Contents

1 Introduction ... 7
 1.1 Objective ... 7
 1.2 Scope .. 7
 1.3 References ... 7
 1.4 Definition of Terms ... 8

2 Thermal/Mechanical Reference Design ... 11
 2.1 Mechanical Requirements ... 11
 2.1.1 Processor Mechanical Parameters .. 11
 2.1.2 Dual-Core Intel Xeon Processor 5100 Series Processor Package 11
 2.1.3 Dual-Core Intel Xeon Processor 5100 Series Considerations 14
 2.2 Processor Thermal Parameters and Features .. 15
 2.2.1 Thermal Control Circuit and TDP .. 15
 2.2.2 Digital Thermal Sensor .. 16
 2.2.3 Platform Environmental Control Interface (PECI) .. 16
 2.2.4 Multiple Core Special Considerations ... 17
 2.2.5 Thermal Profile .. 20
 2.2.6 TCONTROL Definition ... 22
 2.2.7 Thermal Profile Concepts for the Dual-Core Intel Xeon Processor 5100 Series 23
 2.2.8 Performance Targets .. 25
 2.3 Characterizing Cooling Solution Performance Requirements 29
 2.3.1 Fan Speed Control ... 29
 2.3.2 Processor Thermal Characterization Parameter Relationships 31
 2.3.3 Chassis Thermal Design Considerations ... 33
 2.4 Thermal/Mechanical Reference Design Considerations .. 33
 2.4.1 Heatsink Solutions ... 33
 2.4.2 Thermal Interface Material .. 34
 2.4.3 Summary ... 35
 2.4.4 Assembly Overview of the Intel Reference Thermal Mechanical Design 35
 2.4.5 Thermal Solution Performance Characteristics .. 37
 2.4.6 Thermal Profile Adherence ... 39
 2.4.7 Components Overview ... 43
 2.4.8 Boxed Active Thermal Solution for the Dual-Core Intel Xeon Processor 5100 Series . 46

A Mechanical Drawings ... 51

B Heatsink Clip Load Methodology ... 73
 B.1 Overview ... 73
 B.2 Test Preparation .. 73
 B.2.1 Heatsink Preparation ... 73
 B.2.2 Typical Test Equipment .. 76
 B.2.3 Test Procedure Examples ... 76
 B.2.4 Time-Zero, Room Temperature Preload Measurement ... 76
 B.2.5 Preload Degradation under Bake Conditions ... 77

C Safety Requirements .. 79

D Quality and Reliability Requirements .. 81
 D.1 Intel Verification Criteria for the Reference Designs .. 81
 D.1.1 Reference Heatsink Thermal Verification ... 81
 D.1.2 Environmental Reliability Testing ... 81
 D.1.3 Material and Recycling Requirements .. 83

E Enabled Suppliers Information ... 85
E.1 Supplier Information .. 85
 E.1.1 Intel Enabled Suppliers ... 85
 E.1.2 Additional Enabled Suppliers ... 86

Figures
 2-1 Dual-Core Intel® Xeon® Processor 5100 Series Mechanical Drawing 13
 2-2 DTS Domain for Dual-Core Intel Xeon Processor 5100 Series 17
 2-3 Fan Speed Control for Dual-Core Intel Xeon Processor 5100 Series 18
 2-4 Processor Core Geometric Center Locations .. 20
 2-5 Thermal Profile Diagram .. 21
 2-6 TCONTROL Value and Digital Thermal Sensor Value Interaction 22
 2-7 TCONTROL and Thermal Profile Interaction .. 23
 2-8 Dual Thermal Profile Diagram .. 24
 2-9 Thermal Profile for the Dual-Core Intel Xeon Processor 5148 25
 2-10 Thermal Profile for the Dual-Core Intel® Xeon® Processor 5110/5120/5130/5140/5150/5150 26
 2-11 Thermal Profiles A and B for the Dual-Core Intel® Xeon® Processor 5160 27
 2-12 TCONTROL and Fan Speed Control ... 30
 2-13 Processor Thermal Characterization Parameter Relationships 32
 2-14 Exploded View of CEK Thermal Solution Components 36
 2-15 2U+ CEK Heatsink Thermal Performance ... 38
 2-16 1U CEK Heatsink Thermal Performance ... 39
 2-17 1U CEK Thermal Adherence to Dual-Core Intel Xeon Processor 5148 Thermal Profile .. 40
 2-18 1U CEK Thermal Adherence to Dual-Core Intel® Xeon® Processor 5110/5120/5130/5140/5150 41
 2-19 2U+CEK Thermal Adherence to Dual-Core Intel Xeon Processor 5160 Thermal Profile A .. 42
 2-20 1U CEK Thermal Adherence to Dual-Core Intel Xeon Processor 5160 Thermal Profile B .. 43
 2-21 Isometric View of the 2U+ CEK Heatsink ... 43
 2-22 Isometric View of the 1U CEK Heatsink ... 44
 2-23 CEK Spring Isometric View .. 46
 2-24 Isometric View of CEK Spring Attachment to the Base Board 46
 2-25 Boxed Active CEK Heatsink Solutions with PWM/DTS Control (Representation Only)47
 2-26 Fan Cable Connection (Active CEK) .. 48
 A-1 2U CEK Heatsink (Sheet 1 of 4) .. 52
 A-2 2U CEK Heatsink (Sheet 2 of 4) .. 53
 A-3 2U CEK Heatsink (Sheet 3 of 4) .. 54
 A-4 2U CEK Heatsink (Sheet 4 of 4) .. 55
 A-5 CEK Spring (Sheet 1 of 3) .. 56
 A-6 CEK Spring (Sheet 2 of 3) .. 57
 A-7 CEK Spring (Sheet 3 of 3) .. 58
 A-8 Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 1 of 6) 59
 A-9 Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 2 of 6) .. 60
 A-10 Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 3 of 6) .. 61
 A-11 Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 4 of 6) .. 62
Table of Contents

A-12 Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 5 of 6) ... 63
A-13 Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 6 of 6) ... 64
A-14 1U CEK Heatsink (Sheet 1 of 4) .. 65
A-15 1U CEK Heatsink (Sheet 2 of 4) .. 66
A-16 1U CEK Heatsink (Sheet 3 of 4) .. 67
A-17 1U CEK Heatsink (Sheet 4 of 4) .. 68
A-18 Active CEK Thermal Solution Volumetric (Sheet 1 of 3) 69
A-19 Active CEK Thermal Solution Volumetric (Sheet 2 of 3) 70
A-20 Active CEK Thermal Solution Volumetric (Sheet 3 of 3) 71
B-1 Load Cell Installation in Machined Heatsink Base Pocket -- Bottom View 74
B-2 Load Cell Installation in Machined Heatsink Base Pocket -- Side View 75
B-3 Preload Test Configuration ... 75

Tables

1-1 Reference Documents ... 7
1-2 Terms and Descriptions .. 8
2-1 Processor Mechanical Parameters Table .. 11
2-2 Input and Output Conditions for the Dual-Core Intel Xeon Processor 5100 Series Thermal Management Features 19
2-3 Processor Core Geometric Center Dimensions ... 20
2-4 Intel Reference Heatsink Performance Targets for the Dual-Core Intel® Xeon® Processor 5148 .. 27
2-5 Intel Reference Heatsink Performance Targets for the Dual-Core Intel Xeon Processor 5110/5120/5130/5140/5150 ... 28
2-6 Intel Reference Heatsink Performance Targets for the Dual-Core Intel Xeon Processor 5160 .. 29
2-7 Fan Speed Control, TCONTROL and DTS Relationship 30
2-8 CEK Heatsink Thermal Mechanical Characteristics .. 44
2-9 Recommended Thermal Grease Dispense Weight .. 45
2-10 Fan Specifications (Boxed 4-wire PWM/DTS Heatsink Solution) 48
2-11 Fan Cable Connector Pin Out (Active CEK) .. 48
A-1 Mechanical Drawing List .. 51
B-1 Typical Test Equipment .. 76
D-1 Use Conditions Environment .. 82
E-1 Suppliers for the Dual-Core Intel Xeon Processor 5100 Series Intel Reference Solution .. 85
E-2 Suppliers of Alternative Thermal Solutions for the Dual-Core Intel Xeon Processor 5100 Series .. 86
Revision History

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Initial release of the document.</td>
<td>June 2006</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Objective

This document describes the reference thermal solution and design parameters required for Dual-Core Intel® Xeon® Processor 5100 Series. It is also the intent of this document to comprehend and demonstrate the processor cooling solution features and requirements. Furthermore, this document provides an understanding of the processor thermal characteristics, and discusses guidelines for meeting the thermal requirements imposed on the entire life of the processor. The thermal/mechanical solutions described in this document are intended to aid component and system designers in the development and evaluation of processor compatible thermal/mechanical solutions.

1.2 Scope

The thermal/mechanical solutions described in this document pertain only to a solution(s) intended for use with the Dual-Core Intel Xeon Processor 5100 Series in 1U/Volumetric constrained, 2U, 2U+ and workstation form factors systems. This document contains the mechanical and thermal requirements of the processor cooling solution. In case of conflict, the data in the *Dual-Core Intel® Xeon® Processor 5100 Series Datasheet* supersedes any data in this document. Additional information is provided as a reference in the appendices.

1.3 References

Material and concepts available in the following documents may be beneficial when reading this document.

<table>
<thead>
<tr>
<th>Table 1-1</th>
<th>Reference Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document</td>
<td>Comment</td>
</tr>
<tr>
<td>European Blue Angel Recycling Standards</td>
<td>http://www.blauer-engel.de</td>
</tr>
<tr>
<td>Intel® Xeon® Processor Family Thermal Test Vehicle User’s Guide</td>
<td>See Note following table</td>
</tr>
<tr>
<td>LGA771 Socket Mechanical Design Guide</td>
<td>See Note following table</td>
</tr>
<tr>
<td>PECI Feature Set Overview</td>
<td>See Note following table</td>
</tr>
<tr>
<td>Platform Environment Control Interface (PECI) Specification</td>
<td>See Note following table</td>
</tr>
<tr>
<td>TRAISE Reduction Guidelines for Rack Servers and Workstations</td>
<td>See Note following table</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® Processor 5100 Series Datasheet</td>
<td>See Note following table</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® Processor 5100 Series Enabled Components Mechanical Models (in IGES and ProE* format)</td>
<td>Available electronically</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® Processor 5100 Series Enabled Components Thermal Models (in Flotherm* and Icepak*)</td>
<td>Available electronically</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® Processor 5100 Series Mechanical Models (in ProE* and IGES model)</td>
<td>Available electronically</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® Processor 5100 Series Thermal Models (in Flotherm* and Icepak*)</td>
<td>Available electronically</td>
</tr>
</tbody>
</table>
Note: Contact your Intel field sales representative for the latest revision and order number of this document.

1.4 Definition of Terms

Table 1-2. Terms and Descriptions (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass</td>
<td>Bypass is the area between a passive heatsink and any object that can act to form a duct. For this example, it can be expressed as a dimension away from the outside dimension of the fins to the nearest surface.</td>
</tr>
<tr>
<td>Digital Thermal Sensor</td>
<td>Digital Thermal Sensor replaces the TDIODE in previous products and uses the same sensor as the PROCHOT# sensor to indicate the on-die temperature. The temperature value represents the number of degrees below the TCC activation temperature.</td>
</tr>
<tr>
<td>FMB</td>
<td>Flexible Motherboard Guideline: an estimate of the maximum value of a processor specification over certain time periods. System designers should meet the FMB values to ensure their systems are compatible with future processor releases.</td>
</tr>
<tr>
<td>FSC</td>
<td>Fan Speed Control</td>
</tr>
<tr>
<td>IHS</td>
<td>Integrated Heat Spreader: a component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.</td>
</tr>
<tr>
<td>LGA771 Socket</td>
<td>The Dual-Core Intel® Xeon® Processor 5100 Series interface to the baseboard through this surface mount, 771 Land socket. See the LGA771 Socket Mechanical Design Guide for details regarding this socket.</td>
</tr>
<tr>
<td>PMAX</td>
<td>The maximum power dissipated by a semiconductor component.</td>
</tr>
<tr>
<td>PECI</td>
<td>A proprietary one-wire bus interface that provides a communication channel between Intel processor and chipset components to external thermal monitoring devices, for use in fan speed control. PECI communicates readings from the processor’s Digital Thermal Sensor. PECI replaces the thermal diode available in previous processors.</td>
</tr>
<tr>
<td>Ψ<sub>CA</sub></td>
<td>Case-to-ambient thermal characterization parameter (psi). A measure of thermal solution performance using total package power. Defined as (T<sub>CASE</sub> - T<sub>LA</sub>) / Total Package Power. Heat source should always be specified for Ψ<sub>CA</sub> measurements.</td>
</tr>
<tr>
<td>Ψ<sub>CS</sub></td>
<td>Case-to-sink thermal characterization parameter. A measure of thermal interface material performance using total package power. Defined as (T<sub>CASE</sub> - T<sub>S</sub>) / Total Package Power.</td>
</tr>
<tr>
<td>Ψ<sub>SA</sub></td>
<td>Sink-to-ambient thermal characterization parameter. A measure of heatsink thermal performance using total package power. Defined as (T<sub>S</sub> - T<sub>LA</sub>) / Total Package Power.</td>
</tr>
<tr>
<td>T<sub>CASE</sub></td>
<td>The case temperature of the processor, measured at the geometric center of the topside of the IHS.</td>
</tr>
<tr>
<td>T<sub>CASE_MAX</sub></td>
<td>The maximum case temperature as specified in a component specification.</td>
</tr>
<tr>
<td>TCC</td>
<td>Thermal Control Circuit: Thermal monitor uses the TCC to reduce the die temperature by using clock modulation and/or operating frequency and input voltage adjustment when the die temperature is very near its operating limits.</td>
</tr>
<tr>
<td>T<sub>CONTROL</sub></td>
<td>A processor unique value for use in fan speed control mechanisms. T<sub>CONTROL</sub> is a temperature specification based on a temperature reading from the processor's Digital Thermal Sensor. T<sub>CONTROL</sub> can be described as a trigger point for fan speed control implementation. T<sub>CONTROL</sub> = -T<sub>OFFSET</sub>.</td>
</tr>
<tr>
<td>T<sub>OFFSET</sub></td>
<td>An offset value from the TCC activation temperature value specified in the processor EMTS or data sheet and T<sub>CONTROL</sub> = -T<sub>OFFSET</sub>. This value is programmed into each processor during manufacturing and can be obtained by reading the IA_32_TEMPERATURE_TARGET MSR. This is a static and a unique value. Refer to the RS - Conroe and Woodcrest Processor Family BIOS Writer’s Guide (BWG) for further details.</td>
</tr>
<tr>
<td>TDP</td>
<td>Thermal Design Power: Thermal solution should be designed to dissipate this target power level. TDP is not the maximum power that the processor can dissipate.</td>
</tr>
<tr>
<td>Thermal Monitor</td>
<td>A feature on the processor that can keep the processor’s die temperature within factory specifications under normal operating conditions, and with a thermal solution that satisfies the processor thermal profile specification.</td>
</tr>
<tr>
<td>Thermal Profile</td>
<td>Line that defines case temperature specification of a processor at a given power level.</td>
</tr>
<tr>
<td>TIM</td>
<td>Thermal Interface Material: The thermally conductive compound between the heatsink and the processor case. This material fills the air gaps and voids, and enhances the transfer of the heat from the processor case to the heatsink.</td>
</tr>
</tbody>
</table>
Table 1-2. Terms and Descriptions (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{LA}</td>
<td>The measured ambient temperature locally surrounding the processor. The ambient temperature should be measured just upstream of a passive heatsink or at the fan inlet for an active heatsink.</td>
</tr>
<tr>
<td>T_{SA}</td>
<td>The system ambient air temperature external to a system chassis. This temperature is usually measured at the chassis air inlets.</td>
</tr>
<tr>
<td>U</td>
<td>A unit of measure used to define server rack spacing height. 1U is equal to 1.75 in, 2U equals 3.50 in, etc.</td>
</tr>
</tbody>
</table>
This chapter describes the thermal/mechanical reference design for Dual-Core Intel Xeon Processor 5100 Series. Dual-Core Intel Xeon Processor 5100 Series are the performance processors with a front side bus speed of 1333 MHz. Some lower speed Dual-Core Intel Xeon Processor 5100 Series SKU’s are available which support a 1066 MHz Front Side Bus (FSB). The processor is targeted for the full range of form factors (2U, 2U+ and 1U/volumetrically constrained).

2.1 Mechanical Requirements

The mechanical performance of the processor cooling solution must satisfy the requirements described in this section.

2.1.1 Processor Mechanical Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetric Requirements and Keepouts</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Static Compressive Load</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Static Board Deflection</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Dynamic Compressive Load</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Transient Bend</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Shear Load</td>
<td>70</td>
<td>311</td>
<td>lbf</td>
<td>2,4,5</td>
</tr>
<tr>
<td>Tensile Load</td>
<td>25</td>
<td>111</td>
<td>lbf</td>
<td>2,4,6</td>
</tr>
<tr>
<td>Torsion Load</td>
<td>35</td>
<td>3.95</td>
<td>inlbf Nm</td>
<td>2,4,7</td>
</tr>
</tbody>
</table>

Notes:

1. Refer to drawings in Appendix A.
2. In the case of a discrepancy, the most recent Dual-Core Intel® Xeon® Processor 5100 Series Datasheet and LGA771 Socket Mechanical Design Guide supersede targets listed in Table 2-1 above.
3. These socket limits are defined in the LGA771 Socket Mechanical Design Guide.
4. These package handling limits are defined in the Dual-Core Intel® Xeon® Processor 5100 Series Datasheet.
5. Shear load that can be applied to the package IHS.
6. Tensile load that can be applied to the package IHS.
7. Torque that can be applied to the package IHS.

2.1.2 Dual-Core Intel Xeon Processor 5100 Series Processor Package

The Dual-Core Intel Xeon Processor 5100 Series are packaged using the flip-chip land grid array (FC-LGA6) package technology. Please refer to the Dual-Core Intel® Xeon® Processor 5100 Series Datasheet for detailed mechanical specifications. The Dual-Core Intel Xeon Processor 5100 Series mechanical drawing, Figure 2-1, provides the mechanical information for Dual-Core Intel Xeon Processor 5100 Series. The stackup
height of the processor in the socket is shown in Appendix A. The drawing is superseded with the drawing in the processor Datasheet, should there be any conflicts. Integrated package/socket stackup height information is provided in the LGA771 Socket Mechanical Design Guide.
Figure 2-1. Dual-Core Intel® Xeon® Processor 5100 Series Mechanical Drawing
The package includes an integrated heat spreader (IHS). The IHS transfers the non-uniform heat from the die to the top of the IHS, out of which the heat flux is more uniform and spreads over a larger surface area (not the entire IHS area). This allows more efficient heat transfer out of the package to an attached cooling device. The IHS is designed to be the interface for contacting a heatsink. Details can be found in the Dual-Core Intel® Xeon® Processor 5100 Series Datasheet.

The processor connects to the baseboard through a 771-land surface mount socket. A description of the socket can be found in the LGA771 Socket Mechanical Design Guide.

The processor package and socket have mechanical load limits that are specified in the Dual-Core Intel® Xeon® Processor 5100 Series Datasheet and the LGA771 Socket Mechanical Design Guide. These load limits should not be exceeded during heatsink installation, removal, mechanical stress testing, or standard shipping conditions. For example, when a compressive static load is necessary to ensure thermal performance of the Thermal Interface Material (TIM) between the heatsink base and the IHS, it should not exceed the corresponding specification given in the LGA771 Socket Mechanical Design Guide.

The heatsink mass can also add additional dynamic compressive load to the package during a mechanical shock event. Amplification factors due to the impact force during shock must be taken into account in dynamic load calculations. The total combination of dynamic and static compressive load should not then exceed the processor/socket compressive dynamic load specified in the LGA771 Socket Mechanical Design Guide during a vertical shock. It is not recommended to use any portion of the processor substrate as a mechanical reference or load-bearing surface in either static or dynamic compressive load conditions.

2.1.3 Dual-Core Intel Xeon Processor 5100 Series Considerations

An attachment mechanism must be designed to support the heatsink since there are no features on the LGA771 socket to directly attach a heatsink. In addition to holding the heatsink in place on top of the IHS, this mechanism plays a significant role in the robustness of the system in which it is implemented, in particular:

- Ensuring thermal performance of the TIM applied between the IHS and the heatsink. TIMs, especially ones based on phase change materials, are very sensitive to applied pressure: the higher the pressure, the better the initial performance. TIMs such as thermal greases are not as sensitive to applied pressure. Refer to Section 2.4.2 and Section 2.4.7.2 for information on tradeoffs made with TIM selection. Designs should consider possible decrease in applied pressure over time due to potential structural relaxation in enabled components.

- Ensuring system electrical, thermal, and structural integrity under shock and vibration events. The mechanical requirements of the attach mechanism depend on the weight of the heatsink and the level of shock and vibration the system must support. The overall structural design of the baseboard and system must be considered when designing the heatsink attach mechanism. Their design should provide a means for protecting LGA771 socket solder joints as well as preventing package pullout from the socket.

Note: The load applied by the attachment mechanism must comply with the package and socket specifications, along with the dynamic load added by the mechanical shock and vibration requirements, as identified in Section 2.1.1.
A potential mechanical solution for heavy heatsinks is the direct attachment of the heatsink to the chassis pan. In this case, the strength of the chassis pan can be utilized rather than solely relying on the baseboard strength. In addition to the general guidelines given above, contact with the baseboard surfaces should be minimized during installation in order to avoid any damage to the baseboard.

The Intel reference design for Dual-Core Intel Xeon Processor 5100 Series is using such a heatsink attachment scheme. Refer to Section 2.4 for further information regarding the Intel reference mechanical solution.

2.2 Processor Thermal Parameters and Features

2.2.1 Thermal Control Circuit and TDP

The operating thermal limits of the processor are defined by the Thermal Profile. The intent of the Thermal Profile specification is to support acoustic noise reduction through fan speed control and ensure the long-term reliability of the processor. This specification requires that the temperature at the center of the processor IHS, known as (T\text{CASE}) remains within a certain temperature specification. Compliance with the T\text{CASE} specification is required to achieve optimal operation and long-term reliability (See the Intel® Xeon® Processor Family Thermal Test Vehicle User’s Guide for Case Temperature definition and measurement methods).

To ease the burden on thermal solutions, the Thermal Monitor feature and associated logic have been integrated into the silicon of the processor. One feature of the Thermal Monitor is the Thermal Control Circuit (TCC). When active, the TCC lowers the processor temperature by reducing power consumption. This is accomplished through a combination of Thermal Monitor and Thermal Monitor 2(TM2). Thermal Monitor modulates the duty cycle of the internal processor clocks, resulting in a lower effective frequency, when active, the TCC turns the processor clocks off and then back on with a predetermined duty cycle. Thermal Monitor 2 adjusts both the processor operating frequency (via the bus multiplier) and input voltage (via the VID signals). Please refer to applicable processor Datasheet for further details on TM and TM2.

PROCHOT# is designed to assert at or a few degrees higher than maximum T\text{CASE} (as specified by the thermal profile) when dissipating TDP power, and cannot be interpreted as an indication of processor case temperature. This temperature delta accounts for processor package, lifetime, and manufacturing variations and attempts to ensure the Thermal Control Circuit is not activated below maximum T\text{CASE} when dissipating TDP power. There is no defined or fixed correlation between the PROCHOT# assertion temperature and the case temperature. However, with the introduction of the Digital Thermal Sensor (DTS) on the Dual-Core Intel® Xeon® Processor 5100 Series, the DTS reports a relative temperature delta below the PROCHOT# assertion temperature (see Section 2.2.2 for more details on the Digital Thermal Sensor). Thermal solutions must be designed to the processor specifications (that is, Thermal Profile) and cannot be adjusted based on experimental measurements of T\text{CASE}, PROCHOT#, or Digital Thermal Sensor on random processor samples.

By taking advantage of the Thermal Monitor features, system designers may reduce thermal solution cost by designing to the Thermal Design Power (TDP) instead of maximum power. TDP should be used for processor thermal solution design targets. TDP is not the maximum power that the processor can dissipate. TDP is based on measurements of processor power consumption while running various high power applications. This data set is used to determine those applications that are interesting from a power perspective. These applications are then evaluated in a controlled thermal environment to determine their sensitivity to activation of the thermal control
circuit. This data set is then used to derive the TDP targets published in the processor Datasheet. The Thermal Monitor can protect the processor in rare workload excursions above TDP. Therefore, thermal solutions should be designed to dissipate this target power level. The thermal management logic and thermal monitor features are discussed in extensive detail in the Dual-Core Intel® Xeon® Processor 5100 Series Datasheet.

In addition, on-die thermal management features called THERMTRIP# and FORCEPR# are available on the Dual-Core Intel Xeon Processor 5100 Series. They provide a thermal management approach to support the continued increases in processor frequency and performance. Please see the Dual-Core Intel® Xeon® Processor 5100 Series Datasheet for guidance on these thermal management features.

2.2.2 Digital Thermal Sensor

The Dual-Core Intel Xeon Processor 5100 Series introduce a new on-die temperature sensor known as the Digital Thermal Sensor (DTS) that replaces the Tdiode in previous products.

The DTS uses the same sensor utilized for TCC activation. Each individual processor is calibrated so that TCC activation occurs at a DTS value of 0°C. The temperature reported by the DTS is the number of degrees below the TCC activation temperature (i.e below 0°C), and is always negative. For example, -10 reported by DTS means 10°C away from the TCC activation. No value above the TCC activation temperature (that is, above 0°C) will be reported, DTS will simply report 0.

The DTS utilizes a thermal sensor that is optimally located when compared with thermal diodes available with legacy processors. This is achieved as a result of a smaller foot print and decreased sensitivity to noise.

The DTS also facilitates the use of multiple thermal sensors within the processor without the burden of increasing the number of thermal sensor signal pins on the processor package. With the legacy thermal diode, each thermal sensor required dedicated signal pins. Operation of multiple DTS will be discussed more detail in Section 2.2.4.

The DTS benefits will be realized in more accurate fan speed control and TCC activation. The DTS application in fan speed control will be discussed more detail in Section 2.3.1.

2.2.3 Platform Environmental Control Interface (PECI)

The PECI interface is designed specifically to convey system management information from the processor (initially, only thermal data from the Digital Thermal Sensor). It is a proprietary single wire bus between the processor and the chipset or other health monitoring device. Data from the Digital Thermal Sensors are processed and stored in a processor register (MSR) which is queried through the Platform Environment Control Interface (PECI). The PECI specification provides a specific command set to discover, enumerate devices, and read the temperature. For an overview of the PECI interface, please refer to PECI Feature Set Overview. For more detail information on PECI, please refer to Platform Environment Control Interface (PECI) Specification and Dual-Core Intel® Xeon® Processor 5100 Series Datasheet.
2.2.4 Multiple Core Special Considerations

2.2.4.1 Multiple Digital Thermal Sensor Operation

When Intel designers integrate multiple Digital Thermal Sensors onto a processor to monitor multiple temperature regions, such as multiple cores, the only temperature of concern to the external cooling system is the single hottest value for the entire processor.

To simplify the process of determining the hottest location, the PECI interface to the Digital Thermal Sensors introduces the concept of domain. Figure 2-2 provides an illustration of the DTS domain for Dual-Core Intel Xeon Processor 5100 Series. The Dual-Core Intel Xeon Processor 5100 Series contains two cores, both cores are in one domain with one Digital Thermal Sensor per core. Some multiple core processors have a single domain, other processors will have multiple domains. Each domain receives all temperature sensor values on the processor within that domain, and provides the current hottest value for that domain when polled by an external PECI device such as a thermal management system. The BIOS will be responsible for detecting the proper processor type and providing the number of domains to the thermal management system.

![DTS Domain for Dual-Core Intel Xeon Processor 5100 Series](image)

2.2.4.2 Thermal Monitor for Multiple Core Products

The thermal management for multiple core products have only one $T_{CONTROL}$ value per processor. If the DTS temperature from any domain within the processor is greater than or equal to $T_{CONTROL}$, the processor case temperature must remain at or below the temperature as specified by the thermal profile. See Section 2.2.6 for information on $T_{CONTROL}$.
2.2.4.3 Fan Speed Control for Dual-Core Intel Xeon Processor 5100 Series

There is only one pin (Pin G5) on each LGA771 socket that accesses the single domain of the Dual-Core Intel Xeon Processor 5100 Series. Through this pin, the single domain receives all temperature sensor values and provides the current hottest value to an external PECI device such as a thermal management system. Figure 2-3 provides an illustration of the fan speed signals for the multiple core Dual-Core Intel® Xeon® Processor 5100 Series.

Figure 2-3. Fan Speed Control for Dual-Core Intel Xeon Processor 5100 Series

The processor MSR supports temperature threshold interrupts and provides instantaneous data. To reduce the sample rate requirements on PECI and improve thermal data stability vs. time, the processor Digital Thermal Sensor and PECI interface implement an averaging algorithm. For more information on the Processor Thermal Data Sample Rate and Filtering, please refer to Dual-Core Intel® Xeon® Processor 5100 Series Datasheet.

2.2.4.4 PROCHOT#, THERMTRIP#, and FORCEPR#

The PROCHOT# and THERMTRIP# outputs will be shared by all cores on a processor. The first core to reach TCC activation will assert PROCHOT#. A single FORCEPR# input will be shared by each core. Table 2-2 provides an overview of input and output conditions for the Dual-Core Intel Xeon Processor 5100 Series thermal management features.
Table 2-2. Input and Output Conditions for the Dual-Core Intel Xeon Processor 5100 Series Thermal Management Features

<table>
<thead>
<tr>
<th>Item</th>
<th>Processor Input</th>
<th>Processor Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM/TM2</td>
<td>DTSCore (X >) TCC Activation Temperature</td>
<td>All Cores TCC Activation</td>
</tr>
<tr>
<td>PROCHOT#</td>
<td>DTSCore (X \geq) TCC Activation Temperature</td>
<td>PROCHOT# Asserted</td>
</tr>
<tr>
<td>THERMTRIP#</td>
<td>DTSCore (X >) THERMTRIP # Assertion Temperature</td>
<td>THERMTRIP# Asserted, all cores shut down</td>
</tr>
<tr>
<td>FORCEPR#</td>
<td>FORCEPR# Asserted</td>
<td>All Cores TCC Activation</td>
</tr>
</tbody>
</table>

Notes:
1. \(X=1,2\), represents any one of the core1 and core2 in Dual-Core Intel Xeon Processor 5100 Series.
2. For more information on PROCHOT#, THERMTRIP#, and FORCEPR# see the Dual-Core Intel® Xeon® Processor 5100 Series Datasheet.

2.2.4.5 Heatpipe Orientation for Multiple Core Processors

Thermal management of multiple core processors can be achieved without the use of heatpipe heatsinks, as demonstrated by the Intel Reference Thermal Solution discussed in Section 2.4.

To assist customers interested in designing heatpipe heatsinks, processor core locations have been provided. In some cases, this may influence the designer’s selection of heatpipe orientation. For this purpose, the core geometric center locations, as illustrated in Figure 2-4, are provided in Table 2-3. Dimensions originate from the vertical edge of the IHS nearest to the pin 1 fiducial as shown in Figure 2-4.
2.2.5 Thermal Profile

The thermal profile is a linear line that defines the relationship between a processor’s case temperature and its power consumption as shown in Figure 2-5. The equation of the thermal profile is defined as:

Equation 2-1. \(y = ax + b \)

Where:

\(y = \) Processor case temperature, \(T_{\text{CASE}} \) (°C)
\(x = \) Processor power consumption (W)
\(a = \) Case-to-ambient thermal resistance, \(\psi_{CA} \) (°C/W)
\(b = \) Processor local ambient temperature, \(T_{LA} \) (°C)

Figure 2-5. Thermal Profile Diagram

The higher end point of the Thermal Profile represents the processor’s TDP and the associated maximum case temperature (\(T_{CASE_MAX} \)). The lower end point of the Thermal Profile represents the power value (\(P_{PROFILE_MIN} \)) and the associated case temperature (\(T_{CASE_MAX@P_{PROFILE_MIN}} \)) for the lowest possible theoretical value of \(T_{CONTROL} \) (see Section 2.2.6). The slope of the Thermal Profile line represents the case-to-ambient resistance of the thermal solution with the y-intercept being the local processor ambient temperature. The slope of the Thermal Profile is constant between \(P_{PROFILE_MIN} \) and TDP, which indicates that all frequencies of a processor defined by the Thermal Profile will require the same heatsink case-to-ambient resistance.

In order to satisfy the Thermal Profile specification, a thermal solution must be at or below the Thermal Profile line for the given processor when its DTS temperature is greater than \(T_{CONTROL} \) (refer to Section 2.2.6). The Thermal Profile allows the customers to make a trade-off between the thermal solution case-to-ambient resistance and the processor local ambient temperature that best suits their platform implementation (refer to Section 2.3.3). There can be multiple combinations of thermal solution case-to-ambient resistance and processor local ambient temperature that can meet a given Thermal Profile. If the case-to-ambient resistance and the local ambient temperature are known for a specific thermal solution, the Thermal Profile of that solution can easily be plotted against the Thermal Profile specification. As explained above, the case-to-ambient resistance represents the slope of the line and the processor local ambient temperature represents the \(y \)-axis intercept. Hence the \(T_{CASE} \) values of a specific solution can be calculated at the TDP and \(P_{PROFILE_MIN} \) power levels. Once these points are determined, they can be joined by a line, which represents the Thermal Profile of the specific solution. If that line stays at or below the Thermal Profile specification, then that particular solution is deemed as a compliant solution.
2.2.6 \(\text{T}_{\text{CONTROL}} \) Definition

\(\text{T}_{\text{CONTROL}} \) can be described as a trigger point for fan speed control implementation. The processor \(\text{T}_{\text{CONTROL}} \) value is now a DTS value. Because the temperatures provided by the Digital Thermal Sensor are relative and no longer absolute, the \(\text{T}_{\text{CONTROL}} \) value is now defined as a relative value to the TCC activation set point (that is, 0°C). Figure 2-6 depicts the interaction between the \(\text{T}_{\text{CONTROL}} \) value and Digital Thermal Sensor value.

Figure 2-6. \(\text{T}_{\text{CONTROL}} \) Value and Digital Thermal Sensor Value Interaction

The value for \(\text{T}_{\text{CONTROL}} \) is calibrated in manufacturing and configured for each processor individually. For the Dual-Core Intel Xeon Processor 5100 Series, the \(\text{T}_{\text{CONTROL}} \) value is obtained by reading a processor model specific register (MSR). NOTE: There is no \(\text{T}_{\text{CONTROL_BASE}} \) value to sum as previously required on legacy processors. The fan speed control device only needs to read the \(\text{T}_{\text{OFFSET}} \) MSR and compare this to the DTS value from the PECI interface. The equation for calculating \(\text{T}_{\text{CONTROL}} \) is:

Equation 2-2. \(\text{T}_{\text{CONTROL}} = -\text{T}_{\text{OFFSET}} \)

Where:

\(\text{T}_{\text{OFFSET}} \) = A DTS-based value programmed into each processor during manufacturing that can be obtained by reading the IA32_TEMPERATURE_TARGET MSR. This is a static and a unique value. Refer to the *RS - Conroe and Woodcrest Processor Family BIOS Writer’s Guide* for further details.

Figure 2-7 depicts the interaction between the Thermal Profile and \(\text{T}_{\text{CONTROL}} \).
Since \(T_{\text{CONTROL}} \) is based on a processor DTS temperature value, an equivalent \(T_{\text{CASE}} \) temperature must be determined to plot the \(T_{\text{CASE}} @ T_{\text{CONTROL}} \) point on the Thermal Profile graph. Location 1 on the Thermal Profile represents a \(T_{\text{CASE}} \) value corresponding to \(P_{\text{PROFILE_MIN}} \). Location 2 on the Thermal Profile represents a \(T_{\text{CASE}} \) value corresponding to \(DTS = T_{\text{CONTROL}} \). If the DTS temperature is less than \(T_{\text{CONTROL}} \), then the case temperature is permitted to exceed the Thermal Profile, but the DTS temperature must remain at or below \(T_{\text{CONTROL}} \). The thermal solution for the processor must be able to keep the processor’s \(T_{\text{CASE}} \) at or below the \(T_{\text{CASE}} \) values defined by the Thermal Profile between the \(T_{\text{CASE_MAX}} @ P_{\text{PROFILE_MIN}} \) and \(T_{\text{CASE_MAX}} \) points at the corresponding power levels.

Refer to Section 2.3.1 for the implementation of the \(T_{\text{CONTROL}} \) value in support of fan speed control (FSC) design to achieve better acoustic performance.

2.2.7 Thermal Profile Concepts for the Dual-Core Intel Xeon Processor 5100 Series

2.2.7.1 Dual Thermal Profile Concept for the Dual-Core Intel Xeon Processor 5160

The Dual-Core Intel Xeon Processor 5160 are designed to go into various form factors, including the volumetrically constrained 1U and custom blade form factors. Due to certain limitations of such form factors (that is, airflow, thermal solution height), it is very challenging to meet the thermal requirements of the processor. To mitigate these form factor constraints, Intel has developed a dual Thermal Profile specification, shown in Figure 2-8.
The Thermal Profile A is based on Intel’s 2U+ air cooling solution. Designing to Thermal Profile A ensures that no measurable performance loss due to Thermal Control Circuit (TCC) activation is observed in the processor. It is expected that TCC would only be activated for very brief periods of time when running a worst-case real world application in a worst-case thermal condition. These brief instances of TCC activation are not expected to impact the performance of the processor. A worst case real world application is defined as a commercially available, useful application which dissipates a power equal to, or above, the TDP for a thermally relevant timeframe. One example of a worst-case thermal condition is when a processor local ambient temperature is at or above 42.3°C for Dual-Core Intel Xeon Processor 5160 Thermal Profile A.

Thermal Profile B supports volumetrically constrained platforms (that is, 1U, blades, and so forth), and is based on Intel’s 1U air cooling solution. Because of the reduced capability represented by such thermal solutions, designing to Thermal Profile B results in an increased probability of TCC activation and an associated measurable performance loss. Measurable performance loss is defined to be any degradation in the processor's performance greater than 1.5%. The 1.5% number is chosen as the baseline since the run-to-run variation in a given performance benchmark is typically between 1 - 2%.

Although designing to Thermal Profile B results in increased T\text{CASE} temperatures compared to Thermal Profile A at a given power level, both of these Thermal Profiles ensure that Intel’s long-term processor reliability requirements are satisfied. In other words, designing to Thermal Profile B does not impose any additional risk to Intel’s long-term reliability requirements. Thermal solutions that exceed Thermal Profile B specification are considered compliant and will adversely affect the long-term reliability of the processor.
Refer to the *Dual-Core Intel® Xeon® Processor 5100 Series Datasheet* or Section 2.2.8 for the Thermal Profile A and Thermal Profile B specifications. Section 2.4 of this document also provides details on the 2U+ and 1U Intel reference thermal solutions that are designed to meet the Dual-Core Intel Xeon Processor 5160 Thermal Profile A and Thermal Profile B respectively.

2.2.8 Performance Targets

The Thermal Profile specifications for these processors are published in the *Dual-Core Intel® Xeon® Processor 5100 Series Datasheet*. These Thermal Profile specifications are shown as a reference in the subsequent discussions.

Figure 2-9. Thermal Profile for the Dual-Core Intel Xeon Processor 5148

![Graph showing the relationship between Power and Temperature](image)

Y = 0.450*x +40.0

Note: The thermal specifications shown in this graph are for reference only. Refer to the *Dual-Core Intel® Xeon® Processor 5100 Series Datasheet* for the Thermal Profile specifications. In case of conflict, the data information in the datasheet supersedes any data in this figure.
Figure 2-10. Thermal Profile for the Dual-Core Intel® Xeon® Processor 5110/5120/5130/5140/5150

Note: The thermal specifications shown in this graph are for reference only. Refer to the Dual-Core Intel® Xeon® Processor 5100 Series Datasheet for the Thermal Profile specifications. In case of conflict, the data information in the datasheet supersedes any data in this figure.
Figure 2-11. Thermal Profiles A and B for the Dual-Core Intel® Xeon® Processor 5160

TCASE_MAX_B@TDP is a thermal solution design point. In actuality, units will not significantly exceed TCASE_MAX_A due to TCC activation.

![Graph showing thermal profiles A and B for the Dual-Core Intel® Xeon® Processor 5160](image)

Thermal Profile A

\[Y = 0.231 \times x + 41.5 \]

Thermal Profile B

\[Y = 0.282 \times x + 42.4 \]

Note:

The thermal specifications shown in this graph are for reference only. Refer to the *Dual-Core Intel® Xeon® Processor 5100 Series Datasheet* for the Thermal Profile specifications. In case of conflict, the data information in the datasheet supersedes any data in this figure.

Table 2-4, Table 2-5 and Table 2-6 describe thermal performance target for the Dual-Core Intel Xeon Processor 5100 Series cooling solution enabled by Intel.

Table 2-4. Intel Reference Heatsink Performance Targets for the Dual-Core Intel® Xeon® Processor 5148

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>Sea-level</td>
<td>m</td>
<td>Heatsink designed at 0 meters</td>
</tr>
<tr>
<td>(T_{LA})</td>
<td>40</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>TDP</td>
<td>40</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(T_{CASE_MAX})</td>
<td>58</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>(T_{CASE_MAX}) @ P_profile_min</td>
<td>50</td>
<td>°C</td>
<td>(P_{_profile_min} = 22.2) W.</td>
</tr>
<tr>
<td>Airflow</td>
<td>15</td>
<td>CFM</td>
<td>Airflow through the heatsink fins</td>
</tr>
<tr>
<td></td>
<td>25.5</td>
<td>m³/hr</td>
<td></td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>0.331</td>
<td>Inches of H₂O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82.4</td>
<td>Pa</td>
<td></td>
</tr>
<tr>
<td>(\psi_{CA})</td>
<td>0.299</td>
<td>°C/W</td>
<td>Mean + 3σ</td>
</tr>
</tbody>
</table>
Table 2-5. Intel Reference Heatsink Performance Targets for the Dual-Core Intel Xeon Processor 5110/5120/5130/5140/5150

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>Sea-level</td>
<td>m</td>
<td>Heatsink designed at 0 meters</td>
</tr>
<tr>
<td>T_{LA}</td>
<td>40°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDP</td>
<td>65 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{CASE _MAX}$</td>
<td>65°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{CASE _MAX} @ P_profile_min$</td>
<td>50°C</td>
<td></td>
<td>P_profile_min= 26 W.</td>
</tr>
<tr>
<td>Airflow</td>
<td>15 CFM 25.5 m3/hr</td>
<td></td>
<td>Airflow through the heatsink fins</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>0.331 inches of H$_2$O 82.4 Pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_{CA}</td>
<td>0.299 °C/W</td>
<td></td>
<td>Mean $+3\sigma$</td>
</tr>
</tbody>
</table>
2.3 Characterizing Cooling Solution Performance Requirements

2.3.1 Fan Speed Control

Fan speed control (FSC) techniques to reduce system level acoustic noise are a common practice in server designs. The fan speed is one of the parameters that determine the amount of airflow provided to the thermal solution. Additionally, airflow is proportional to a thermal solution’s performance, which consequently determines the \(T_{\text{CASE}} \) of the processor at a given power level. Since the \(T_{\text{CASE}} \) of a processor is an important parameter in the long-term reliability of a processor, the FSC implemented in a system directly correlates to the processor’s ability to meet the Thermal Profile and hence the long-term reliability requirements. For this purpose, the parameter called \(T_{\text{CONTROL}} \) as explained in Section 2.2.6, is to be used in FSC designs to ensure that the long-term reliability of the processor is met while keeping the system level acoustic noise down. Figure 2-12 depicts the relationship between \(T_{\text{CONTROL}} \) and FSC methodology.

Table 2-6. Intel Reference Heatsink Performance Targets for the Dual-Core Intel Xeon Processor 5160

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>Sea-level</td>
<td>m</td>
<td>Heatsink designed at 0 meters</td>
</tr>
<tr>
<td>(T_{\text{LA}})</td>
<td>40</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>TDP</td>
<td>80</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

2U+ Reference Solution, Thermal Profile A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{CASE _ MAX _ A}})</td>
<td>60</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>(T_{\text{CASE _ MAX _ @ _ P_profile_min}})</td>
<td>50</td>
<td>°C</td>
<td>(P_profile_min = 36.8 \text{ W.})</td>
</tr>
<tr>
<td>Airflow</td>
<td>27</td>
<td>CFM</td>
<td>m(^3) / hr</td>
</tr>
<tr>
<td></td>
<td>45.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>0.182</td>
<td>Inches of H(_2)O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45.3</td>
<td>Pa</td>
<td></td>
</tr>
<tr>
<td>(\psi_{CA})</td>
<td>0.236</td>
<td>°C/W</td>
<td>Mean + 3(\sigma)</td>
</tr>
</tbody>
</table>

1U Reference Solution, Thermal Profile B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{CASE _ MAX _ B _ (Profile B)}})</td>
<td>65</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>(T_{\text{CASE _ MAX _ @ _ P_profile_min _ (Profile B)}})</td>
<td>50</td>
<td>°C</td>
<td>(P_profile_min = 27 \text{ W.})</td>
</tr>
<tr>
<td>Airflow</td>
<td>15</td>
<td>CFM</td>
<td>m(^3) / hr</td>
</tr>
<tr>
<td></td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>0.331</td>
<td>Inches of H(_2)O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82.4</td>
<td>Pa</td>
<td></td>
</tr>
<tr>
<td>(\psi_{CA})</td>
<td>0.299</td>
<td>°C/W</td>
<td>Mean + 3(\sigma)</td>
</tr>
</tbody>
</table>

Note: In case of conflict, the processor datasheet supersedes the information contained in the TMDG.
Once the \(T_{\text{CONTROL}} \) value is determined as explained earlier, the DTS temperature reading from the processor can be compared to this \(T_{\text{CONTROL}} \) value. A fan speed control scheme can be implemented as described in Table 2-7 without compromising the long-term reliability of the processor.

Table 2-7. Fan Speed Control, \(T_{\text{CONTROL}} \) and DTS Relationship

<table>
<thead>
<tr>
<th>Condition</th>
<th>FSC Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{DTS} = T_{\text{CONTROL}})</td>
<td>FSC can adjust fan speed to maintain (\text{DTS} = T_{\text{CONTROL}}) (low acoustic region).</td>
</tr>
<tr>
<td>(\text{DTS} > T_{\text{CONTROL}})</td>
<td>FSC should adjust fan speed to keep (T_{\text{CASE}}) at or below the Thermal Profile specification (increased acoustic region).</td>
</tr>
</tbody>
</table>

There are many different ways of implementing fan speed control, including FSC based on processor ambient temperature, FSC based on processor Digital Thermal Sensor (DTS) temperature or a combination of the two. If FSC is based only on the processor ambient temperature, low acoustic targets can be achieved under low ambient temperature conditions. However, the acoustics cannot be optimized based on the behavior of the processor temperature. If FSC is based only on the Digital Thermal Sensor, sustained temperatures above \(T_{\text{CONTROL}} \) drives fans to maximum RPM. If FSC is based both on ambient and Digital Thermal Sensor, ambient temperature can be used to scale the fan RPM controlled by the Digital Thermal Sensor. This would result in an optimal acoustic performance. Regardless of which scheme is employed, system designers must ensure that the Thermal Profile specification is met when the processor Digital Thermal Sensor temperature exceeds the \(T_{\text{CONTROL}} \) value for a given processor.
2.3.2 Processor Thermal Characterization Parameter Relationships

The idea of a “thermal characterization parameter”, Ψ (psi), is a convenient way to characterize the performance needed for the thermal solution and to compare thermal solutions in identical conditions (heating source, local ambient conditions). A thermal characterization parameter is convenient in that it is calculated using total package power, whereas actual thermal resistance, θ (theta), is calculated using actual power dissipated between two points. Measuring actual power dissipated into the heatsink is difficult, since some of the power is dissipated via heat transfer into the socket and board. Be aware, however, of the limitations of lumped parameters such as Ψ when it comes to a real design. Heat transfer is a three-dimensional phenomenon that can rarely be accurately and easily modeled by lump values.

The case-to-local ambient thermal characterization parameter value (ΨCA) is used as a measure of the thermal performance of the overall thermal solution that is attached to the processor package. It is defined by the following equation, and measured in units of °C/W:

Equation 2-3. ΨCA = (TCASE - TLA) / TDP

Where:
ΨCA = Case-to-local ambient thermal characterization parameter (°C/W).
TCASE = Processor case temperature (°C).
TLA = Local ambient temperature in chassis at processor (°C).
TDP = TDP dissipation (W) (assumes all power dissipates through the integrated heat spreader (IHS)).

The case-to-local ambient thermal characterization parameter of the processor, ΨCA, is comprised of ΨCS, the TIM thermal characterization parameter, and of ΨSA, the sink-to-local ambient thermal characterization parameter:

Equation 2-4. ΨCA = ΨCS + ΨSA

Where:
ΨCS = Thermal characterization parameter of the TIM (°C/W).
ΨSA = Thermal characterization parameter from heatsink-to-local ambient (°C/W).
ΨCS is strongly dependent on the thermal conductivity and thickness of the TIM between the heatsink and IHS.
ΨSA is a measure of the thermal characterization parameter from the bottom of the heatsink to the local ambient air. ΨSA is dependent on the heatsink material, thermal conductivity, and geometry. It is also strongly dependent on the air velocity through the fins of the heatsink.
2.3.2.1 Example

The cooling performance, Ψ_{CA}, is then defined using the principle of thermal characterization parameter described above:

- Define a target case temperature T_{CASE_MAX} and corresponding TDP, given in the processor EMTS.
- Define a target local ambient temperature at the processor, T_{LA}.

The following provides an illustration of how one might determine the appropriate performance targets. The example power and temperature numbers used here are not related to any Intel processor thermal specifications, and are for illustrative purposes only.

Assume the datasheet TDP is 85 W and the case temperature specification is 68°C. Assume as well that the system airflow has been designed such that the local processor ambient temperature is 45°C. Then the following could be calculated using equation (2-3) from above:

Equation 2-5. $\Psi_{CA} = (T_{CASE} - T_{LA}) / \text{TDP} = (68 - 45) / 85 = 0.27°C/W$

To determine the required heatsink performance, a heatsink solution provider would need to determine Ψ_{CS} performance for the selected TIM and mechanical load configuration. If the heatsink solution was designed to work with a TIM material performing at $\Psi_{CS} \leq 0.05°C/W$, solving for equation (2-4) from above, the performance of the heatsink would be:

Equation 2-6. $\Psi_{SA} = \Psi_{CA} - \Psi_{CS} = 0.27 - 0.05 = 0.22°C/W$

If the local processor ambient temperature is assumed to be 40°C, the same calculation can be carried out to determine the new case-to-ambient thermal resistance:

Figure 2-13. Processor Thermal Characterization Parameter Relationships
Equation 2-7. $\Psi_{CA} = (T_{CASE} - T_{LA}) / TDP = (68 - 40) / 85 = 0.33 \, ^{\circ}C/W$

It is evident from the above calculations that, a reduction in the local processor ambient temperature has a significant positive effect on the case-to-ambient thermal resistance requirement.

2.3.3 Chassis Thermal Design Considerations

2.3.3.1 Chassis Thermal Design Capabilities and Improvements

One of the critical parameters in thermal design is the local ambient temperature assumption of the processor. Keeping the external chassis temperature fixed, internal chassis temperature rise is the only component that can affect the processor local ambient temperature. Every degree gained at the local ambient temperature directly translates into a degree relief in the processor case temperature.

Given the thermal targets for the processor, it is extremely important to optimize the chassis design to minimize the air temperature rise upstream to the processor (T_{rise}), hence minimizing the processor local ambient temperature. Please refer to T_{RISE} Reduction Guidelines for Rack Servers and Workstations for more details.

The heat generated by components within the chassis must be removed to provide an adequate operating environment for both the processor and other system components. Moving air through the chassis brings in air from the external ambient environment and transports the heat generated by the processor and other system components out of the system. The number, size and relative position of fans, vents and other heat generating components determine the chassis thermal performance, and the resulting ambient temperature around the processor. The size and type (passive or active) of the thermal solution and the amount of system airflow can be traded off against each other to meet specific system design constraints. Additional constraints are board layout, spacing, component placement, and structural considerations that limit the thermal solution size.

In addition to passive heatsinks, fan heatsinks and system fans, other solutions exist for cooling integrated circuit devices. For example, ducted blowers, heat pipes and liquid cooling are all capable of dissipating additional heat. Due to their varying attributes, each of these solutions may be appropriate for a particular system implementation.

To develop a reliable, cost-effective thermal solution, thermal characterization and simulation should be carried out at the entire system level, accounting for the thermal requirements of each component. In addition, acoustic noise constraints may limit the size, number, placement, and types of fans that can be used in a particular design.

2.4 Thermal/Mechanical Reference Design Considerations

2.4.1 Heatsink Solutions

2.4.1.1 Heatsink Design Considerations

To remove the heat from the processor, three basic parameters should be considered:

- **The area of the surface on which the heat transfer takes place** - Without any enhancements, this is the surface of the processor package IHS. One method used to improve thermal performance is by attaching a heatsink to the IHS. A heatsink
can increase the effective heat transfer surface area by conducting heat out of the IHS and into the surrounding air through fins attached to the heatsink base.

- **The conduction path from the heat source to the heatsink fins** - Providing a direct conduction path from the heat source to the heatsink fins and selecting materials with higher thermal conductivity typically improves heatsink performance. The length, thickness, and conductivity of the conduction path from the heat source to the fins directly impact the thermal performance of the heatsink. In particular, the quality of the contact between the package IHS and the heatsink base has a higher impact on the overall thermal solution performance as processor cooling requirements become strict. Thermal interface material (TIM) is used to fill in the gap between the IHS and the bottom surface of the heatsink, and thereby improves the overall performance of the thermal stackup (IHS-TIM-Heatsink). With extremely poor heatsink interface flatness or roughness, TIM may not adequately fill the gap. The TIM thermal performance depends on its thermal conductivity as well as the pressure load applied to it. Refer to Section 2.4.2 for further information on the TIM between the IHS and the heatsink base.

- **The heat transfer conditions on the surface on which heat transfer takes place** - Convective heat transfer occurs between the airflow and the surface exposed to the flow. It is characterized by the local ambient temperature of the air, T_{LA}, and the local air velocity over the surface. The higher the air velocity over the surface, the resulting cooling is more efficient. The nature of the airflow can also enhance heat transfer via convection. Turbulent flow can provide improvement over laminar flow. In the case of a heatsink, the surface exposed to the flow includes the fin faces and the heatsink base.

An active heatsink typically incorporates a fan that helps manage the airflow through the heatsink.

Passive heatsink solutions require in-depth knowledge of the airflow in the chassis. Typically, passive heatsinks see slower air speed. Therefore, these heatsinks are typically larger (and heavier) than active heatsinks due to the increase in fin surface required to meet a required performance. As the heatsink fin density (the number of fins in a given cross-section) increases, the resistance to the airflow increases: it is more likely that the air will travel around the heatsink instead of through it, unless air bypass is carefully managed. Using air-ducting techniques to manage bypass area is an effective method for maximizing airflow through the heatsink fins.

2.4.2 Thermal Interface Material

TIM application between the processor IHS and the heatsink base is generally required to improve thermal conduction from the IHS to the heatsink. Many thermal interface materials can be pre-applied to the heatsink base prior to shipment from the heatsink supplier and allow direct heatsink attach, without the need for a separate TIM dispense or attach process in the final assembly factory.

All thermal interface materials should be sized and positioned on the heatsink base in a way that ensures the entire processor IHS area is covered. It is important to compensate for heatsink-to-processor attach positional alignment when selecting the proper TIM size.

When pre-applied material is used, it is recommended to have a protective application tape over it. This tape must be removed prior to heatsink installation.
The TIM performance is susceptible to degradation (i.e. grease breakdown) during the useful life of the processor due to the temperature cycling phenomena. For this reason, the measured T_{CASE} value of a given processor can decrease over time depending on the type of TIM material.

Refer to Section 2.4.7.2 for information on the TIM used in the Intel reference heatsink solution.

2.4.3 Summary

In summary, considerations in heatsink design include:

- The local ambient temperature T_{LA} at the heatsink, airflow (CFM), the power being dissipated by the processor, and the corresponding maximum T_{CASE}. These parameters are usually combined in a single lump cooling performance parameter, Ψ_{CA} (case to air thermal characterization parameter). More information on the definition and the use of Ψ_{CA} is given in Section 2.4 and Section 2.3.2.
- Heatsink interface (to IHS) surface characteristics, including flatness and roughness.
- The performance of the TIM used between the heatsink and the IHS.
- Surface area of the heatsink.
- Heatsink material and technology.
- Development of airflow entering and within the heatsink area.
- Physical volumetric constraints placed by the system.
- Integrated package/socket stackup height information is provided in the LGA771 Socket Mechanical Design Guide.

2.4.4 Assembly Overview of the Intel Reference Thermal Mechanical Design

The reference design heatsinks that meet the Dual-Core Intel Xeon Processor 5100 Series processors thermal performance targets are called the Common Enabling Kit (CEK) heatsinks, and are available in 1U, 2U, & 2U+ form factors. Each CEK consists of the following components:

- Heatsink (with captive standoff and screws)
- Thermal Interface Material (TIM)
- CEK Spring

2.4.4.1 Geometric Envelope

The baseboard keepout zones on the primary and secondary sides and height restrictions under the enabling component region are shown in detail in Appendix A. The overall volumetric keep in zone encapsulates the processor, socket, and the entire thermal/mechanical enabling solution.
2.4.4.2 Assembly Drawing

The CEK reference thermal solution is designed to extend air-cooling capability through the use of larger heatsinks with minimal airflow blockage and bypass. CEK retention solution can allow the use of much heavier heatsink masses compared to the legacy limits by using a load path directly attached to the chassis pan. The CEK spring on the secondary side of the baseboard provides the necessary compressive load for the thermal interface material. The baseboard is intended to be isolated such that the dynamic loads from the heatsink are transferred to the chassis pan via the stiff screws and standoffs. This reduces the risk of package pullout and solder-joint failures.

The baseboard mounting holes for the CEK solution are at the same location as the hole locations used for previous Intel® Xeon® processor thermal solution. However, CEK assembly requires 10.16 mm [0.400 in.] large diameter holes to compensate for the CEK spring embosses.

The CEK solution is designed and optimized for a baseboard thickness range of 1.57 – 2.31 mm [0.062-0.093 in]. While the same CEK spring can be used for this board thickness range, the heatsink standoff height is different for a 1.57 mm [0.062 in] thick board than it is for a 2.31 mm [0.093 in] thick board. In the heatsink assembly, the standoff protrusion from the base of the heatsink needs to be 0.6 mm [0.024 in] longer for a 2.31 mm [0.093 in] thick board, compared to a 1.57 mm [0.062 in] thick board.
If this solution is intended to be used on baseboards that fall outside of this range, then some aspects of the design, including but not limited to the CEK spring design and the standoff heights, may need to change. Therefore, system designers need to evaluate the thermal performance and mechanical behavior of the CEK design on baseboards with different thicknesses.

Refer to Appendix A for drawings of the heatsinks and CEK spring. The screws and standoffs are standard components that are made captive to the heatsink for ease of handling and assembly.

Contact your Intel field sales representative for an electronic version of mechanical and thermal models of the CEK (Pro/Engineer®, IGES and Icepak®, Flotherm® formats). Pro/Engineer®, Icepak® and Flotherm® models are available on Intel Business Link (IBL).

Note: Intel reserves the right to make changes and modifications to the design as necessary.

Note: The thermal mechanical reference design for the Dual-Core Intel Xeon Processor 5100 Series was verified according to the Intel validation criteria given in Appendix D.1. Any thermal mechanical design using some of the reference components in combination with any other thermal mechanical solution needs to be fully validated according to the customer criteria. Also, if customer thermal mechanical validation criteria differ from the Intel criteria, the reference solution should be validated against the customer criteria.

2.4.4.3 Structural Considerations of CEK

As Intel explores methods of keeping thermal solutions within the air-cooling space, the mass of the thermal solutions is increasing. Due to the flexible nature (and associated large deformation) of baseboard-only attachments, Intel reference solutions, such as CEK, are now commonly using direct chassis attach (DCA) as the mechanical retention design. The mass of the new thermal solutions is large enough to require consideration for structural support and stiffening on the chassis. Intel has published a best know method (BKM) document that provides specific structural guidance for designing DCA thermal solutions. The document is titled Chassis Strength and Stiffness Measurement and Improvement Guidelines for Direct Chassis Attach Solutions.

2.4.5 Thermal Solution Performance Characteristics

Figure 2-15 and Figure 2-16 show the performance of the 2U+ and 1U passive heatsinks, respectively. These figures show the thermal performance and the pressure drop through fins of the heatsink versus the airflow provided. The best-fit equations for these curves are also provided to make it easier for users to determine the desired value without any error associated with reading the graph.
If other custom heatsinks are intended for use with the Dual-Core Intel® Xeon® Processor 5100 Series, they must support the following interface control requirements to be compatible with the reference mechanical components:

- **Requirement 1**: Heatsink assembly must stay within the volumetric keep-in.
- **Requirement 2**: Maximum mass and center of gravity.

Current maximum heatsink mass is 1000 grams [2.2 lbs] and the maximum center of gravity 3.81 cm [1.5 in.] above the bottom of the heatsink base.

- **Requirement 3**: Maximum and minimum compressive load.

Any custom thermal solution design must meet the loading specification as documented within this document, and should refer to the *Dual-Core Intel® Xeon® Processor 5100 Series Datasheet and LGA771 Socket Mechanical Design Guide* and for specific details on package/socket loading specifications.
2.4.6 Thermal Profile Adherence

The 1U CEK Intel reference thermal solution is designed to meet the Thermal Profile for the Dual-Core Intel® Xeon® Processor 5148. From Table 2-4 the three-sigma (mean+3sigma) performance of the thermal solution is computed to be 0.299°C/W and the processor local ambient temperature (T_LA) for this thermal solution is 40°C. Hence, the Thermal Profile equation for this thermal solution is calculated as:

Equation 2-8. \(y = 0.299x + 40 \)

where,

- \(y \) = Processor \(T_{CASE} \) value (°C)
- \(x \) = Processor power value (W)

Table 2-17 below shows the comparison of this reference thermal solution’s Thermal Profile to the Dual-Core Intel® Xeon® Processor 5148 Thermal Profile specification. The 1U CEK solution meets the Thermal Profile with 3.4°C margin at the lower end (\(P_{PROFILE_MIN} \)) and 6.0°C margin at the upper end (TDP). By designing to Thermal Profile, it is ensured that no measurable performance loss due to TCC activation is observed under the given environmental conditions.
The 1U CEK Intel reference thermal solution is designed to meet the Thermal Profile for the Dual-Core Intel Xeon Processor 5110/5120/5130/5140/5150. From Table 2-5 the three-sigma (mean+3sigma) performance of the thermal solution is computed to be 0.299 °C/W and the processor local ambient temperature (T_{LA}) for this thermal solution is 40 °C. Hence, the Thermal Profile equation for this thermal solution is calculated as:

Equation 2-9. \(y = 0.299x + 40 \)

where,
\[
\begin{align*}
 y &= \text{Processor } T_{\text{CASE}} \text{ value (°C)} \\
 x &= \text{Processor power value (W)}
\end{align*}
\]

Figure 2-18 below shows the comparison of this reference thermal solution’s Thermal Profile to the Dual-Core Intel Xeon Processor 5110/5120/5130/5140/5150 Thermal Profile specification. The 1U CEK solution meets the Thermal Profile with 2.2°C margin at the lower end (P_{PROFILE_MIN}) and 5.6°C margin at the upper end (TDP). By designing to Thermal Profile, it is ensured that no measurable performance loss due to TCC activation is observed under the given environmental conditions.
The 2U+ CEK Intel reference thermal solution is designed to meet the Thermal Profile A for the Dual-Core Intel Xeon Processor 5160. From Table 2-6, the three-sigma (mean+3sigma) performance of the thermal solution is computed to be 0.236°C/W and the processor local ambient temperature (T_{LA}) for this thermal solution is 40°C. Hence, the Thermal Profile equation for this thermal solution is calculated as:

\[y = 0.236x + 40 \]

where,
- \(y \) = Processor \(T_{CASE} \) value (°C)
- \(x \) = Processor power value (W)

Figure 2-19 below shows the comparison of this reference thermal solution’s Thermal Profile to the Dual-Core Intel® Xeon® Processor 5160 Thermal Profile A specification. The 2U+ CEK solution meets the Thermal Profile A with a 1.3°C margin at the lower end (\(P_{PROFILE_MIN} \)) and 1.1°C margin at the upper end (TDP). By designing to Thermal Profile A, it is ensured that no measurable performance loss due to TCC activation is observed under the given environmental conditions.
The 1U CEK Intel reference thermal solution is designed to meet the Thermal Profile B for the Dual-Core Intel® Xeon® Processor 5160. From Table 2-6 the three-sigma (mean+3sigma) performance of the thermal solution is computed to be 0.299°C/W and the processor local ambient temperature (T_{LA}) for this thermal solution is 40°C. Hence, the Thermal Profile equation for this thermal solution is calculated as:

$$y = 0.299x + 40$$

where,

y = Processor T_{CASE} value (°C)
x = Processor power value (W)

Figure 2-20 below shows the comparison of this reference thermal solution’s Thermal Profile to the Dual-Core Intel® Xeon® Processor 5160 Thermal Profile B specification. The 1U CEK solution meets the Thermal Profile B with 1.9°C margin at the lower end ($P_{PROFILE_{MIN}}$) and 1.1°C margin at the upper end (TDP). However, as explained in Section 2.2.7, designing to Thermal Profile B results in increased TCC activation and measurable performance loss for the processor.
2.4.7 Components Overview

2.4.7.1 Heatsink with Captive Screws and Standoffs

The CEK reference heatsink uses snapped-fin technology for its design. It consists of a copper base and copper fins with Shin-Etsu* G751 thermal grease as the TIM. The mounting screws and standoffs are also made captive to the heatsink base for ease of handling and assembly as shown in Figure 2-21 and Figure 2-22 for the 2U+ and 1U heatsinks, respectively.

Figure 2-20. 1U CEK Thermal Adherence to Dual-Core Intel Xeon Processor 5160 Thermal Profile B

Figure 2-21. Isometric View of the 2U+ CEK Heatsink

Note: Refer to Appendix A for more detailed mechanical drawings of the heatsink.
The function of the standoffs is to provide a bridge between the chassis and the heatsink for attaching and load carrying. When assembled, the heatsink is rigid against the top of the standoff, and the standoff is rigid to a chassis standoff with the CEK spring firmly sandwiched between the two. In dynamic loading situations the standoff carries much of the heatsink load, especially in lateral conditions, when compared to the amount of load transmitted to the processor package. As such, it is comprised of steel. The distance from the bottom of the heatsink to the bottom of the standoff is 10.26 mm [0.404 in.] for a board thickness of 1.57 mm [0.062 in]. The standoff will need to be modified for use in applications with a different board thickness, as defined in Section 2.4.4.2.

The function of the screw is to provide a rigid attach method to sandwich the entire CEK assembly together, activating the CEK spring under the baseboard, and thus providing the TIM preload. A screw is an inexpensive, low profile solution that does not negatively impact the thermal performance of the heatsink due to air blockage. Any fastener (i.e. head configuration) can be used as long as it is of steel construction; the head does not interfere with the heatsink fins, and is of the correct length of 20.64 mm [0.8125 in.].

Although the CEK heatsink fits into the legacy volumetric keep-in, it has a larger footprint due to the elimination of retention mechanism and clips used in the older enabled thermal/mechanical components. This allows the heatsink to grow its base and fin dimensions, further improving the thermal performance. A drawback of this enlarged size and use of copper for both the base and fins is the increased weight of the heatsink. The retention scheme employed by CEK is designed to support heavy heatsinks (approximately up to 1000 grams) in cases of shock, vibration and installation as explained in Appendix D. Some of the thermal and mechanical characteristics of the CEK heatsinks are shown in Table 2-8.

<table>
<thead>
<tr>
<th>Table 2-8. CEK Heatsink Thermal Mechanical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>2U+</td>
</tr>
<tr>
<td>1U</td>
</tr>
</tbody>
</table>
2.4.7.2 Thermal Interface Material (TIM)

A TIM must be applied between the package and the heatsink to ensure thermal conduction. The CEK reference design uses Shin-Etsu* G751 thermal grease.

The recommended grease dispenses weight to ensure full coverage of the processor IHS is given below. For an alternate TIM, full coverage of the entire processor IHS is recommended.

<table>
<thead>
<tr>
<th>Processor</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM Dispense weight</td>
<td>18</td>
<td>400</td>
<td>mg</td>
<td>Shin-Etsu* G751. Dispense weight is an approximate target.</td>
</tr>
<tr>
<td>TIM loading provided by CEK</td>
<td>80</td>
<td>133</td>
<td>lbf</td>
<td>Generated by the CEK.</td>
</tr>
</tbody>
</table>

It is recommended that you use thermally conductive grease. Thermally conductive grease requires special handling and dispense guidelines. The following guidelines apply to Shin-Etsu G751 thermal grease. For guidance with your specific application, please contact the vendor. Vendor information is provided in Appendix E. The use of a semi-automatic dispensing system is recommended for high volume assembly to ensure an accurate amount of grease is dispensed on top of the IHS prior to assembly of the heatsink. A typical dispense system consists of an air pressure and timing controller, a hand held output dispenser, and an actuation foot switch. Thermal grease in cartridge form is required for dispense system compatibility. A precision scale with an accuracy of ±5 mg is recommended to measure the correct dispense weight and set the corresponding air pressure and duration. The IHS surface should be free of foreign materials prior to grease dispense.

Additional recommendations include recalibrating the dispense controller settings after any two hour pause in grease dispense. The grease should be dispensed just prior to heatsink assembly to prevent any degradation in material performance. Finally, the thermal grease should be verified to be within its recommended shelf life before use.

The CEK reference solution is designed to apply a compressive load of up to 200 N [45 lbf] on the TIM to improve the thermal performance.

2.4.7.3 CEK Spring

The CEK spring, which is attached on the secondary side of the baseboard, is made from 0.80 mm [0.0315 in.] thick 301 stainless steel half hard. Any future versions of the spring will be made from a similar material. The CEK spring has four embosses which, when assembled, rest on the top of the chassis standoffs. The CEK spring is located between the chassis standoffs and the heatsink standoffs. The purpose of the CEK spring is to provide compressive preload at the TIM interface when the baseboard is pushed down upon it. This spring does not function as a clip of any kind. The two tabs on the spring are used to provide the necessary compressive preload for the TIM when the whole solution is assembled. The tabs make contact on the secondary side of the baseboard. In order to avoid damage to the contact locations on the baseboard, the tabs are insulated with a 0.127 mm [0.005 in.] thick Kapton* tape (or equivalent). Figure 2-23 shows an isometric view of the CEK spring design.
2.4.8 Boxed Active Thermal Solution for the Dual-Core Intel Xeon Processor 5100 Series

Intel will provide a 2U passive and a 1U passive / active heatsink solution for the boxed Dual-Core Intel Xeon Processor 5100 Series. This active heatsink solution is primarily designed to be used in a pedestal chassis where sufficient air inlet space is present and side directional airflow is not an issue. This active heatsink solution consists of a 4 wire PWM fan and a 1U passive heatsink compatible with 1U form factors both mechanically and thermally. These solutions are intended for system integrators who build systems...
from components available through distribution channels. The retention solution used for these products is called the CEK. The CEK base is compatible with all the heatsink solutions.

Figure 2-25 provides a representation of the active CEK solution. This design is based on a 4-pin PWM PECI/DTS controlled active fan heatsink solution. PWM (Pulse Width Modulation also synonymous with Pulse Duration Modulation PDM) is a modulation in which the duration of pulse is varied in accordance with some characteristic of the modulating signal. This new solution is being offered to help provide better control over pedestal chassis acoustics. This is achieved though accurate measurement of processor temperature through the processor's Digital Thermal Sensor (DTS) temperature. Fan RPM is modulated through the use an ASIC (Application Specific Integrated Circuit) located on the serverboard, that sends out a PWM control signal to the 4th pin of the connector labeled as Control.

This heatsink solution also requires a constant +12 V supplied to pin 2 and does not support variable voltage control or 3-pin PWM control. If no PWM signal is detected on the 4th pin this heatsink solution will revert back to thermistor control mode, supporting both the 4-wire PWM and standard 3-wire ambient air control methods.

The active heatsink solution will not exceed a mass of approximately 1050 grams. Note that this is per processor, so a dual processor system will have up to approximately 2100 grams total mass in the heatsinks. This large mass will require a minimum chassis stiffness to be met in order to withstand force during shock and vibration.

Figure 2-25. Boxed Active CEK Heatsink Solutions with PWM/DTS Control (Representation Only)

Clearance is required around the heatsink to ensure unimpeded airflow for proper cooling. The physical baseboard keepout requirements for the active solution are the same as the passive CEK solution shown in Appendix A. Refer to Figure A-18 through Figure A-20 for additional details on the active CEK thermal solution volumetrics.

2.4.8.1 Fan Power Supply

The active heatsink includes a fan, which requires a +12 V power supply. Platforms must provide a matched fan power header to support the boxed processor. Table 2-10 contains specifications for the input and output signals at the heatsink fan connector.
The fan outputs a SENSE signal, an open-collector output, which pulses at a rate of two pulses per fan revolution. A baseboard pull-up resistor provides VCC to match the baseboard-mounted fan speed monitor requirements, if applicable. Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector should be tied to GND.

It is recommended that a 4 pin fan header be used on the baseboard, in addition to, a control ASIC that can send a PWM signal to the active fan heatsink solution on the 4th pin, at a nominal 25 KHz frequency. If a 3-pin CPU fan header is used instead, the active fan heatsink solution will revert back to an automatic ambient air temperature control mode.

The fan power header on the baseboard must be positioned to allow the fan heatsink power cable to reach it. The fan power header identification and location must be documented in the supplier's platform documentation, or on the baseboard itself. The baseboard fan power header should be positioned within 177.8 mm [7 in.] from the center of the processor socket.

Table 2-10. Fan Specifications (Boxed 4-wire PWM/DTS Heatsink Solution)

<table>
<thead>
<tr>
<th>Description</th>
<th>Min</th>
<th>Typ Steady</th>
<th>Max Steady</th>
<th>Max Startup</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V: 12 Volt Fan Power Supply</td>
<td>10.8</td>
<td>12</td>
<td>12</td>
<td>13.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IC: Fan Current Draw</td>
<td>N/A</td>
<td>1.25</td>
<td>1.5</td>
<td>1.5</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SENSE: SENSE Frequency</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>PPR</td>
<td>Pulses per fan revolution</td>
</tr>
</tbody>
</table>

Note: System board should pull this pin up to VCC with a resistor.

Figure 2-26. Fan Cable Connection (Active CEK)

Table 2-11. Fan Cable Connector Pin Out (Active CEK)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground (Constant)</td>
<td>Black</td>
</tr>
<tr>
<td>2</td>
<td>Power (+12 V)</td>
<td>Yellow</td>
</tr>
<tr>
<td>3</td>
<td>Signal: 2 pulses per revolution</td>
<td>Green</td>
</tr>
<tr>
<td>4</td>
<td>Control 21 KHz - 28 KHz</td>
<td>Blue</td>
</tr>
</tbody>
</table>

2.4.8.2 Systems Considerations Associated with the Active CEK

This heatsink was designed to help pedestal chassis users to meet the processor thermal requirements without the use of chassis ducting. It may be necessary to implement some form of chassis air guide or air duct to meet the T_{LA} temperature of 40 °C depending on the pedestal chassis layout. Also, while the active heatsink solution is designed to mechanically fit into a 2U chassis, it may require additional space at the top of the heatsink to allow sufficient airflow into the heatsink fan. Therefore, additional
design criteria may need to be considered if this heatsink is used in a 2U rack mount chassis, or in a chassis that has drive bay obstructions above the inlet to the fan heatsink.

Thermal Profile A should be used to help determine the thermal performance of the platform. The primary recommended control method for this solution is using pulse width modulation control. This control method requires the motherboard provide the correct PWM duty cycle to the active fan heatsink solution to properly follow the thermal profile. If no PWM signal is detected the active heatsink solution will default back to a thermistor controlled mode and the fan will automatically adjust fan RPM to meet the thermal profile.

It is critical to supply a constant +12 V to the fan header so that the active CEK heatsink solution can operate properly. If a system board has a jumper setting to select either a constant +12 V power to the fan header or a variable voltage, it is strongly recommended that the jumper be set by default to the constant +12 V setting.

It is recommended that the ambient air temperature outside of the chassis be kept at or below 35 ºC. The air passing directly over the processor heatsink should not be preheated by other system components. Meeting the processor’s temperature specification is the responsibility of the system integrator.

2.4.8.3 Boxed Processor Contents

A direct chassis attach method must be used to avoid problems related to shock and vibration, due to the weight of the heatsink required to cool the processor. The board must not bend beyond specification in order to avoid damage. The boxed processor contains the components necessary to solve both issues. The boxed processor will include the following items:

- Dual-Core Intel Xeon Processor 5100 Series
- Unattached heatsink solution
- 4 screws, 4 springs, and 4 heatsink standoffs (all captive to the heatsink)
- Thermal Interface Material (pre-applied on heatsink)
- Installation Manual
- Intel Inside® logo

The other items listed in Figure 2-14 that are required to complete this solution will be shipped with either the chassis or boards. They are as follows:

- CEK Spring (supplied by baseboard vendors)
- Heatsink standoffs (supplied by chassis vendors)
The mechanical drawings included in this appendix refer to the thermal mechanical enabling components for the Dual-Core Intel Xeon Processor 5100 Series.

Note: Intel reserves the right to make changes and modifications to the design as necessary.

Table A-1. Mechanical Drawing List

<table>
<thead>
<tr>
<th>Drawing Description</th>
<th>Figure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>"2U CEK Heatsink (Sheet 1 of 4)"</td>
<td>Figure A-1</td>
</tr>
<tr>
<td>"2U CEK Heatsink (Sheet 2 of 4)"</td>
<td>Figure A-2</td>
</tr>
<tr>
<td>"2U CEK Heatsink (Sheet 3 of 4)"</td>
<td>Figure A-3</td>
</tr>
<tr>
<td>"2U CEK Heatsink (Sheet 4 of 4)"</td>
<td>Figure A-4</td>
</tr>
<tr>
<td>"CEK Spring (Sheet 1 of 3)"</td>
<td>Figure A-5</td>
</tr>
<tr>
<td>"CEK Spring (Sheet 2 of 3)"</td>
<td>Figure A-6</td>
</tr>
<tr>
<td>"CEK Spring (Sheet 3 of 3)"</td>
<td>Figure A-7</td>
</tr>
<tr>
<td>"Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 1 of 6)"</td>
<td>Figure A-8</td>
</tr>
<tr>
<td>"Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 2 of 6)"</td>
<td>Figure A-9</td>
</tr>
<tr>
<td>"Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 3 of 6)"</td>
<td>Figure A-10</td>
</tr>
<tr>
<td>"Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 4 of 6)"</td>
<td>Figure A-11</td>
</tr>
<tr>
<td>"Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 5 of 6)"</td>
<td>Figure A-12</td>
</tr>
<tr>
<td>"Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 6 of 6)"</td>
<td>Figure A-13</td>
</tr>
<tr>
<td>"1U CEK Heatsink (Sheet 1 of 4)"</td>
<td>Figure A-14</td>
</tr>
<tr>
<td>"1U CEK Heatsink (Sheet 2 of 4)"</td>
<td>Figure A-15</td>
</tr>
<tr>
<td>"1U CEK Heatsink (Sheet 3 of 4)"</td>
<td>Figure A-16</td>
</tr>
<tr>
<td>"1U CEK Heatsink (Sheet 4 of 4)"</td>
<td>Figure A-17</td>
</tr>
<tr>
<td>"Active CEK Thermal Solution Volumetric (Sheet 1 of 3)"</td>
<td>Figure A-18</td>
</tr>
<tr>
<td>"Active CEK Thermal Solution Volumetric (Sheet 2 of 3)"</td>
<td>Figure A-19</td>
</tr>
<tr>
<td>"Active CEK Thermal Solution Volumetric (Sheet 3 of 3)"</td>
<td>Figure A-20</td>
</tr>
</tbody>
</table>
Figure A-2. 2U CEK Heatsink (Sheet 2 of 4)
Figure A-3. 2U CEK Heatsink (Sheet 3 of 4)
Figure A-4. 2U CEK Heatsink (Sheet 4 of 4)
Figure A-7. CEK Spring (Sheet 3 of 3)
Figure A-8. Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 1 of 6)
Figure A-9. Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 2 of 6)
Figure A-10. Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 3 of 6)
Figure A-11. Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 4 of 6)
Figure A-12. Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 5 of 6)
Figure A-13. Baseboard Keepout Footprint Definition and Height Restrictions for Enabling Components (Sheet 6 of 6)
Figure A-14. 1U CEK Heatsink (Sheet 1 of 4)
Figure A-15. 1U CEK Heatsink (Sheet 2 of 4)
Figure A-16. 1U CEK Heatsink (Sheet 3 of 4)
Figure A-17. 1U CEK Heatsink (Sheet 4 of 4)
Figure A-18. Active CEK Thermal Solution Volumetric (Sheet 1 of 3)
Figure A-19. Active CEK Thermal Solution Volumetric (Sheet 2 of 3)
Figure A-20. Active CEK Thermal Solution Volumetric (Sheet 3 of 3)
B Heatsink Clip Load Methodology

B.1 Overview

This section describes a procedure for measuring the load applied by the heatsink/clip/fastener assembly on a processor package.

This procedure is recommended to verify the preload is within the design target range for a design, and in different situations. For example:

- Heatsink preload for the LGA771 socket.
- Quantify preload degradation under bake conditions.

Note: This document reflects the current metrology used by Intel. Intel is continuously exploring new ways to improve metrology. Updates will be provided later as this document is revised as appropriate.

B.2 Test Preparation

B.2.1 Heatsink Preparation

Three load cells are assembled into the base of the heatsink under test, in the area interfacing with the processor Integrated Heat Spreader (IHS), using load cells equivalent to those listed in Section B.2.2.

To install the load cells, machine a pocket in the heatsink base, as shown in Figure B-1 and Figure B-2. The load cells should be distributed evenly, as close as possible to the pocket walls. Apply wax around the circumference of each load cell and the surface of the pocket around each cell to maintain the load cells in place during the heatsink installation on the processor and motherboard.

The depth of the pocket depends on the height of the load cell used for the test. It is necessary that the load cells protrude out of the heatsink base. However, this protrusion should be kept minimal, as it will create an additional load offset since the heatsink base is artificially raised. The measurement load offset depends on the whole assembly stiffness (that is, motherboard, clip, fastener, and so forth). For example, the Dual-Core Intel Xeon Processor 5100 Series CEK Reference Heatsink Design clip and fasteners assembly have a stiffness of around 160 N/mm [915 lb/in]. If the resulting protrusion is 0.038 mm [0.0015"], then a extra load of 6.08 N [1.37 lb] will be created, and will need to be subtracted from the measured load. Figure B-3 shows an example using the Dual-Core Intel Xeon Processor 5100 Series CEK Reference Heatsink designed for the Dual-Core Intel Xeon Processor 5100 Series in the 771–land grid array (LGA) package.

Note: When optimizing the heatsink pocket depth, the variation of the load cell height should also be taken into account to make sure that all load cells protrude equally from the heatsink base. It may be useful to screen the load cells prior to installation to minimize variation.
Alternate Heatsink Sample Preparation

As just mentioned, making sure that the load cells have minimum protrusion out of the heatsink base is paramount to meaningful results. An alternate method to make sure that the test setup will measure loads representative of the non-modified design is:

- Machine the pocket in the heatsink base to a depth such that the tips of the load cells are just flush with the heatsink base.
- Then machine back the heatsink base by around 0.25 mm [0.01"], so that the load cell tips protrude beyond the base.

Proceeding this way, the original stack height of the heatsink assembly should be preserved. This should not affect the stiffness of the heatsink significantly.

Figure B-1. Load Cell Installation in Machined Heatsink Base Pocket -- Bottom View
Figure B-2. Load Cell Installation in Machined Heatsink Base Pocket -- Side View

Figure B-3. Preload Test Configuration
B.2.2 Typical Test Equipment

For the heatsink clip load measurement, use equivalent test equipment to the one listed Table B-1.

Table B-1. Typical Test Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number (Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load cell Notes: 1, 5</td>
<td>Honeywell*-Sensotec* Model 13 subminiature load cells, compression only Select a load range depending on load level being tested. www.sensotec.com</td>
<td>AL322BL</td>
</tr>
<tr>
<td>Data Logger (or scanner) Notes: 2, 3, 4</td>
<td>Vishay* Measurements Group Model 6100 scanner with a 6010A strain card (one card required per channel).</td>
<td>Model 6100</td>
</tr>
</tbody>
</table>

Notes:
1. Select load range depending on expected load level. It is usually better, whenever possible, to operate in the high end of the load cell capability. Check with your load cell vendor for further information.
2. Since the load cells are calibrated in terms of mV/V, a data logger or scanner is required to supply 5 volts DC excitation and read the mV response. An automated model will take the sensitivity calibration of the load cells and convert the mV output into pounds.
3. With the test equipment listed above, it is possible to automate data recording and control with a 6101-PCI card (GPIB) added to the scanner, allowing it to be connected to a PC running LabVIEW* or Vishay’s StrainSmart* software.
4. IMPORTANT: In addition to just a zeroing of the force reading at no applied load, it is important to calibrate the load cells against known loads. Load cells tend to drift. Contact your load cell vendor for calibration tools and procedure information.
5. When measuring loads under thermal stress (bake for example), load cell thermal capability must be checked, and the test setup must integrate any hardware used along with the load cell. For example, the Model 13 load cells are temperature compensated up to 71°C, as long as the compensation package (spliced into the load cell’s wiring) is also placed in the temperature chamber. The load cells can handle up to 121 °C (operating), but their uncertainty increases according to 0.02% rdg/°F.

B.2.3 Test Procedure Examples

The following sections give two examples of load measurement. However, this is not meant to be used in mechanical shock and vibration testing.

Any mechanical device used along with the heatsink attach mechanism will need to be included in the test setup (i.e., back plate, attach to chassis, and so forth).

Prior to any test, make sure that the load cell has been calibrated against known loads, following load cell vendor’s instructions.

B.2.4 Time-Zero, Room Temperature Preload Measurement

1. Pre-assemble mechanical components on the board as needed prior to mounting the motherboard on an appropriate support fixture that replicate the board attach to a target chassis.
 For example: If the attach mechanism includes fixtures on the back side of the board, those must be included, as the goal of the test is to measure the load provided by the actual heatsink mechanism.
2. Install the test vehicle in the socket.
3. Assemble the heatsink reworked with the load cells to motherboard as shown for the Dual-Core Intel Xeon Processor 5100 Series CEK-reference heatsink example in Figure B-3, and actuate attach mechanism.
4. Collect continuous load cell data at 1 Hz for the duration of the test. A minimum time to allow the load cell to settle is generally specified by the load cell vendors.
(often on the order of 3 minutes). The time zero reading should be taken at the end of this settling time.

5. Record the preload measurement (total from all three load cells) at the target time and average the values over 10 seconds around this target time as well, i.e. in the interval for example over [target time – 5 seconds; target time + 5 seconds].

B.2.5 Preload Degradation under Bake Conditions

This section describes an example of testing for potential clip load degradation under bake conditions.

1. Preheat thermal chamber to target temperature (45 ºC or 85 ºC for example).
2. Repeat time-zero, room temperature preload measurement.
3. Place unit into preheated thermal chamber for specified time.
4. Record continuous load cell data as follows:
 - Sample rate = 0.1 Hz for first 3 hrs
 - Sample rate = 0.01 Hz for the remainder of the bake test
5. Remove assembly from thermal chamber and set into room temperature conditions
6. Record continuous load cell data for next 30 minutes at sample rate of 1 Hz.

§
Safety Requirements

Heatsink and attachment assemblies shall be consistent with the manufacture of units that meet the safety standards:

1. UL Recognition-approved for flammability at the system level. All mechanical and thermal enabling components must be a minimum UL94V-2 approved.

2. CSA Certification. All mechanical and thermal enabling components must have CSA certification.

3. Heatsink fins must meet the test requirements of UL1439 for sharp edges.
Quality and Reliability Requirements

D.1 Intel Verification Criteria for the Reference Designs

D.1.1 Reference Heatsink Thermal Verification

The Intel reference heatsinks will be verified within specific boundary conditions using a TTV and the methodology described in the Intel® Xeon® Processor Family Thermal Test Vehicle User’s Guide.

The test results, for a number of samples, are reported in terms of a worst-case mean + 3σ value for thermal characterization parameter using real processors (based on the TTV correction offset).

D.1.2 Environmental Reliability Testing

D.1.2.1 Structural Reliability Testing

The Intel reference heatsinks will be tested in an assembled condition, along with the LGA771 Socket. Details of the Environmental Requirements, and associated stress tests, can be found in the LGA771 Socket Mechanical Design Guide.

The use condition environment definitions provided in Table D-1 are based on speculative use condition assumptions, and are provided as examples only.
Table D-1. Use Conditions Environment

<table>
<thead>
<tr>
<th>Use Environment</th>
<th>Speculative Stress Condition</th>
<th>Example Use Condition</th>
<th>Example 7-Yr Stress Equiv.</th>
<th>Example 10-Yr Stress Equiv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipping and Handling</td>
<td>Mechanical Shock</td>
<td>Total of 12 drops per system:</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>• System-level</td>
<td>• 2 drops per axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unpackaged</td>
<td>• ± direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Trapezoidal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 25 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• velocity change is based on packaged weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-palletized Product Weight (lbs)</td>
<td></td>
<td>Total per system:</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td></td>
<td>• 10 minutes per axis</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>225</td>
<td></td>
<td>• 3 axes</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In the case of a discrepancy, information in the most recent LGA771 Socket Mechanical Design Guidelines supersedes that in the Table D-1 above.

D.1.2.2 Recommended Test Sequence

Each test sequence should start with components (that is, baseboard, heatsink assembly, and so forth) that have not been previously submitted to any reliability testing.

The test sequence should always start with a visual inspection after assembly, and BIOS/Processor/memory test. The stress test should be then followed by a visual inspection and then BIOS/Processor/memory test.

D.1.2.3 Post-Test Pass Criteria

The post-test pass criteria are:

1. No significant physical damage to the heatsink and retention hardware.
Quality and Reliability Requirements

2. Heatsink remains seated and its bottom remains mated flatly against the IHS surface. No visible gap between the heatsink base and processor IHS. No visible tilt of the heatsink with respect to the retention hardware.

3. No signs of physical damage on baseboard surface due to impact of heatsink.

4. No visible physical damage to the processor package.

5. Successful BIOS/Processor/memory test of post-test samples.

6. Thermal compliance testing to demonstrate that the case temperature specification can be met.

D.1.2.4 Recommended BIOS/Processor/Memory Test Procedures

This test is to ensure proper operation of the product before and after environmental stresses, with the thermal mechanical enabling components assembled. The test shall be conducted on a fully operational baseboard that has not been exposed to any battery of tests prior to the test being considered.

Testing setup should include the following components, properly assembled and/or connected:

- Appropriate system baseboard.
- Processor and memory.
- All enabling components, including socket and thermal solution parts.

The pass criterion is that the system under test shall successfully complete the checking of BIOS, basic processor functions and memory, without any errors. Intel PC Diags is an example of software that can be utilized for this test.

D.1.3 Material and Recycling Requirements

Material shall be resistant to fungal growth. Examples of non-resistant materials include cellulose materials, animal and vegetable based adhesives, grease, oils, and many hydrocarbons. Synthetic materials such as PVC formulations, certain polyurethane compositions (e.g. polyester and some polyethers), plastics which contain organic fillers of laminating materials, paints, and varnishes also are susceptible to fungal growth. If materials are not fungal growth resistant, then MIL-STD-810E, Method 508.4 must be performed to determine material performance.

Material used shall not have deformation or degradation in a temperature life test.

Any plastic component exceeding 25 grams should be recyclable per the European Blue Angel recycling standards.

The following definitions apply to the use of the terms lead-free, Pb-free, and RoHS compliant.

Lead-free and Pb-free: Lead has not been intentionally added, but lead may still exist as an impurity below 1000 ppm.

RoHS compliant: Lead and other materials banned in RoHS Directive are either (1) below all applicable substance thresholds as proposed by the EU or (2) an approved/pending exemption applies.

Note: RoHS implementing details are not fully defined and may change.
E Enabled Suppliers Information

E.1 Supplier Information

E.1.1 Intel Enabled Suppliers

The Intel reference enabling solution for Dual-Core Intel Xeon Processor 5100 Series is preliminary. The Intel reference solutions have not been verified to meet the criteria outlined in Appendix D. Customers can purchase the Intel reference thermal solution components from the suppliers listed in Table E-1.

For additional details, please refer to the Dual-Core Intel Xeon Processor 5100 Series thermal mechanical enabling components drawings in Appendix A.

Table E-1. Suppliers for the Dual-Core Intel Xeon Processor 5100 Series Intel Reference Solution (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Component</th>
<th>Description</th>
<th>Development Suppliers</th>
<th>Supplier Contact Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEK771-01-2U (for 2U, 2U+)</td>
<td>CEK Heatsinks</td>
<td>Copper Fin, Copper Base</td>
<td>Fujikura CNDA 1242012 (stacked fin)</td>
<td>Fujikura America Ash Ooe a_ooe@fujikura.com 408-748-6991 Fujikura Taiwan Branch Yao-Hsien Huang yeohsien@fujikuratw.com.tw 886(2)8788-4959</td>
</tr>
<tr>
<td></td>
<td>Intel Reference Heatsink p/n C61708 rev03</td>
<td>includes PCM45F TIM+cover</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- or -</td>
<td>Intel Boxed Heatsink p/n D36871</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEK Heatsink</td>
<td>Copper Fin, Copper Base</td>
<td>Furukawa CNDA 65755 (Crimped fin)</td>
<td>Furukawa America Timothy Yu yu@FurukawaAmerica.com 408-345-1528 Furukawa Taiwan Branch Johnson Tseng Johnson@tfe.com.tw (02)2563-8148x15</td>
</tr>
<tr>
<td></td>
<td>Intel Boxed Heatsink p/n D36871</td>
<td>includes PCM45F TIM+cover</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Interface Material</td>
<td>Grease</td>
<td>Shin-Etsu G751 CNDA 75610</td>
<td>Donna Hartigan (480) 893-8998</td>
</tr>
<tr>
<td></td>
<td>CEK Spring for CEK771</td>
<td>Stainless Steel 301, Kapton* Tape on Reinforced Spring Fingers</td>
<td>AVC CNDA 2085011</td>
<td>David Chao 886-2-22996390 x619 david_chao@avc.com.tw</td>
</tr>
<tr>
<td></td>
<td>Intel p/n D13646 rev04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E.1.2 Additional Enabled Suppliers

The Intel enabled solutions for Dual-Core Intel Xeon Processor 5100 Series are preliminary. The Intel enabled solutions have not been verified to meet the criteria outlined in Appendix D. Customers can purchase the Intel enabled thermal solution components from the suppliers listed in Table E-1.

For additional details, please refer to the Dual-Core Intel Xeon Processor 5100 Series thermal mechanical enabling components drawings in Appendix A.

Table E-1. Suppliers for the Dual-Core Intel Xeon Processor 5100 Series Intel Reference Solution (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Component</th>
<th>Description</th>
<th>Development Suppliers</th>
<th>Supplier Contact Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEK771-01-1U (for 1U)</td>
<td>CEK Heatsink Intel p/n C90546 rev02</td>
<td>Copper Fin, Copper Base</td>
<td>Fujikura CNDA 1242012 (stacked fin)</td>
<td>Fujikura America Ash Ooe a_ooe@fujikura.com 408-748-6991 Fujikura Taiwan Branch Yao-Hsien Huang yeohsien@fujikuratw.com.tw 886(2)8788-4959</td>
</tr>
<tr>
<td>Thermal Interface Material</td>
<td></td>
<td></td>
<td>See CEK771-2U-01</td>
<td></td>
</tr>
<tr>
<td>CEK Spring for CEK771</td>
<td></td>
<td></td>
<td>See CEK771-2U-01</td>
<td></td>
</tr>
</tbody>
</table>

Table E-2. Suppliers of Alternative Thermal Solutions for the Dual-Core Intel Xeon Processor 5100 Series

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Component</th>
<th>Description</th>
<th>Development Suppliers</th>
<th>Supplier Contact Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>2U Heatsink</td>
<td>Alternative CEK Heatsink</td>
<td>Copper Fin, Copper Base</td>
<td>AVC CNDA AP5281 (stacked fin)</td>
<td>David Chao david_chao@avic.com.tw 886-2022996930x7619 Jeff Brown (North America) jb@avcamerica.com 310-783-5442 Frank Hsue frank.hsu@avic.com.tw 886-2-26989888 x306 Aavid Thermalloy CNDA #2525071</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>David Huang huang@aavid.com 603-223-1724 Monica Chih monica_chih@ccic.com.tw 886-2-29952666 EXT 292</td>
<td>Hary Lin 714-739-5797 ackinc@aol.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCI (Chau-Choung Technology Co. Ltd. CNDA #8747572)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Auras CNDA #5779699</td>
<td>Stephen Lee stephen_lee@auras.com.tw +886-937-183-194</td>
</tr>
</tbody>
</table>
Table E-2. Suppliers of Alternative Thermal Solutions for the Dual-Core Intel Xeon Processor 5100 Series

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Component</th>
<th>Description</th>
<th>Development Suppliers</th>
<th>Supplier Contact Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1U Heatsink</td>
<td>Alternative CEK Heatsink</td>
<td>Copper Fin, Copper Base</td>
<td>AVC CNDA AP5281</td>
<td>David Chao</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>david_chao@avc.com.tw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>886-2022996930x7619</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jeff Brown (North America)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>jb@avcamerica.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310-783-5442</td>
</tr>
<tr>
<td></td>
<td>ADDA CNDA AP1249</td>
<td></td>
<td>Jomei</td>
<td>jomei@adda.com.tw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>886-2-82212252x209</td>
</tr>
<tr>
<td></td>
<td>CCI CNDA 8747572</td>
<td></td>
<td>Monica Chih</td>
<td>monica_chih@ccic.com.tw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>886-2-29952666 EXT 292</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hary Lin</td>
<td>714-739-5797</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ackinc@aol.com</td>
</tr>
<tr>
<td></td>
<td>Auras CNDA #5779699</td>
<td></td>
<td>Stephen Lee</td>
<td>stephen_lee@auras.com.tw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+886-937-183-194</td>
</tr>
<tr>
<td></td>
<td>CoolerMaster CNDA #7425225</td>
<td></td>
<td>Helen Wen</td>
<td>helena_wan@coolemaster.com.tw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+866 (2) 3234-0050 x235</td>
</tr>
<tr>
<td></td>
<td>ThermalTake CNDA #7429482</td>
<td></td>
<td>Vic Chan</td>
<td>vic@thermaltake.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+866 (2) 2662-6501 x213</td>
</tr>
</tbody>
</table>