
Copyright © 2010 Intel Corporation 1

Performance Optimization for the Intel Atom Architecture

ABSTRACT: The quality of tools support has a direct impact on the
effectiveness of your optimization efforts. Performance tools that target
single processor core performance provide insight into the application and
how the application is behaving at the level of the microarchitecture. Multi-
core performance tools provide insight into how the application is executing
in the context of Intel® Hyper-Threading Technology and multi-core
processing. Finally, performance tools focused on power optimization provide
insight into application behavior that impacts power utilization.
Understanding the capabilities of tools and how to use them is critical to
your Intel Atom processor migration. This article instructs on the
performance optimization process for systems based on the Intel Atom
processor. First, an overview of the optimization process is discussed
followed by a description of the tools employed in this process.

Optimization Process

Good software design seeks a balance between simplicity and efficiency.
Performance of the application is an aspect of software design; however
correctness and stability are typically prerequisite to extensive performance
tuning efforts. A typical development cycle is depicted in Figure 1 and
consists of four phases: design, implementation, debugging, and tuning. The
development cycle is iterative and concludes when performance and stability
requirements are met. Figure 1 further depicts a more detailed look inside of
the tuning phase, which consists of single processor core optimization, multi-
core processor optimization, and power optimization.

Copyright © 2010 Intel Corporation 2

Figure 1 Development and Optimization Process

One key fact to highlight about the optimization process is that changes
made during this phase can require another round of design,
implementation, and debug. It is hoped that a candidate optimization would
require minimal changes, but there are no guarantees. Each proposed
change required as a result of a possible optimization should be evaluated in
terms of stability risk, implementation effort, and performance benefit.

Similarly, the tune step is also iterative with the goal of reaching a
satisfactory equilibrium between single core, multi-core, and power
performance. The components of the tune step are summarized as follows:

 Single processor core tuning. Optimization of the application assuming
execution on one Intel Atom processor core. This step focuses on
increasing performance, which is typically the reduction of execution
time.

 Multi-core tuning. Optimization of the application taking advantage of
parallel technology including Intel Hyper-Threading Technology and
multiple processor cores. This step focuses on increasing performance,
which is typically the reduction of execution time.

 Power tuning. Optimization of the application focusing on power
utilization. This step focuses on reducing the amount of power used in
accomplishing the same amount of work.

Copyright © 2010 Intel Corporation 3

Single Processor Core Tuning

Single processor core tuning focuses on improving the behavior of the
application executing on one physical Intel Atom processor core. Intel
Hyper-Threading Technology is not considered during this phase; it enables
one physical processor core to appear as two cores and introduces issues
more related to multi-core processing. This tuning step isolates the behavior
of the application from more complicated interactions with other threads or
processes on the system. This step is not entirely focused on what
traditionally is called serial tuning because parallelism in the form of vector
processing or acceleration technology can be considered.

The foundation of performance tuning is built upon complementary
assertions that of the Pareto principle and Amdahl’s law. The Pareto
principle, colloquially known as the 80/20 rule, states that 80 percent of the
time spent in an application is in 20 percent of the code. This observation
helps prioritize optimization efforts to the areas of highest impact, namely
the most frequently executed portions of the code. Amdahl’s law provides
guidance on the limits of optimization. For example, if your optimization can
only be applied to 75 percent of the application, the maximum theoretical
speedup is 4 times.

Single processor core tuning is itself comprised of multiple steps, which are
characterized as first gaining an understanding of the application and then
tuning based upon general performance analysis and tuning and then
analysis and tuning specific to the Intel Atom processor. The single
processor core tuning process is summarized by the following steps:

1. Benchmark. Develop a benchmark that represents typical application
usage.

2. Profile. Analyze and understand the architecture of the application.
3. Compiler optimization. Use aggressive optimizations if possible.
4. General microarchitecture tuning. Tune based upon insight from

general performance analysis statistics. These statistics, such as clock
cycles per instruction retired, are generally accepted performance
analysis statistics that can be employed regardless of the underlying
architecture.

5. Intel® Atom™ processor tuning. Tune based on insight about known
processor “glass jaws.” These include statistics and techniques to
isolate performance issues specific to the Intel Atom processor.

Multi-Core Processor Tuning

The focus of multi-core processor tuning is on the effective use of parallelism
that takes advantage of more than one processor core. This step pertains to

Copyright © 2010 Intel Corporation 4

both Intel Hyper-Threading Technology and true multi-core processing.
There are some issues specific to each; where appropriate these differences
are highlighted. Second, at the application level, two techniques allow you to
take advantage of multiple processor cores, multitasking and multithreading.
Multitasking is the execution of multiple operating system processes on a
system. In the context of one application, multitasking requires the division
of work between distinct processes and special effort is required to share
data between processes. Multithreading is the execution of multiple threads
and by default assumes memory is shared, which introduces its own set of
concerns. This article limits itself to discussion of multithreading because
multitasking is a more mature technology and one where the operating
system governs much of the policy of execution. Multithreading in the
context of the Intel Atom processor is much more under the control of the
software developer.

Developing software for multi-core processors requires good analysis and
design techniques. A wealth of information on these techniques is available
in literature by Mattson et al., Breshears, and many others.

Tuning of multithreaded applications on the Intel Atom processor requires
ensuring good performance when the application is executing on both,
logical processor cores available via Intel Hyper-Threading Technology, and
multiple physical processor cores. General multithreading issues that affect
performance regardless of the architecture must be addressed. These issues
include for example lock contention and workload balance. One of the
performance concerns when executing under Intel Hyper-Threading
Technology is on the shared resources of the processor core. For example,
the caches are effectively shared between two concurrently executing
threads. In a worst case scenario, it is possible for one thread to cause the
other to miss in the cache on every access. Tuning for multi-core processors
adds another level of complication as the possible thread interactions and
cache behavior can be even more complicated. It is possible for two threads
to cause false sharing, which limits performance but can be easily
addressed. Understanding techniques to analyze performance and how to
mitigate these performance issues are essential.

Converting a serial application to take advantage of multithreading requires
an approach that uses the generic development cycle, consisting of these
five phases: Analysis, Design, Implementation, Debug, and Tune. There are
threading tools that help with code analysis, debugging, and performance
tuning.

1. Analysis. Develop a benchmark that represents typical system usage
and comprised by concurrent execution of processes and threads. In
many cases, the benchmark from the single core tuning phase and the

Copyright © 2010 Intel Corporation 5

initial parallel implementation may be an appropriate starting point.
Use a system performance profiler such as the Intel® VTune™
Performance Analyzer to identify the performance hotspots in the
critical path. Determine if the identified computations can be executed
independently. If so, proceed to the next phase; otherwise look for
other opportunities with independent computations.

2. Design. Determine changes required to accommodate a threading
paradigm (data restructuring, code restructuring) by characterizing the
application threading model (data-level or task-level parallelization).
Identify which variables must be shared and if the current design
structure is a good candidate for sharing.

3. Implementation. Convert the design into code based on the selected
threading model. Consider coding guidelines based on the processor
architecture, such as the use of the PAUSE instruction within spinwait
loops. Make use of the multithreading software development
methodologies and tools.

4. Debug. Use runtime debugging and thread analysis tools such as
Intel® Thread Checker.

5. Tune. Tune for concurrent execution on multiple processor cores
executing without Intel Hyper-Threading Technology. Tune for
concurrent execution on multiple processor cores executing with Intel
Hyper-Threading Technology.

Power Tuning

Tuning that is focused on power utilization is a relatively new addition to the
optimization process for Intel architecture processors. The goal of this phase
is to reduce the power utilized by the application when executing on the
embedded system. One of the key methods of doing so is by helping the
processor enter and stay in one of its idle states.

Basics on Power

In an embedded system, power at its fundamental level is a measure of the
number of watts consumed in driving the system.

Power can be consumed by several components in a system. Typically, the
display and the processor are the two largest consumers of power in an
embedded computing system. Other consumers of system power include the
memory, hard drives, solid state drives, and communications. Power
management features already exist in many operating systems and enable
implementation of power policy where various components are powered
down when idle for long periods. A simple example is turning off the display
after a few minutes of idle activity. Power policy can also govern behavior

Copyright © 2010 Intel Corporation 6

based upon available power sources. For example, the embedded system
may default to a low level of display brightness when powered by battery as
opposed to being plugged into an outlet.

Several statistics exist for characterizing the power used by a system
including:

 Thermal design power (TDP). The maximum amount of heat that a
thermal solution must be able to dissipate from the processor so that
the processor operates under normal operating conditions. TDP is
typically measured in watts.

 “Plug load” power. A measure of power drawn from an outlet as the
embedded system executes. Plug load power is typically measured in
watts.

 Battery power draw. A estimate of power drawn from a battery as the
embedded system executes. Typically, battery power draw is stated in
watts and is based upon estimates from ACPI.

Your project requirements will guide which of these power measurements to
employ and what goals will be set with regard to them.

The Intel Atom processor enables a number of power states, which are
classified into C-states and P-states. C-states are different levels of
processor activity and range from C0, where the processor is fully active
down to C61 where the processor is completely idle and many portions of
the processor are powered down. P-states, known as performance states,
are different levels of processor frequency and voltage.

Power Measurement Tools

In order to determine if optimizations improve power utilization, a tool is
required to measure power utilization. There are two categories of tools to
measure power on an embedded system. The first category provides a direct
measurement and employs physical probes to measure the amount of power
used. These probes could be as simple as a plug load power probe between
the device and the electrical outlet. They could require more extensive
probes placed on the system board monitoring various power rails such as
those required to execute the EEMBC Energybench2 benchmark.

The second category, power state profiling tools, employs an indirect
method of measuring power utilization. Instead of directly measuring power,
this class of tool measures and reports on the amount of time spent in
different power states. The objective when using these tools is to understand
what activities are causing the processor to enter C0 and to minimize them.

Copyright © 2010 Intel Corporation 7

Tuning Overview

The goal of power tuning is two-fold:

 Minimize time in active state.
 Maximize time in inactive state.

On the surface it may seem like these goals are redundant; however in
practice both are required. Power is expended in transitioning into and out of
idle modes. A processor that is repeatedly waking up and then going back to
sleep may consume more power than a processor that has longer periods in
an active state. In general, the end result is for the system to be in idle
mode 90 percent of the time. Of course, this end result depends on the
specific workload and application. Techniques to meet this goal follow one of
two tuning strategies, which are summarized as follows:

 Race to idle. The tasks are executed as quickly as possible to enable
the system to idle. This approach typically entails aggressive
performance optimization using similar techniques as single core and
multi-core performance tuning.

 Idle mode optimization. Iteratively add software components
executing on the system and analyze power state transitions to ensure
these components are as nondisruptive to power utilization as
possible.

High power utilization has several causes, including:

 Poor computational efficiency
 Poor memory management
 Bad timer and interrupt behavior
 Poor power awareness
 Bad multithreading behavior

The Performance Tuning Cycle

It is important to note that the tuning process is not sequential, but
iterative. It is typically not sufficient to step through the three phases only
once. Changes made during the power optimization phase may require a
new pass at single-core and multi-core optimization to meet performance
targets. A subsequent multi-core focused optimization may place
inappropriate demand on power and require further power optimization. The
hope is that the changes made have less and less of an impact until an
equilibrium is reached and the performance targets are met. This is when
one can consider performance tuning to be complete. That said, performance
regression tests should be run to ensure subsequent bug fixes and changes
do not impact performance negatively.

Copyright © 2010 Intel Corporation 8

Power and Performance Analysis Tools Overview

Software tools for performance and power optimization aid in your analysis
and tuning efforts. The specific tools detailed in this section are arranged
according to the performance tuning phase. The information here provides
further details on the capabilities and usages of the tools specific to
performance optimization.

Single Core Performance Tools

Tools for analyzing single core processor performance provide insight into
how an application is behaving as it executes on one processor core. These
tools provide different views on the application ranging from how the
application interacts with other processes on the system down to how the
application affects the processor microarchitecture. Many tools are available
that provide profiling capability in different ways. Typically, they fall into one
of the following categories:

 System profilers. Provide a summary of execution times across
processes on the system.

 Application profilers. Provide a summary of execution times at the
function level of the application.

 Micro-architecture profilers. Provide a summary of processor events
across applications and functions executing on the system.

Two definitions relevant to profiling concern how the data is viewed. A flat
profile is a correlation of processes and functions with the amount of time
the profiler recorded in each. A flat profile does not show relationships
between the processes and functions listed with any other processes or
functions executing on the system. A call graph profile shows these
relationships and contributions to the measured times between the caller
functions and called functions.

Profilers obtain information by sampling or tracing the system while the
application is executing. Three techniques for sampling the system are
summarized as follows:

 Operating system provided API. Operating system provides capability
to periodically sample and record information on executing processes.

 Software instrumentation. Application has code added to trace and
record statistics.

 Hardware performance monitoring counters. Employed by
microarchitecture profilers. Provides information on microarchitecture
events such as branch mispredictions and cache misses.

Copyright © 2010 Intel Corporation 9

Table 1 describes several tools used in single core performance analysis.
These tools are not all equal. Some of the tools provide functionality that is a
superset of others. For example, sysprof is capable of providing a call graph
profile across all applications executing on a system; GNU gprof is not.
However, gprof is available across a wide range of operating systems;
sysprof is a Linux tool. An exhaustive list of profiling tools is outside the
scope of this article; we merely list a few tools representative of the profiler
categories above.

Table 1 Single Core Performance Tools Examples
Tool Type Description
Sysprof System profiler Easy to use, start and stop profiler. Provides system-

wide flat profile and call graph information if debug
information is present.

GNU gprof Application
profiler

Ubiquitous, widely available single application profiler.
Requires recompilation to add instrumentation.
Provides flat profile and call graph profile.

Oprofile Microarchitecture
profiler

Linux-targeted microarchitecture profiler. Enables
event-based sampling using hardware performance
monitoring counters.

Intel®
VTune™
Performance
Analyzer

Microarchitecture
profiler

Windows† and Linux-targeted microarchitecture
profiler. Enables event-based sampling using hardware
performance monitoring counters. Powerful GUI
enables easy visualization.

Intel®
Performance
Tuning Utility

Microarchitecture
profiler

Similar to VTune Performance Analyzer with enhanced
event-based profiling features. Basic block view.

System Profiling: Sysprof

Sysprof is a Linux hosted and targeted system profiler that provides
information across the kernel and user level processes. The tool offers a very
simple user interface as depicted in Figure 2. To begin profiling, the user
presses the Start button. If an application is being profiled it must be started
independently of sysprof. The application itself does not require special
instrumentation; however if detailed function-level information is desired
then debug information should be provided. To stop profiling and show the
collected results, the user clicks on the Profile button. Figure 2 displays a
profile of an application viewed using sysprof. The screen is divided into
three sections. The top left section labeled Functions is a listing of functions
where the greatest amount of time was measured during profiling. Time per
individual function includes the time spent in any function called as a result
of the function, such as descendents in the call chain. Time is reported in
two forms, self time and total time. Self time is the execution time inside the
function and does not include called functions. Total time is the amount of

Copyright © 2010 Intel Corporation 10

time inside the function and all of its descendents. The bottom left window is
labeled Callers and is a list of functions that call the highlighted function in
the Functions box. Time in the Callers window is relative to the highlighted
function. The self time indicates how much time is spent in the caller
function while the total time is the component of time spent calling the
highlighted function. The sum of the total time column in the Callers box
equals the total time of the highlighted function in the Functions box. The
Descendents window shows a portion of the call graph of the highlighted
function. To follow a path through the call graph further, click the right-
facing triangle, which will show another level of the call graph. At each node
of the call graph that represents a function, time is reported for it in both,
self time and cumulative time. Self time has been previously described.
Cumulative time is the time in the function and all of its descendents and is
a fraction of the time spent by a caller higher in the call graph.

Figure 2 Sysprof Display

A command line version of the tool is also supported. It is also possible to
dump the profile results to a file for offline processing.

Copyright © 2010 Intel Corporation 11

Application Profiling: GNU gprof

GNU gprof4 is an application-level profiling tool that serves as the output
and reporting tool for applications that have been compiled and
instrumented using the –pg option. This option is supported by GNU gcc and
other compilers and results in instrumentation being added to the application
to collect profile information. The instrumented application generates a
profile data file (gmon. out is the default profile file name) when executed.
Gprof is then employed to process the profile data and generate reports such
as an ordered listing of the functions that consume the largest amount of
execution time.

Figure 3 shows sample gprof profile output obtained by profiling the SPEC
CPU2000 benchmark, 179.art5. The first report is a flat profile and shows a
rank ordering of the various functions in the application based upon the
amount of time recorded during the execution. Based upon this report, the
function, match, had the longest amount of time spent in it, 183.25 seconds,
which was 80.64 percent of the total execution time. The profile reports that
the function, match was called 500 times. The self s/call column represents
the average amount of time spent inside the function per call. The total
s/call column represents the average amount of time spent inside the
function and its descendents per call. For the function, match, these times
are 0.37 seconds and 0.38 seconds respectively.

Figure 3 Gprof Flat Profile Output

GNU gprof also provides call graph information. Figure 4 shows a portion of
the call graph from the function, match, which shows the primary caller is

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 80.64 183.25 183.25 500 0.37 0.38 match
 14.79 216.86 33.61 554 0.06 0.07 train_match
 1.93 221.25 4.39 4922 0.00 0.00 simtest2
 1.32 224.26 3.01 4922 0.00 0.00 reset_nodes2
 0.47 225.33 1.07 554 0.00 0.00 weightadj
 0.32 226.05 0.72 1054 0.00 0.00 reset_nodes
 0.32 226.77 0.72 554 0.00 0.00 simtest
 0.11 227.02 0.25 11080000 0.00 0.00 g
 0.07 227.17 0.15 1 0.15 191.15 scan_recognize
 0.01 227.19 0.02 3 0.01 0.01 init_bu

Copyright © 2010 Intel Corporation 12

identified by index [2], scan_recognize. For further details on gprof, see the
online documentation.

Figure 4 Gprof Call Graph Output

Microarchitecture Profi ling: Oprofile

Oprofile is a command line-based microarchitecture profiler providing access
to the performance monitoring counters. Oprofile targets Linux systems and
requires a kernel driver that acts as a daemon to collect the profile
information. One of the positive aspects of the tool is that no
instrumentation or recompilation of applications is required. In addition,
Oprofile can profile optimized versions of applications.

The use model for Oprofile consists of configuring the daemon for profiling
and instructing the daemon to begin collecting profile data. The utility,
opcontrol, is used to issue commands to the collection daemon. The activity
to monitor is then started, which typically implies user invocation of the
application on a relevant benchmark. After the activity or application
execution is complete, the user shuts down collection. A separate command
line tool, opreport, is called with an option specifying the type of report
desired. Other utilities are available that round out the functionality. The
command line utilities that comprise oprofile and a description of each
follows:

 opcontrol. Confi gures the collector, initiates and terminates collection.
 opreport. Displays profile in human readable form, merging available

symbolic information where possible.
 opannotate. Displays profile information correlated with source and

assembly code.
 oparchive. Saves profile for offline viewing and analysis.
 opgprof. Translates profile into gprof-compatible file.

Table 2 summarizes the steps for employing oprofile to collect and output a
profile of an application reporting clock cycle information. Each step is

index % time self children called name

 183.25 7.75 500/500 scan_recognize [2]
[3] 84.1 183.25 7.75 500 match [3]
 4.39 0.00 4922/4922 simtest2 [5]
 3.01 0.00 4922/4922 reset_nodes2 [6]
 0.34 0.00 500/1054 reset_nodes [8]
 0.01 0.00 4422/4422 find_match [13]
 0.00 0.00 78/78 print_f12 [16]

Copyright © 2010 Intel Corporation 13

described followed by the command line to perform the action. These
commands should be executed with root privileges.

Table 2 Oprofile Profile Generation
Step Command line or Description
1. Initialize the oprofile daemon opcontrol –init
2. Configure profile collection opcontrol –setup –event=”default”
3. Start profile collection opcontrol –start
4. Start activity Begin activity to profile.
5. Stop profile collection opcontrol –stop
6. Produce report opreport –g –symbols

Figure 5 shows the output of oprofile after collecting a profile of the 179. art
application. The application was generated with debug information, which
enables function level reporting as evidenced by line number of symbol
names provided for the a.out application. The largest percentage of time,
44.2886 percent, was in the kernel (no-vmlinux). Using oprofile, it is
possible to turn off collection of events from the kernel. The second through
fifth highest ranked functions are inside of the 179.art application.

Figure 5 Oprofile Sample Output

Profile information can be collected based upon other processor events as
well. For a complete list of events supported by oprofile on your particular
target, use the –list-events option.

Microarchitecture Profiling: Intel® VTune™ Performance Analyzer

On desktop operating systems, the Intel VTune Performance Analyzer can
create flat profiles, application call graph profiles, and microarchitecture
profiles. The Intel® Application Software Development Tool Suite for Intel
Atom Processor includes the VTune analyzer and the VTune analyzer
Sampling Collector (SEP), a target-side profile collector for the Intel Atom
processor. For embedded form factors that take advantage of Linux, SEP
provides microarchitecture profiling capability. Using SEP requires
installation of a kernel daemon that is specific to the particular Linux kernel

CPU: Intel Atom, speed 1000 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of
0x00 (core_p Core cycles when core is not halted) count 100000
samples % linenr info image name app name symbol name
957979 44.2886 (no location information) no-vmlinux no-vmlinux /no-vmlinux
691019 31.9467 scanner.c:388 a.out a.out train_match
356627 16.4873 scanner.c:525 a.out a.out match
21716 1.0040 scanner.c:168 a.out a.out weightadj
15813 0.7311 scanner.c:90 a.out a.out simtest

Copyright © 2010 Intel Corporation 14

employed. The source code to the daemon can be built to enable collection
on specific Linux kernels. The process of using SEP is similar to oprofile.
Facilities for configuring collection, starting, and stopping are provided. Once
complete, the profile is then transferred to a host environment for
visualization inside of the VTune analyzer GUI.

Table 3 describes the steps and command lines employed to configure and
collect a profile.

Table 3 SEP Profile Generation Steps
Step Command line or Description
1. Initialize the vtune_drv daemon /opt/intel/vtune/vdk/insmod-vtune
2. Configure and start profile collection. sep –start -nb –d 0
3. Start activity Begin activity to profile.
4. Stop profile collection sep –stop
5. Produce report Transfer profile data file to host environment

for viewing.

The SEP data collector supports additional options to further configure
collection including:

 Sampling. Specify duration, interval between samples, sample buffer
size, and maximum samples to count.

 Application. Specify an application to launch and profile.
 Events. Configure events and event masks. Use –event-list for a list of

supported options.
 Continuous profiling. Aggregates data by instruction pointer, reducing

space and enabling monitoring and output during execution.
 Event multiplexing. Enables collection of multiple events concurrently

by modulating the specific event being measured while the application
is profiled.

Figure 6 shows a flat profile of the 179.art application collected using SEP
and transferred to a host system for analysis under the VTune analyzer GUI.
The highlighted ratio in the top right shows the measurement for clocks
cycles per instruction retired.

Copyright © 2010 Intel Corporation 15

Figure 6 VTune™ Analyzer Flat Profile View

Microarchitecture Profiling: Event-based Sampling

One issue with performance monitoring collection is that access to the
performance counters requires kernel, or ring 0, access. Event-based
sampling functions by setting up a performance monitoring counter to
overflow periodically and then recording the instruction pointer location with
the particular event. During profiling and as these events are recorded, a
correlation of the number of events to instruction pointers is created.
Implementing event-based sampling requires an interrupt handler to record
these performance monitoring counter overflows and a driver that writes the
counts to a file after collection is complete. The VTune analyzer includes its
driver source code, which can be used as a model for other operating
systems. In addition, a TBRW utility is included that enables a performance
monitoring driver to read and write the VTune analyzer’s data format, tb5.
This enables other performance monitoring utilities to take advantage of the
GUI provided by VTune analyzer.

Copyright © 2010 Intel Corporation 16

Microarchitecture Profiling: Intel® Performance Tuning Utility

For more advanced microarchitecture profiling, the Intel® Performance
Tuning Utility (Intel® PTU) leverages the same technology as the Intel
VTune analyzer and offers sophisticated views of performance events. This
tool is available on the whatif.intel.com site, which means it is an
experimental tool. Some of the capabilities of Intel PTU include:

 Basic block analysis. Creates and displays a control flow graph and
hotspots corresponding to basic blocks in the graph.

 Events over IP graph. Generates a histogram of performance events
distributed over application code.

 Loop analysis. Identifies loops and recursion in the application to aid
optimization.

 Result difference. Compares the results of multiple runs to measure
changes in performance

 Data access profiling. Identifies memory hotspots and relates them to
code hotspots.

Intel PTU is integrated into Eclipse†, which places requirements on the
system under test to be able to execute the Eclipse environment. Figure 7
shows a screenshot of the basic block analysis feature of Intel PTU.

Copyright © 2010 Intel Corporation 17

Figure 7 Intel® PTU Basic Block View

Multi-Core Performance Tools

Unique tools for analyzing performance related to multi-core processors are
still somewhat few in number. System profilers can provide information on
processes executing on a system; however interactions in terms of
messaging and coordination between processes are not visible. Tools that
offer visibility into this coordination typically must be cognizant of the
particular API in use. POSIX Threads is a commonly employed multi-core
programming API and therefore has relatively broad tools support.

Intel® Thread Profiler

The Intel® Thread Profiler identifies thread-related performance issues and
is capable of analyzing OpenMP†, POSIX, and Windows† multithreaded
applications. When used to profile an application, some of the key
capabilities include:

Copyright © 2010 Intel Corporation 18

 The display of a histogram of aggregate data on time spent in serial or
parallel regions.

 The display of a histogram of time spent accessing locks, in critical
regions, or with threads waiting at implicit barriers for other threads.

Intel Thread Profiler employs what is termed critical path analysis where
events are recorded including spawning new threads, joining terminated
threads, holding synchronization objects, waiting for synchronization objects
to be released, and waiting for external events. An execution flow is created
that is the execution through an application by a thread, and each of the
listed events above can split or terminate the fl ow. The critical path is
defined as the longest flow through the execution from the start of the
application until it terminates. The critical path is important because any
improvement in threaded performance along this path would increase overall
performance of the application.

Data recorded along the critical path includes the number of threads that are
active and thread interactions over synchronization objects. Figure 8 depicts
the Intel Thread Profiler GUI divided into two sections: Profile View and
Timeline View. On top is the Profile View, which gives a histogram
representation of data taken from the critical path and can be organized with
different filters that include the following:

 Number of active threads on the critical path.
 Object view: identifies the synchronization objects encountered by

threads.
 Thread view: shows the contribution of each thread to the critical path.

Benefits of these filters and views include:

 Knowledge of the amount of parallelism available during the
application execution.

 Helping locate load imbalances between threads.
 Determining what synchronization objects were responsible for the

most contention between threads.

The Timeline View shows the critical path over the time that the application
has run. The critical path travels from one thread to another and shows the
amount of time threads spend executing or waiting for a synchronization
object.

Copyright © 2010 Intel Corporation 19

Figure 8 Concurrency Level and Timeline View

CriticalBlue Prism†

CriticalBlue Prism† is another example of a toolsuite aimed at optimized
software development for multi-core and/or multithreaded architectures.
Prism can be used across the full range of activities needed to migrate
existing sequential single core software onto a multi-core platform.

CriticalBlue Prism’s what-if scheduling can be used to explore the benefit of
Intel® Hyper-Threading Technology on multi-core execution performance.

Prism’s analyses are based on a dynamic tracing approach. Traces of the
user’s software application are extracted either from a simulator of the
underlying processor core or via an instrumentation approach where the
application is dynamically instrumented to produce the required data. Once a
trace has been loaded into Prism the user can start to analyze the
application behavior in a multi-core context. In addition to standard profiling
data showing functions and their relative execution times, Prism provides the
user with specific insight relevant in a multi-core processor context.
Examples of the views and analyses available in Prism are:

 Histogram showing activity over time by individual function and
memory.

 Dynamic call graph showing function inter-relationships and frequency.
 Data dependency analysis between functions on sequential code.

Copyright © 2010 Intel Corporation 20

 What-if scheduling to explore the impact of executing functions in
separate threads.

 What-if scheduling to explore the impact of varying the numbers of
processor cores employed.

 What-if scheduling to explore the impact of removing identified data
dependencies.

 What-if scheduling to explore the impact of cache misses on multi-core
execution performance.

 What-if scheduling to explore the benefit of Intel Hyper-Threading
Technology on multi-core execution performance.

 Data race analysis between functions on multithreaded code.

Figure 9 is a screen shot of Prism analyzing sequential code where the user
has forced several functions to execute in their own threads and a trial
schedule has been generated on 4 cores. This trial schedule was modeled on
unchanged sequential code and enables the user to exhaustively test and
optimize the parallelization code prior to making code changes. For more
information on Prism, see www.criticalblue.com.

Figure 9 CriticalBlue Prism What-if Exploration Running on Sequential Code

Copyright © 2010 Intel Corporation 21

Power Performance Tools

As previously mentioned, the “race to idle” power optimization strategy is
implemented by employing the single-core and multi-core performance tools
mentioned previously. The focus of this section is on tools to assist with idle
mode optimization.

Two types of tools assess power performance. The first type of tool
measures the actual power used by the device via physical probes, a
technique referred to as probe-based profiling. The second type of tool
employs counters in the platform that measure power state transitions, a
technique referred to as power state-based profiling. For the sake of
completeness a brief description of each type of tool follows; however only
power state-based profiling is discussed at length and employed in the case
study.

Probe-based profiling employs an external device to measure and record the
power utilized by the system as a specific application executes. Typically,
there is some mechanism to correlate the power readings with points in the
application. An industry example of such a tool is the TMS320C55x† Power
Optimization DSP Starter Kit, which integrates National Instruments Power
Analyzer to provide a graphical view of power utilization over time. The Intel
Energy Checker SDK6 is another probe-based profiling tool that targets
desktop and server platforms. This tool measures power from the AC
adaptor using a measurement tool such as those available from Watts up?
and enables correlation with specific regions of application code. The data
transfer assumes a shared file system, which currently limits applicability to
desktop and server computing platforms.

Power-state profiling tools rely upon software interfaces into the platform’s
power states, which, instead of providing a measure of power utilization,
provide the number of times transitions occur between the platform power
states. The process of idle-mode optimization works by enabling increasing
application functionality and inspecting the recorded power data at every
stage. In many cases, additional power state transitions will be recorded.
Many of these additional transitions are necessary because as more
functionality of the application is enabled, more processing is required.
However, at each step, power state differences should be measured,
understood, and optimized away if truly unneeded.

PowerTOP is a Linux targeted tool that performs power state profiling and
targets idle mode optimization techniques. The tool executes on the target
device with an operating mode similar to the common Unix† tool, top, where
the tool provides a dashboard-like display. The intent is that the display

Copyright © 2010 Intel Corporation 22

would provide real-time updates as your applications execute on the target
device. Figure 10 displays a screenshot of PowerTOP and highlights its
functionality. The tool provides six categories of information, which are
summarized as follows:

 C state residency information. The average amount of time spent in
each C state and the average duration that is spent in each C state.

 P state residency information. The percentage of time the processor is
in a particular P state.

 Wakeups per second. The number of times per second the system
moves out of an idle C state.

 Power usage. An estimate of the power currently consumed and the
amount of battery life remaining.

 Top causes for wakeups. A rank ordered list of interrupts, processes,
and functions causing the system to transition to C0.

 Wizard mode. Suggestions for changes to the operating system that
could reduce power utilization.

Figure 10 PowerTOP

For more information about performance optimization and architecture
options, please refer to the book Break Away with Intel® Atom™

Copyright © 2010 Intel Corporation 23

Processors: A Guide to Architecture Migration by Lori Matassa and Max
Domeika.

About the Authors

Lori Matassa is a Sr. Staff Platform Software Architect in Intel’s Embedded
and Communications Division and holds a BS in Information Technology. She
has over 25 years experience as an embedded software engineer developing
software for platforms including mainframe and midrange computer system
peripherals, as well as security, storage, and embedded communication
devices. In recent years at Intel she has contributed to driver hardening
standards for Carrier Grade Linux, and has led the software enablement of
multi-core adoption and architecture migration for embedded and
communication applications. Lori is a key contributor to Intel’s Embedded
Design Center, with numerous whitepapers, blogs, and industry
contributions on a variety of topics critical to embedded migration.

Max Domeika is an embedded software technologist in the Developer
Products Division at Intel, creating tools targeting the Intel architecture
market. Over the past 14 years, Max has held several positions at Intel in
compiler development, which include project lead for the C++ front end and
developer on the optimizer and IA-32 code generator. Max currently
provides embedded tools consulting for customers migrating to Intel
architecture. In addition, he sets strategy and product plans for future
embedded tools. Max earned a BS in Computer Science from the University
of Puget Sound, an MS in Computer Science from Clemson University, and a
MS in Management in Science & Technology from Oregon Graduate Institute.
Max is the author of Software Development for Embedded Multi-core
Systems from Elsevier. In 2008, Max was awarded an Intel Achievement
Award for innovative compiler technology that aids in architecture
migrations.

Copyright © 2010 Intel Corporation. All rights reserved.

This article is based on material found in book Break Away with Intel®
Atom™ Processors: A Guide to Architecture Migration by Lori Matassa and
Max Domeika. Visit the Intel Press web site to learn more about this book:
http://www.intel.com/intelpress/sum_ms2a.htm

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,

Copyright © 2010 Intel Corporation 24

mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests
to the Publisher for permission should be addressed to the Publisher,
Intel Press, Intel Corporation, 2111 NE 25 Avenue, JF3-330, Hillsboro,
OR 97124-5961. E-mail: intelpress@intel.com .

