Getting Started Guide for FreeBSD
Release 2.0.0

April 24, 2015

CONTENTS

Introduction 2
1.1 Documentation Roadmap 2
Installing DPDK from the Ports Collection 4
2.1 Installingthe DPDK FreeBSD Port 4
2.2 Compiling and Running the Example Applications 4
Compiling the DPDK Target from Source 7
3.1 System Requirements e 7
3.2 Installthe DPDKand Browse Sources oo i i i i i v v oo 8
3.3 Installation of the DPDK Target Environments 8
3.4 Browsing the Installed DPDK Environment Target 9
3.5 Loading the DPDK contigmem Module 9
3.6 Loadingthe DPDKnic_uioModule 10
Compiling and Running Sample Applications 13
4.1 Compiling a Sample Application 13
4.2 Running a Sample Application Lo 14

4.3 Running DPDK Applications Without Root Privileges 15

Getting Started Guide for FreeBSD, Release 2.0.0

April 24, 2015

Contents

CONTENTS 1

CHAPTER
ONE

INTRODUCTION

This document contains instructions for installing and configuring the Data Plane Development
Kit (DPDK) software. It is designed to get customers up and running quickly and describes
how to compile and run a DPDK application in a FreeBSD* application (bsdapp) environment,
without going deeply into detail.

For a comprehensive guide to installing and using FreeBSD*, the following handbook is avail-
able from the FreeBSD* Documentation Project:

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

Note: The DPDK is now available as part of the FreeBSD ports collection. Installing via the
ports collection infrastructure is now the recommended way to install the DPDK on FreeBSD,

and is documented in the next chapter, Installing DPDK from the Ports Collection.

1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

* Release Notes : Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on. Also, provides the answers to frequently
asked questions in FAQ format.

» Getting Started Guide (this document): Describes how to install and configure the
DPDK; designed to get users up and running quickly with the software.

* Programmer’s Guide: Describes:

— The software architecture and how to use it (through examples), specifically in a
Linux* application (linuxapp) environment

— The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application

— Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

« API Reference: Provides detailed information about DPDK functions, data structures
and other programming constructs.

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

Getting Started Guide for FreeBSD, Release 2.0.0

» Sample Applications User Guide: Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

Note: These documents are available for download as a separate documentation package at
the same location as the DPDK code package.

1.1. Documentation Roadmap 3

CHAPTER
TWO

INSTALLING DPDK FROM THE PORTS COLLECTION

The easiest way to get up and running with the DPDK on FreeBSD is to install it from the ports
collection. Details of getting and using the ports collection are documented in the FreeBSD
Handbook at:

https://www.freebsd.org/doc/handbook/ports-using.html

Note: Testing has been performed using FreeBSD* 10.0-RELEASE (x86_64) and requires the
installation of the kernel sources, which should be included during the installation of FreeBSD*.

2.1 Installing the DPDK FreeBSD Port

On a system with the ports collection installed in /usr/ports, the DPDK can be installed using
the commands:

root@host:~ # cd /usr/ports/net/dpdk

root@host:~ # make install

After the installation of the DPDK port, instructions will be printed on how to install the kernel
modules required to use the DPDK. A more complete version of these instructions can be
found in the sections Loading the DPDK contigmem Module and Loading the DPDK nic_uio
Module. Normally, lines like those below would be added to the file “/boot/loader.conf”.

reserve 2 x 1G blocks of contiguous memory using contigmem driver
hw.contigmem.num buffers=2

hw.contigmem.buffer size=1073741824

contigmem load="YES"

identify NIC devices for DPDK apps to use and load nic _uio driver
hw.nic uio.bdfs="2:0:0,2:0:1"

nic_uio load="YES"

2.2 Compiling and Running the Example Applications

When the DPDK has been installed from the ports collection it installs its exam-
ple applications in “/usr/local/share/dpdk/examples” - also accessible via symlink as
“/usr/local/share/examples/dpdk”. These examples can be compiled and run as described in
Compiling and Running Sample Applications. In this case, the required environmental vari-
ables should be set as below:

https://www.freebsd.org/doc/handbook/ports-using.html

Getting Started Guide for FreeBSD, Release 2.0.0

» RTE_SDK=/ust/local/share/dpdk
+ RTE_TARGET=x86_64-native-bsdapp-clang

Note: To install a copy of the DPDK compiled using gcc, please download the official DPDK
package from http://dpdk.org/ and install manually using the instructions given in the next chap-

ter, Compiling the DPDK Target from Source

An example application can therefore be copied to a user’s home directory and compiled and
run as below:

user@host:~$ export RTE SDK=/usr/local/share/dpdk
user@host:~$ export RTE TARGET=x86_ 64-native-bsdapp-clang
user@host:~$ cp -r /usr/local/share/dpdk/examples/helloworld .
user@host:~$ cd helloworld/

user@host:~/helloworld$ gmake
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

user@host:~/helloworld$ sudo ./build/helloworld -c F -n 2
EAL: Contigmem driver has 2 buffers, each of size 1GB
EAL: Sysctl reports 8 cpus

EAL: Detected lcore
EAL: Detected lcore
EAL: Detected lcore
EAL: Detected lcore
EAL: Support maximum 64 logical core(s) by configuration.

EAL: Detected 4 lcore(s)

EAL: Setting up physically contiguous memory. ..

EAL: Mapped memory segment 1 @ 0x802400000: physaddr:0x40000000, len 1073741824
EAL: Mapped memory segment 2 @ 0x842400000: physaddr:0x100000000, len 1073741824
EAL: WARNING: clock gettime cannot use CLOCK MONOTONIC RAW

EAL: and HPET is not available - clock timings may be less accurate.
EAL: TSC frequency is ~3569023 KHz

EAL: PCI scan found 24 devices

EAL: Master core 0 is ready (tid=0x802006400)

EAL: Core 1 is ready (tid=0x802006800)

EAL: Core 3 is ready (tid=0x802007000)

EAL: Core 2 is ready (tid=0x802006c00)

EAL: PCI device 0000:01:00.0 on NUMA socket 0

EAL: probe driver: 8086:10fb rte ixgbe pmd

EAL: PCI memory mapped at 0x80074a000

EAL: PCI memory mapped at 0x8007ca000

EAL: PCI device 0000:01:00.1 on NUMA socket ©

EAL: probe driver: 8086:10fb rte_ ixgbe pmd

EAL: PCI memory mapped at 0x8007ce000

EAL: PCI memory mapped at 0x80084e000

EAL: PCI device 0000:02:00.0 on NUMA socket 0

EAL: probe driver: 8086:10fb rte ixgbe pmd

EAL: PCI memory mapped at 0x800852000

EAL: PCI memory mapped at 0x8008d2000

EAL: PCI device 0000:02:00.1 on NUMA socket ©

EAL: probe driver: 8086:10fb rte ixgbe pmd

EAL: PCI memory mapped at 0x801b3f000

EAL: PCI memory mapped at 0x8008d6000

hello from core 1

WN O

2.2. Compiling and Running the Example Applications 5

http://dpdk.org/

Getting Started Guide for FreeBSD, Release 2.0.0

hello from core 2
hello from core 3
hello from core 0

Note: To run a DPDK process as a non-root user, adjust the permissions on the
/dev/contigmem and /dev/uio device nodes as described in section Running DPDK Applica-

tions Without Root Privileges

Note: For an explanation of the command-line parameters that can be passed to an DPDK
application, see section Running a Sample Application.

2.2. Compiling and Running the Example Applications 6

CHAPTER
THREE

COMPILING THE DPDK TARGET FROM SOURCE

Note: Testing has been performed using FreeBSD* 10.0-RELEASE (x86_64) and requires the
installation of the kernel sources, which should be included during the installation of FreeBSD".

The DPDK also requires the use of FreeBSD* ports to compile and function.

3.1 System Requirements

The DPDK and its applications require the GNU make system (gmake) to build on FreeBSD*.
Optionally, gcc may also be used in place of clang to build the DPDK, in which case it too
must be installed prior to compiling the DPDK. The installation of these tools is covered in this
section.

Compiling the DPDK requires the FreeBSD kernel sources, which should be included during
the installation of FreeBSD* on the development platform. The DPDK also requires the use of
FreeBSD* ports to compile and function.

To use the FreeBSD* ports system, it is required to update and extract the FreeBSD* ports tree
by issuing the following commands:

root@host:~ # portsnap fetch
root@host:~ # portsnap extract

If the environment requires proxies for external communication, these can be set using:

root@host:~ # setenv http proxy <my proxy host>:<port>
root@host:~ # setenv ftp proxy <my proxy host>:<port>

The FreeBSD* ports below need to be installed prior to building the DPDK. In general these
can be installed using the following set of commands:

1. cd /usr/ports/<port_location>
2. make config-recursive

3. make install

4. make clean

Each port location can be found using:

user@host:~ # whereis <port_name>

The ports required and their locations are as follows:

Getting Started Guide for FreeBSD, Release 2.0.0

dialog4ports /usr/ports/ports-mgmt/dialog4ports

GNU make(gmake) /usr/ports/devel/gmake

coreutils /usr/ports/sysutils/coreutils

For compiling and using the DPDK with gcc, it too must be installed from the ports collection:

gcc: version 4.8 is recommended /usr/ports/lang/gcc48 (Ensure that CPU_OPTS is se-
lected (default is OFF))

When running the make config-recursive command, a dialog may be presented to the user.
For the installation of the DPDK, the default options were used.

Note: To avoid multiple dialogs being presented to the user during make install, it is advisable
before running the make install command to re-run the make config -recursive command until

no more dialogs are seen.

3.2 Install the DPDK and Browse Sources

First, uncompress the archive and move to the DPDK source directory:

user@host:~ # unzip DPDK-<version>zip

user@host:~ # cd DPDK-<version>

user@host:~/DPDK # 1s

app/ config/ examples/ lib/ LICENSE.GPL LICENSE.LGPL Makefile mk/ scripts/ tools

The DPDK is composed of several directories:
* lib: Source code of DPDK libraries
+ app: Source code of DPDK applications (automatic tests)
» examples: Source code of DPDK applications

* config, tools, scripts, mk: Framework-related makefiles, scripts and configuration

3.3 Installation of the DPDK Target Environments

The format of a DPDK target is:
ARCH-MACHINE-EXECENV-TOOLCHAIN
Where:

« ARCH is: x86_64

* MACHINE is: native

« EXECENV is: bsdapp

+ TOOLCHAIN is: gcc | clang

The configuration files for the DPDK targets can be found in the DPDK/config directory in the
form of:

defconfig ARCH-MACHINE-EXECENV-TOOLCHAIN

3.2. Install the DPDK and Browse Sources 8

Getting Started Guide for FreeBSD, Release 2.0.0

Note: Configuration files are provided with the RTE_MACHINE optimization level set. Within
the configuration files, the RTE_MACHINE configuration value is set to native, which means

that the compiled software is tuned for the platform on which it is built. For more information
on this setting, and its possible values, see the DPDK Programmers Guide.

To install and make the target, use “gmake install T=<target>".

For example to compile for FreeBSD* use:

gmake install T=x86_ 64-native-bsdapp-clang

Note: If the compiler binary to be used does not correspond to that given in the TOOLCHAIN
part of the target, the compiler command may need to be explicitly specified. For example,

if compiling for gcc, where the gcc binary is called gcc4.8, the command would need to be
“gmake install T=<target> CC=gcc4.8”.

3.4 Browsing the Installed DPDK Environment Target

Once atarget is created, it contains all the libraries and header files for the DPDK environment
that are required to build customer applications. In addition, the test and testpmd applications
are built under the build/app directory, which may be used for testing. A kmod directory is also
present that contains the kernel modules to install:

user@host:~/DPDK # 1s x86_64-native-bsdapp-gcc
app build hostapp include kmod lib Makefile

3.5 Loading the DPDK contigmem Module

To run a DPDK application, physically contiguous memory is required. In the absence of non-
transparent superpages, the included sources for the contigmem kernel module provides the
ability to present contiguous blocks of memory for the DPDK to use. The contigmem module
must be loaded into the running kernel before any DPDK is run. The module is found in the
kmod sub-directory of the DPDK target directory.

The amount of physically contiguous memory along with the number of physically contiguous
blocks to be reserved by the module can be set at runtime prior to module loading using:

root@host:~ # kenv hw.contigmem.num buffers=n
root@host:~ # kenv hw.contigmem.buffer size=m

The kernel environment variables can also be specified during boot by placing the following in
/boot/loader.conf:

’hw.contigmem.num_buffers=n hw.contigmem.buffer size=m ‘

The variables can be inspected using the following command:

’root@host:~ # sysctl -a hw.contigmem

3.4. Browsing the Installed DPDK Environment Target 9

Getting Started Guide for FreeBSD, Release 2.0.0

Where n is the number of blocks and m is the size in bytes of each area of contiguous memory.
A default of two buffers of size 1073741824 bytes (1 Gigabyte) each is set during module load
if they are not specified in the environment.

The module can then be loaded using kldload (assuming that the current directory is the DPDK
target directory):

kldload ./kmod/contigmem.ko

It is advisable to include the loading of the contigmem module during the boot process to
avoid issues with potential memory fragmentation during later system up time. This can be
achieved by copying the module to the /boot/kernel/ directory and placing the following into
/boot/loader.conf:

contigmem load="YES"

Note: The contigmem_load directive should be placed after any definitions of
hw.contigmem.num_buffers and hw.contigmem.buffer_size if the default values are not to be

used.

An error such as:

’kldload: can't load ./x86 64-native-bsdapp-gcc/kmod/contigmem.ko: Exec format er%or

is generally attributed to not having enough contiguous memory available and can be verified
via dmesg or /var/log/messages:

’kernel: contigmalloc failed for buffer <n> ‘

To avoid this error, reduce the number of buffers or the buffer size.

3.6 Loading the DPDK nic_uio Module

After loading the contigmem module, the nic_uio must also be loaded into the running ker-
nel prior to running any DPDK application. This module must be loaded using the kldload
command as shown below (assuming that the current directory is the DPDK target directory).

kldload ./kmod/nic uio.ko ‘

Note: If the ports to be used are currently bound to a existing kernel driver then the
hw.nic_uio.bdfs sysctl value will need to be set before loading the module. Setting this value is

described in the next section below.

Currently loaded modules can be seen by using the “kldstat” command and a module can be
removed from the running kernel by using “kldunload <module_name>".

To load the module during boot, copy the nic_uio module to /boot/kernel and place the following
into /boot/loader.conf:

nic uio_ load="YES"

Note: nic_uio_load="YES” must appear after the contigmem_load directive, if it exists.

3.6. Loading the DPDK nic_uio Module 10

Getting Started Guide for FreeBSD, Release 2.0.0

By default, the nic_uio module will take ownership of network ports if they are recognized DPDK
devices and are not owned by another module. However, since the FreeBSD kernel includes
support, either built-in, or via a separate driver module, for most network card devices, it is
likely that the ports to be used are already bound to a driver other than nic_uio. The following
sub-section describe how to query and modify the device ownership of the ports to be used by
DPDK applications.

3.6.1 Binding Network Ports to the nic_uio Module

Device ownership can be viewed using the pciconf -| command. The example below shows
four Intel® 82599 network ports under “if_ixgbe” module ownership.

user@host:~ # pciconf -1

ix0@pcif:1:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix1@pcif:1:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix2@pcif:2:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix3@pcif:2:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00

The first column constitutes three components:
1. Device name: ixN
2. Unit name: pci0
3. Selector (Bus:Device:Function): 1:0:0
Where no driver is associated with a device, the device name will be none.

By default, the FreeBSD* kernel will include built-in drivers for the most common devices; a
kernel rebuild would normally be required to either remove the drivers or configure them as
loadable modules.

To avoid building a custom kernel, the nic_uio module can detach a network port from its cur-
rent device driver. This is achieved by setting the hw.nic_uio.bdfs kernel environment variable
prior to loading nic_uio, as follows:

hw.nic _uio.bdfs="b:d:f,b:d:f,..."

Where a comma separated list of selectors is set, the list must not contain any whitespace.

For example to re-bind “ix2@pci0:2:0:0” and “ix3@pci0:2:0:1” to the nic_uio module upon load-
ing, use the following command:

kenv hw.nic uio.bdfs="2:0:0,2:0:1"

The variable can also be specified during boot by placing the following into “/boot/loader.conf”,
before the previously-described “nic_uio_load” line - as shown.

hw.nic uio.bdfs="2:0:0,2:0:1"
nic uio load="YES"

3.6.2 Binding Network Ports Back to their Original Kernel Driver

If the original driver for a network port has been compiled into the kernel, it is necessary to
reboot FreeBSD* to restore the original device binding. Before doing so, update or remove the
“hw.nic_uio.bdfs” in “/boot/loader.conf”.

3.6. Loading the DPDK nic_uio Module 11

Getting Started Guide for FreeBSD, Release 2.0.0

If rebinding to a driver that is a loadable module, the network port binding can be reset without
rebooting. To do so, unload both the target kernel module and the nic_uio module, modify or
clear the “hw.nic_uio.bdfs” kernel environment (kenv) value, and reload the two drivers - first
the original kernel driver, and then the nic_uio driver. [The latter does not need to be reloaded
unless there are ports that are still to be bound to it].

Example commands to perform these steps are shown below:

kldunload nic uio
kldunload <original driver>

kenv -u hw.nic uio.bdfs # to clear the value completely
kenv hw.nic uio.bdfs="b:d:f,b:d:f,..." # to update the list of ports to bind

kldload <original driver>

kldload nic uio # optional

3.6. Loading the DPDK nic_uio Module 12

CHAPTER
FOUR

COMPILING AND RUNNING SAMPLE APPLICATIONS

The chapter describes how to compile and run applications in a DPDK environment. It also
provides a pointer to where sample applications are stored.

4.1 Compiling a Sample Application

Once a DPDK target environment directory has been created (such as x86_64-native-bsdapp-
clang), it contains all libraries and header files required to build an application.

When compiling an application in the FreeBSD* environment on the DPDK, the following vari-
ables must be exported:

» RTE_SDK - Points to the DPDK installation directory.

+ RTE_TARGET - Points to the DPDK target environment directory. For FreeBSD*, this is
the x86_64-native-bsdapp-clang or x86_64-native-bsdapp-gcc directory.

The following is an example of creating the helloworld application, which runs in the DPDK
FreeBSD* environment. While the example demonstrates compiling using gcc version 4.8,
compiling with clang will be similar, except that the “CC=" parameter can probably be omitted.
The “helloworld” example may be found in the ${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the
DPDK target environment, calls the various functions to initialize the DPDK environment, then
launches an entry point (dispatch application) for each core to be utilized. By default, the binary
is generated in the build directory.

user@host:~/DPDK$ cd examples/helloworld/

user@host:~/DPDK/examples/helloworld$ setenv RTE_SDK $HOME/DPDK
user@host:~/DPDK/examples/helloworld$ setenv RTE TARGET x86 64-native-bsdapp-gcc
user@host:~/DPDK/examples/helloworld$ gmake CC=gcc48

CC main.o

LD helloworld

INSTALL-APP helloworld

INSTALL-MAP helloworld.map

user@host:~/DPDK/examples/helloworld$ ls build/app

helloworld helloworld.map

Note: In the above example, helloworld was in the directory structure of the DPDK. However,
it could have been located outside the directory structure to keep the DPDK structure intact.

In the following case, the helloworld application is copied to a new directory as a new starting
point.

13

Getting Started Guide for FreeBSD, Release 2.0.0

user@host:~$ setenv RTE SDK /home/user/DPDK

user@host:~$ cp -r $(RTE_SDK)/examples/helloworld my rte app
user@host:~$ cd my_rte app/

user@host:~$ setenv RTE TARGET x86 64-native-bsdapp-gcc
user@host:~/my_rte_app$ gmake CC=gcc48

CC main.o

LD helloworld

INSTALL-APP helloworld

INSTALL-MAP helloworld.map

4.2

1.
2.

Running a Sample Application

The contigmem and nic_uio modules must be set up prior to running an application.

Any ports to be used by the application must be already bound to the nic_uio module, as
described in section Binding Network Ports to the nic_uio Module, prior to running the
application. The application is linked with the DPDK target environment’s Environment
Abstraction Layer (EAL) library, which provides some options that are generic to every
DPDK application.

The following is the list of options that can be given to the EAL:

./rte-app -c COREMASK -n NUM [-b <domain:bus:devid.func>]

[-r NUM]
[-v]
[--proc-type <primary|secondary|auto>]

Note: EAL has a common interface between all operating systems and is based on the Linux*
notation for PCI devices. For example, a FreeBSD* device selector of pci0:2:0:1 is referred to

as 02:00.1 in EAL.

The EAL options for FreeBSD* are as follows:

-c COREMASK : A hexadecimal bit mask of the cores to run on. Note that core numbering
can change between platforms and should be determined beforehand.

-n NUM : Number of memory channels per processor socket.

-b <domain:bus:devid.func> : blacklisting of ports; prevent EAL from using specified PCI
device (multiple -b options are allowed).

—use-device : use the specified Ethernet device(s) only. Use comma-separate <[do-
main:]bus:devid.func> values. Cannot be used with -b option.

-r NUM : Number of memory ranks.
-v : Display version information on startup.

—proc-type : The type of process instance.

Other options, specific to Linux* and are not supported under FreeBSD* are as follows:

socket-mem : Memory to allocate from hugepages on specific sockets.
—huge-dir : The directory where hugetlbfs is mounted.

—file-prefix : The prefix text used for hugepage filenames.

4.2. Running a Sample Application 14

Getting Started Guide for FreeBSD, Release 2.0.0

* -m MB : Memory to allocate from hugepages, regardless of processor socket. It is rec-
ommended that —socket-mem be used instead of this option.

The -c and the -n options are mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows (assuming
the platform has four memory channels, and that cores 0-3 are present and are to be used for
running the application):

root@target:~$./helloworld -c f -n 4 ‘

Note: The —proc-type and —file-prefix EAL options are used for running multiple DPDK pro-
cesses. See the “Multi-process Sample Application” chapter in the DPDK Sample Applications

User Guide and the DPDK Programmers Guide for more details.

4.3 Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources di-
rectly, with a number of small permission adjustments, it is possible to run these applications
as a user other than “root”. To do so, the ownership, or permissions, on the following file sys-
tem objects should be adjusted to ensure that the user account being used to run the DPDK
application has access to them:

» The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

» The userspace contiguous memory device: /dev/contigmem

Note: Please refer to the DPDK Release Notes for supported applications.

4.3. Running DPDK Applications Without Root Privileges 15

	Introduction
	Documentation Roadmap

	Installing DPDK from the Ports Collection
	Installing the DPDK FreeBSD Port
	Compiling and Running the Example Applications

	Compiling the DPDK Target from Source
	System Requirements
	Install the DPDK and Browse Sources
	Installation of the DPDK Target Environments
	Browsing the Installed DPDK Environment Target
	Loading the DPDK contigmem Module
	Loading the DPDK nic_uio Module

	Compiling and Running Sample Applications
	Compiling a Sample Application
	Running a Sample Application
	Running DPDK Applications Without Root Privileges

