 9
	4 Control Interface and Message Queues 12
	5 PCM Data Interface 13
	6 Packet Interface 14
	7 Flow Chart of General-State-Machine Approach 23
	8 Intel® IXP400 DSP Software Library Release 1.1 Client Driver in Linux 27

	Tables
	1 VxWorks* Tasks and Task Properties 25
	2 Linux* Kernel-Mode Threads 26

	Revision History

	Introduction 1
	1.1 General
	1.2 Scope
	1.3 Audience
	1.4 Related Documents

	Architecture Overview 2
	Run-Time Interfaces 3
	3.1 Control Interface
	3.2 PCM Data Interface
	3.3 Packet Interface

	Components, Features, and Parameters 4
	4.1 Network Endpoint
	4.2 Encoder
	4.3 Decoder
	4.4 Tone Generator
	4.5 Tone Detector

	Programming Guide 5
	5.1 Initialization
	5.2 Programming Model

	OS-Specific Issues 6
	6.1 VxWorks*
	6.2 Linux*

