
Copyright © 2010 Intel Corporation  1 

Performance Optimization for the Intel Atom Architecture 
 
ABSTRACT: The quality of tools support has a direct impact on the 
effectiveness of your optimization efforts. Performance tools that target 
single processor core performance provide insight into the application and 
how the application is behaving at the level of the microarchitecture. Multi-
core performance tools provide insight into how the application is executing 
in the context of Intel® Hyper-Threading Technology and multi-core 
processing. Finally, performance tools focused on power optimization provide 
insight into application behavior that impacts power utilization. 
Understanding the capabilities of tools and how to use them is critical to 
your Intel Atom processor migration. This article instructs on the 
performance optimization process for systems based on the Intel Atom 
processor. First, an overview of the optimization process is discussed 
followed by a description of the tools employed in this process. 
 
 
Optimization Process 
 
Good software design seeks a balance between simplicity and efficiency. 
Performance of the application is an aspect of software design; however 
correctness and stability are typically prerequisite to extensive performance 
tuning efforts. A typical development cycle is depicted in Figure 1 and 
consists of four phases: design, implementation, debugging, and tuning. The 
development cycle is iterative and concludes when performance and stability 
requirements are met. Figure 1 further depicts a more detailed look inside of 
the tuning phase, which consists of single processor core optimization, multi-
core processor optimization, and power optimization. 
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Figure 1 Development and Optimization Process 
 
One key fact to highlight about the optimization process is that changes 
made during this phase can require another round of design, 
implementation, and debug. It is hoped that a candidate optimization would 
require minimal changes, but there are no guarantees. Each proposed 
change required as a result of a possible optimization should be evaluated in 
terms of stability risk, implementation effort, and performance benefit. 
 
Similarly, the tune step is also iterative with the goal of reaching a 
satisfactory equilibrium between single core, multi-core, and power 
performance. The components of the tune step are summarized as follows: 

 Single processor core tuning. Optimization of the application assuming 
execution on one Intel Atom processor core. This step focuses on 
increasing performance, which is typically the reduction of execution 
time. 

 Multi-core tuning. Optimization of the application taking advantage of 
parallel technology including Intel Hyper-Threading Technology and 
multiple processor cores. This step focuses on increasing performance, 
which is typically the reduction of execution time. 

 Power tuning. Optimization of the application focusing on power 
utilization. This step focuses on reducing the amount of power used in 
accomplishing the same amount of work. 

 



Copyright © 2010 Intel Corporation  3 

Single Processor Core Tuning 
 
Single processor core tuning focuses on improving the behavior of the 
application executing on one physical Intel Atom processor core. Intel 
Hyper-Threading Technology is not considered during this phase; it enables 
one physical processor core to appear as two cores and introduces issues 
more related to multi-core processing. This tuning step isolates the behavior 
of the application from more complicated interactions with other threads or 
processes on the system. This step is not entirely focused on what 
traditionally is called serial tuning because parallelism in the form of vector 
processing or acceleration technology can be considered. 
 
The foundation of performance tuning is built upon complementary 
assertions that of the Pareto principle and Amdahl’s law. The Pareto 
principle, colloquially known as the 80/20 rule, states that 80 percent of the 
time spent in an application is in 20 percent of the code. This observation 
helps prioritize optimization efforts to the areas of highest impact, namely 
the most frequently executed portions of the code. Amdahl’s law provides 
guidance on the limits of optimization. For example, if your optimization can 
only be applied to 75 percent of the application, the maximum theoretical 
speedup is 4 times. 
 
Single processor core tuning is itself comprised of multiple steps, which are 
characterized as first gaining an understanding of the application and then 
tuning based upon general performance analysis and tuning and then 
analysis and tuning specific to the Intel Atom processor. The single 
processor core tuning process is summarized by the following steps: 

1. Benchmark. Develop a benchmark that represents typical application 
usage. 

2. Profile. Analyze and understand the architecture of the application.  
3. Compiler optimization. Use aggressive optimizations if possible. 
4. General microarchitecture tuning. Tune based upon insight from 

general performance analysis statistics. These statistics, such as clock 
cycles per instruction retired, are generally accepted performance 
analysis statistics that can be employed regardless of the underlying 
architecture. 

5. Intel® Atom™ processor tuning. Tune based on insight about known 
processor “glass jaws.” These include statistics and techniques to 
isolate performance issues specific to the Intel Atom processor. 

 
Multi-Core Processor Tuning 
 
The focus of multi-core processor tuning is on the effective use of parallelism 
that takes advantage of more than one processor core. This step pertains to 
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both Intel Hyper-Threading Technology and true multi-core processing. 
There are some issues specific to each; where appropriate these differences 
are highlighted. Second, at the application level, two techniques allow you to 
take advantage of multiple processor cores, multitasking and multithreading. 
Multitasking is the execution of multiple operating system processes on a 
system. In the context of one application, multitasking requires the division 
of work between distinct processes and special effort is required to share 
data between processes. Multithreading is the execution of multiple threads 
and by default assumes memory is shared, which introduces its own set of 
concerns. This article limits itself to discussion of multithreading because 
multitasking is a more mature technology and one where the operating 
system governs much of the policy of execution. Multithreading in the 
context of the Intel Atom processor is much more under the control of the 
software developer. 
 
Developing software for multi-core processors requires good analysis and 
design techniques. A wealth of information on these techniques is available 
in literature by Mattson et al., Breshears, and many others. 
 
Tuning of multithreaded applications on the Intel Atom processor requires 
ensuring good performance when the application is executing on both, 
logical processor cores available via Intel Hyper-Threading Technology, and 
multiple physical processor cores. General multithreading issues that affect 
performance regardless of the architecture must be addressed. These issues 
include for example lock contention and workload balance. One of the 
performance concerns when executing under Intel Hyper-Threading 
Technology is on the shared resources of the processor core. For example, 
the caches are effectively shared between two concurrently executing 
threads. In a worst case scenario, it is possible for one thread to cause the 
other to miss in the cache on every access. Tuning for multi-core processors 
adds another level of complication as the possible thread interactions and 
cache behavior can be even more complicated. It is possible for two threads 
to cause false sharing, which limits performance but can be easily 
addressed. Understanding techniques to analyze performance and how to 
mitigate these performance issues are essential. 
 
Converting a serial application to take advantage of multithreading requires 
an approach that uses the generic development cycle, consisting of these 
five phases: Analysis, Design, Implementation, Debug, and Tune. There are 
threading tools that help with code analysis, debugging, and performance 
tuning. 

1. Analysis. Develop a benchmark that represents typical system usage 
and comprised by concurrent execution of processes and threads. In 
many cases, the benchmark from the single core tuning phase and the 
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initial parallel implementation may be an appropriate starting point. 
Use a system performance profiler such as the Intel® VTune™ 
Performance Analyzer to identify the performance hotspots in the 
critical path. Determine if the identified computations can be executed 
independently. If so, proceed to the next phase; otherwise look for 
other opportunities with independent computations. 

2. Design. Determine changes required to accommodate a threading 
paradigm (data restructuring, code restructuring) by characterizing the 
application threading model (data-level or task-level parallelization). 
Identify which variables must be shared and if the current design 
structure is a good candidate for sharing. 

3. Implementation. Convert the design into code based on the selected 
threading model. Consider coding guidelines based on the processor 
architecture, such as the use of the PAUSE instruction within spinwait 
loops. Make use of the multithreading software development 
methodologies and tools. 

4. Debug. Use runtime debugging and thread analysis tools such as 
Intel® Thread Checker. 

5. Tune. Tune for concurrent execution on multiple processor cores 
executing without Intel Hyper-Threading Technology. Tune for 
concurrent execution on multiple processor cores executing with Intel 
Hyper-Threading Technology. 

 
Power Tuning 
 
Tuning that is focused on power utilization is a relatively new addition to the 
optimization process for Intel architecture processors. The goal of this phase 
is to reduce the power utilized by the application when executing on the 
embedded system. One of the key methods of doing so is by helping the 
processor enter and stay in one of its idle states. 
 
Basics on Power 
 
In an embedded system, power at its fundamental level is a measure of the 
number of watts consumed in driving the system. 
 
Power can be consumed by several components in a system. Typically, the 
display and the processor are the two largest consumers of power in an 
embedded computing system. Other consumers of system power include the 
memory, hard drives, solid state drives, and communications. Power 
management features already exist in many operating systems and enable 
implementation of power policy where various components are powered 
down when idle for long periods. A simple example is turning off the display 
after a few minutes of idle activity. Power policy can also govern behavior 
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based upon available power sources. For example, the embedded system 
may default to a low level of display brightness when powered by battery as 
opposed to being plugged into an outlet. 
 
Several statistics exist for characterizing the power used by a system 
including: 

 Thermal design power (TDP). The maximum amount of heat that a 
thermal solution must be able to dissipate from the processor so that 
the processor operates under normal operating conditions. TDP is 
typically measured in watts. 

 “Plug load” power. A measure of power drawn from an outlet as the 
embedded system executes. Plug load power is typically measured in 
watts. 

 Battery power draw. A estimate of power drawn from a battery as the 
embedded system executes. Typically, battery power draw is stated in 
watts and is based upon estimates from ACPI. 

 
Your project requirements will guide which of these power measurements to 
employ and what goals will be set with regard to them. 
 
The Intel Atom processor enables a number of power states, which are 
classified into C-states and P-states. C-states are different levels of 
processor activity and range from C0, where the processor is fully active 
down to C61 where the processor is completely idle and many portions of 
the processor are powered down. P-states, known as performance states, 
are different levels of processor frequency and voltage. 
 
Power Measurement Tools 
 
In order to determine if optimizations improve power utilization, a tool is 
required to measure power utilization. There are two categories of tools to 
measure power on an embedded system. The first category provides a direct 
measurement and employs physical probes to measure the amount of power 
used. These probes could be as simple as a plug load power probe between 
the device and the electrical outlet. They could require more extensive 
probes placed on the system board monitoring various power rails such as 
those required to execute the EEMBC Energybench2 benchmark. 
 
The second category, power state profiling tools, employs an indirect 
method of measuring power utilization. Instead of directly measuring power, 
this class of tool measures and reports on the amount of time spent in 
different power states. The objective when using these tools is to understand 
what activities are causing the processor to enter C0 and to minimize them. 
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Tuning Overview 
 
The goal of power tuning is two-fold: 

 Minimize time in active state. 
 Maximize time in inactive state. 

 
On the surface it may seem like these goals are redundant; however in 
practice both are required. Power is expended in transitioning into and out of 
idle modes. A processor that is repeatedly waking up and then going back to 
sleep may consume more power than a processor that has longer periods in 
an active state. In general, the end result is for the system to be in idle 
mode 90 percent of the time. Of course, this end result depends on the 
specific workload and application. Techniques to meet this goal follow one of 
two tuning strategies, which are summarized as follows: 

 Race to idle. The tasks are executed as quickly as possible to enable 
the system to idle. This approach typically entails aggressive 
performance optimization using similar techniques as single core and 
multi-core performance tuning. 

 Idle mode optimization. Iteratively add software components 
executing on the system and analyze power state transitions to ensure 
these components are as nondisruptive to power utilization as 
possible. 

 
High power utilization has several causes, including: 

 Poor computational efficiency 
 Poor memory management 
 Bad timer and interrupt behavior 
 Poor power awareness 
 Bad multithreading behavior 

 
The Performance Tuning Cycle 
 
It is important to note that the tuning process is not sequential, but 
iterative. It is typically not sufficient to step through the three phases only 
once. Changes made during the power optimization phase may require a 
new pass at single-core and multi-core optimization to meet performance 
targets. A subsequent multi-core focused optimization may place 
inappropriate demand on power and require further power optimization. The 
hope is that the changes made have less and less of an impact until an 
equilibrium is reached and the performance targets are met. This is when 
one can consider performance tuning to be complete. That said, performance 
regression tests should be run to ensure subsequent bug fixes and changes 
do not impact performance negatively. 
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Power and Performance Analysis Tools Overview 
 
Software tools for performance and power optimization aid in your analysis 
and tuning efforts. The specific tools detailed in this section are arranged 
according to the performance tuning phase. The information here provides 
further details on the capabilities and usages of the tools specific to 
performance optimization. 
 
Single Core Performance Tools 
 
Tools for analyzing single core processor performance provide insight into 
how an application is behaving as it executes on one processor core. These 
tools provide different views on the application ranging from how the 
application interacts with other processes on the system down to how the 
application affects the processor microarchitecture. Many tools are available 
that provide profiling capability in different ways. Typically, they fall into one 
of the following categories: 

 System profilers. Provide a summary of execution times across 
processes on the system. 

 Application profilers. Provide a summary of execution times at the 
function level of the application. 

 Micro-architecture profilers. Provide a summary of processor events 
across applications and functions executing on the system. 

 
Two definitions relevant to profiling concern how the data is viewed. A flat 
profile is a correlation of processes and functions with the amount of time 
the profiler recorded in each. A flat profile does not show relationships 
between the processes and functions listed with any other processes or 
functions executing on the system. A call graph profile shows these 
relationships and contributions to the measured times between the caller 
functions and called functions. 
 
Profilers obtain information by sampling or tracing the system while the 
application is executing. Three techniques for sampling the system are 
summarized as follows: 

 Operating system provided API. Operating system provides capability 
to periodically sample and record information on executing processes. 

 Software instrumentation. Application has code added to trace and 
record statistics. 

 Hardware performance monitoring counters. Employed by 
microarchitecture profilers. Provides information on microarchitecture 
events such as branch mispredictions and cache misses. 
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Table 1 describes several tools used in single core performance analysis. 
These tools are not all equal. Some of the tools provide functionality that is a 
superset of others. For example, sysprof is capable of providing a call graph 
profile across all applications executing on a system; GNU gprof is not. 
However, gprof is available across a wide range of operating systems; 
sysprof is a Linux tool. An exhaustive list of profiling tools is outside the 
scope of this article; we merely list a few tools representative of the profiler 
categories above. 
 
Table 1 Single Core Performance Tools Examples 
Tool Type Description 
Sysprof System profiler Easy to use, start and stop profiler. Provides system-

wide flat profile and call graph information if debug 
information is present. 

GNU gprof Application 
profiler 

Ubiquitous, widely available single application profiler. 
Requires recompilation to add instrumentation. 
Provides flat profile and call graph profile. 

Oprofile Microarchitecture 
profiler 

Linux-targeted microarchitecture profiler. Enables 
event-based sampling using hardware performance 
monitoring counters.  

Intel® 
VTune™ 
Performance 
Analyzer 

Microarchitecture 
profiler 

Windows† and Linux-targeted microarchitecture 
profiler. Enables event-based sampling using hardware 
performance monitoring counters. Powerful GUI 
enables easy visualization. 

Intel® 
Performance 
Tuning Utility 

Microarchitecture 
profiler 

Similar to VTune Performance Analyzer with enhanced 
event-based profiling features. Basic block view. 

 
System Profiling: Sysprof 
 
Sysprof is a Linux hosted and targeted system profiler that provides 
information across the kernel and user level processes. The tool offers a very 
simple user interface as depicted in Figure 2. To begin profiling, the user 
presses the Start button. If an application is being profiled it must be started 
independently of sysprof. The application itself does not require special 
instrumentation; however if detailed function-level information is desired 
then debug information should be provided. To stop profiling and show the 
collected results, the user clicks on the Profile button. Figure 2 displays a 
profile of an application viewed using sysprof. The screen is divided into 
three sections. The top left section labeled Functions is a listing of functions 
where the greatest amount of time was measured during profiling. Time per 
individual function includes the time spent in any function called as a result 
of the function, such as descendents in the call chain. Time is reported in 
two forms, self time and total time. Self time is the execution time inside the 
function and does not include called functions. Total time is the amount of 
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time inside the function and all of its descendents. The bottom left window is 
labeled Callers and is a list of functions that call the highlighted function in 
the Functions box. Time in the Callers window is relative to the highlighted 
function. The self time indicates how much time is spent in the caller 
function while the total time is the component of time spent calling the 
highlighted function. The sum of the total time column in the Callers box 
equals the total time of the highlighted function in the Functions box. The 
Descendents window shows a portion of the call graph of the highlighted 
function. To follow a path through the call graph further, click the right-
facing triangle, which will show another level of the call graph. At each node 
of the call graph that represents a function, time is reported for it in both, 
self time and cumulative time. Self time has been previously described. 
Cumulative time is the time in the function and all of its descendents and is 
a fraction of the time spent by a caller higher in the call graph. 
 

 

 
 

Figure 2 Sysprof Display 
 
A command line version of the tool is also supported. It is also possible to 
dump the profile results to a file for offline processing. 
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Application Profiling: GNU gprof 
 
GNU gprof4 is an application-level profiling tool that serves as the output 
and reporting tool for applications that have been compiled and 
instrumented using the –pg option. This option is supported by GNU gcc and 
other compilers and results in instrumentation being added to the application 
to collect profile information. The instrumented application generates a 
profile data file (gmon. out is the default profile file name) when executed. 
Gprof is then employed to process the profile data and generate reports such 
as an ordered listing of the functions that consume the largest amount of 
execution time. 
 
Figure 3 shows sample gprof profile output obtained by profiling the SPEC 
CPU2000 benchmark, 179.art5. The first report is a flat profile and shows a 
rank ordering of the various functions in the application based upon the 
amount of time recorded during the execution. Based upon this report, the 
function, match, had the longest amount of time spent in it, 183.25 seconds, 
which was 80.64 percent of the total execution time. The profile reports that 
the function, match was called 500 times. The self s/call column represents 
the average amount of time spent inside the function per call. The total 
s/call column represents the average amount of time spent inside the 
function and its descendents per call. For the function, match, these times 
are 0.37 seconds and 0.38 seconds respectively. 
 

 
 

 
 

Figure 3 Gprof Flat Profile Output 
 
GNU gprof also provides call graph information. Figure 4 shows a portion of 
the call graph from the function, match, which shows the primary caller is 

Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 80.64    183.25   183.25      500     0.37     0.38  match
 14.79    216.86    33.61      554     0.06     0.07  train_match
  1.93    221.25     4.39     4922     0.00     0.00  simtest2
  1.32    224.26     3.01     4922     0.00     0.00  reset_nodes2
  0.47    225.33     1.07      554     0.00     0.00  weightadj
  0.32    226.05     0.72     1054     0.00     0.00  reset_nodes
  0.32    226.77     0.72      554     0.00     0.00  simtest
  0.11    227.02     0.25 11080000     0.00     0.00  g
  0.07    227.17     0.15        1     0.15   191.15  scan_recognize
  0.01    227.19     0.02        3     0.01     0.01  init_bu
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identified by index [2], scan_recognize. For further details on gprof, see the 
online documentation. 
 

 
 

 
 

Figure 4 Gprof Call Graph Output 
 
Microarchitecture Profi ling: Oprofile 
 
Oprofile is a command line-based microarchitecture profiler providing access 
to the performance monitoring counters. Oprofile targets Linux systems and 
requires a kernel driver that acts as a daemon to collect the profile 
information. One of the positive aspects of the tool is that no 
instrumentation or recompilation of applications is required. In addition, 
Oprofile can profile optimized versions of applications. 
 
The use model for Oprofile consists of configuring the daemon for profiling 
and instructing the daemon to begin collecting profile data. The utility, 
opcontrol, is used to issue commands to the collection daemon. The activity 
to monitor is then started, which typically implies user invocation of the 
application on a relevant benchmark. After the activity or application 
execution is complete, the user shuts down collection. A separate command 
line tool, opreport, is called with an option specifying the type of report 
desired. Other utilities are available that round out the functionality. The 
command line utilities that comprise oprofile and a description of each 
follows: 

 opcontrol. Confi gures the collector, initiates and terminates collection. 
 opreport. Displays profile in human readable form, merging available 

symbolic information where possible. 
 opannotate. Displays profile information correlated with source and 

assembly code. 
 oparchive. Saves profile for offline viewing and analysis. 
 opgprof. Translates profile into gprof-compatible file. 

 
Table 2 summarizes the steps for employing oprofile to collect and output a 
profile of an application reporting clock cycle information. Each step is 

index % time    self  children    called     name
-----------------------------------------------
              183.25    7.75     500/500         scan_recognize [2]
[3]     84.1  183.25    7.75     500         match [3]
                4.39    0.00    4922/4922        simtest2 [5]
                3.01    0.00    4922/4922        reset_nodes2 [6]
                0.34    0.00     500/1054        reset_nodes [8]
                0.01    0.00    4422/4422        find_match [13]
                0.00    0.00      78/78          print_f12 [16]
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described followed by the command line to perform the action. These 
commands should be executed with root privileges. 
 
Table 2 Oprofile Profile Generation 
Step Command line or Description 
1. Initialize the oprofile daemon opcontrol –init 
2. Configure profile collection opcontrol –setup –event=”default” 
3. Start profile collection opcontrol –start 
4. Start activity Begin activity to profile. 
5. Stop profile collection opcontrol –stop 
6. Produce report opreport –g –symbols 

 
Figure 5 shows the output of oprofile after collecting a profile of the 179. art 
application. The application was generated with debug information, which 
enables function level reporting as evidenced by line number of symbol 
names provided for the a.out application. The largest percentage of time, 
44.2886 percent, was in the kernel (no-vmlinux). Using oprofile, it is 
possible to turn off collection of events from the kernel. The second through 
fifth highest ranked functions are inside of the 179.art application. 
 

 

 
 

Figure 5 Oprofile Sample Output 
 
Profile information can be collected based upon other processor events as 
well. For a complete list of events supported by oprofile on your particular 
target, use the –list-events option. 
 
Microarchitecture Profiling: Intel® VTune™ Performance Analyzer 
 
On desktop operating systems, the Intel VTune Performance Analyzer can 
create flat profiles, application call graph profiles, and microarchitecture 
profiles. The Intel® Application Software Development Tool Suite for Intel 
Atom Processor includes the VTune analyzer and the VTune analyzer 
Sampling Collector (SEP), a target-side profile collector for the Intel Atom 
processor. For embedded form factors that take advantage of Linux, SEP 
provides microarchitecture profiling capability. Using SEP requires 
installation of a kernel daemon that is specific to the particular Linux kernel 

CPU: Intel Atom, speed 1000 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 
0x00 (core_p Core cycles when core is not halted) count 100000
samples  %        linenr info                 image name    app name       symbol name
957979   44.2886  (no location information)   no-vmlinux    no-vmlinux     /no-vmlinux
691019   31.9467  scanner.c:388               a.out         a.out          train_match
356627   16.4873  scanner.c:525               a.out         a.out          match
21716     1.0040  scanner.c:168               a.out         a.out          weightadj
15813     0.7311  scanner.c:90                a.out         a.out          simtest
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employed. The source code to the daemon can be built to enable collection 
on specific Linux kernels. The process of using SEP is similar to oprofile. 
Facilities for configuring collection, starting, and stopping are provided. Once 
complete, the profile is then transferred to a host environment for 
visualization inside of the VTune analyzer GUI. 
 
Table 3 describes the steps and command lines employed to configure and 
collect a profile. 
 
Table 3 SEP Profile Generation Steps 
Step Command line or Description 
1. Initialize the vtune_drv daemon /opt/intel/vtune/vdk/insmod-vtune 
2. Configure and start profile collection. sep –start  -nb –d 0  
3. Start activity Begin activity to profile. 
4. Stop profile collection sep –stop 
5. Produce report Transfer profile data file to host environment 

for viewing. 

 
The SEP data collector supports additional options to further configure 
collection including: 

 Sampling. Specify duration, interval between samples, sample buffer 
size, and maximum samples to count. 

 Application. Specify an application to launch and profile. 
 Events. Configure events and event masks. Use –event-list for a list of 

supported options. 
 Continuous profiling. Aggregates data by instruction pointer, reducing 

space and enabling monitoring and output during execution. 
 Event multiplexing. Enables collection of multiple events concurrently 

by modulating the specific event being measured while the application 
is profiled. 

 
Figure 6 shows a flat profile of the 179.art application collected using SEP 
and transferred to a host system for analysis under the VTune analyzer GUI. 
The highlighted ratio in the top right shows the measurement for clocks 
cycles per instruction retired. 
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Figure 6 VTune™ Analyzer Flat Profile View 
 
Microarchitecture Profiling: Event-based Sampling 
 
One issue with performance monitoring collection is that access to the 
performance counters requires kernel, or ring 0, access. Event-based 
sampling functions by setting up a performance monitoring counter to 
overflow periodically and then recording the instruction pointer location with 
the particular event. During profiling and as these events are recorded, a 
correlation of the number of events to instruction pointers is created. 
Implementing event-based sampling requires an interrupt handler to record 
these performance monitoring counter overflows and a driver that writes the 
counts to a file after collection is complete. The VTune analyzer includes its 
driver source code, which can be used as a model for other operating 
systems. In addition, a TBRW utility is included that enables a performance 
monitoring driver to read and write the VTune analyzer’s data format, tb5. 
This enables other performance monitoring utilities to take advantage of the 
GUI provided by VTune analyzer. 
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Microarchitecture Profiling: Intel® Performance Tuning Utility 
 
For more advanced microarchitecture profiling, the Intel® Performance 
Tuning Utility (Intel® PTU) leverages the same technology as the Intel 
VTune analyzer and offers sophisticated views of performance events. This 
tool is available on the whatif.intel.com site, which means it is an 
experimental tool. Some of the capabilities of Intel PTU include: 

 Basic block analysis. Creates and displays a control flow graph and 
hotspots corresponding to basic blocks in the graph. 

 Events over IP graph. Generates a histogram of performance events 
distributed over application code. 

 Loop analysis. Identifies loops and recursion in the application to aid 
optimization. 

 Result difference. Compares the results of multiple runs to measure 
changes in performance 

 Data access profiling. Identifies memory hotspots and relates them to 
code hotspots. 

 
Intel PTU is integrated into Eclipse†, which places requirements on the 
system under test to be able to execute the Eclipse environment. Figure 7 
shows a screenshot of the basic block analysis feature of Intel PTU. 
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Figure 7 Intel® PTU Basic Block View 
 
Multi-Core Performance Tools 
 
Unique tools for analyzing performance related to multi-core processors are 
still somewhat few in number. System profilers can provide information on 
processes executing on a system; however interactions in terms of 
messaging and coordination between processes are not visible. Tools that 
offer visibility into this coordination typically must be cognizant of the 
particular API in use. POSIX Threads is a commonly employed multi-core 
programming API and therefore has relatively broad tools support. 
 
Intel® Thread Profiler 
 
The Intel® Thread Profiler identifies thread-related performance issues and 
is capable of analyzing OpenMP†, POSIX, and Windows† multithreaded 
applications. When used to profile an application, some of the key 
capabilities include: 
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 The display of a histogram of aggregate data on time spent in serial or 
parallel regions. 

 The display of a histogram of time spent accessing locks, in critical 
regions, or with threads waiting at implicit barriers for other threads. 

 
Intel Thread Profiler employs what is termed critical path analysis where 
events are recorded including spawning new threads, joining terminated 
threads, holding synchronization objects, waiting for synchronization objects 
to be released, and waiting for external events. An execution flow is created 
that is the execution through an application by a thread, and each of the 
listed events above can split or terminate the fl ow. The critical path is 
defined as the longest flow through the execution from the start of the 
application until it terminates. The critical path is important because any 
improvement in threaded performance along this path would increase overall 
performance of the application. 
 
Data recorded along the critical path includes the number of threads that are 
active and thread interactions over synchronization objects. Figure 8 depicts 
the Intel Thread Profiler GUI divided into two sections: Profile View and 
Timeline View. On top is the Profile View, which gives a histogram 
representation of data taken from the critical path and can be organized with 
different filters that include the following: 

 Number of active threads on the critical path. 
 Object view: identifies the synchronization objects encountered by 

threads. 
 Thread view: shows the contribution of each thread to the critical path. 

 
Benefits of these filters and views include: 

 Knowledge of the amount of parallelism available during the 
application execution. 

 Helping locate load imbalances between threads. 
 Determining what synchronization objects were responsible for the 

most contention between threads. 
 
The Timeline View shows the critical path over the time that the application 
has run. The critical path travels from one thread to another and shows the 
amount of time threads spend executing or waiting for a synchronization 
object. 
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Figure 8 Concurrency Level and Timeline View 
 
CriticalBlue Prism† 
 
CriticalBlue Prism† is another example of a toolsuite aimed at optimized 
software development for multi-core and/or multithreaded architectures. 
Prism can be used across the full range of activities needed to migrate 
existing sequential single core software onto a multi-core platform. 
 
CriticalBlue Prism’s what-if scheduling can be used to explore the benefit of 
Intel® Hyper-Threading Technology on multi-core execution performance. 
 
Prism’s analyses are based on a dynamic tracing approach. Traces of the 
user’s software application are extracted either from a simulator of the 
underlying processor core or via an instrumentation approach where the 
application is dynamically instrumented to produce the required data. Once a 
trace has been loaded into Prism the user can start to analyze the 
application behavior in a multi-core context. In addition to standard profiling 
data showing functions and their relative execution times, Prism provides the 
user with specific insight relevant in a multi-core processor context. 
Examples of the views and analyses available in Prism are: 

 Histogram showing activity over time by individual function and 
memory. 

 Dynamic call graph showing function inter-relationships and frequency. 
 Data dependency analysis between functions on sequential code. 
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 What-if scheduling to explore the impact of executing functions in 
separate threads. 

 What-if scheduling to explore the impact of varying the numbers of 
processor cores employed. 

 What-if scheduling to explore the impact of removing identified data 
dependencies. 

 What-if scheduling to explore the impact of cache misses on multi-core 
execution performance. 

 What-if scheduling to explore the benefit of Intel Hyper-Threading 
Technology on multi-core execution performance. 

 Data race analysis between functions on multithreaded code. 
 
Figure 9 is a screen shot of Prism analyzing sequential code where the user 
has forced several functions to execute in their own threads and a trial 
schedule has been generated on 4 cores. This trial schedule was modeled on 
unchanged sequential code and enables the user to exhaustively test and 
optimize the parallelization code prior to making code changes. For more 
information on Prism, see www.criticalblue.com. 
 

 

 
 

Figure 9 CriticalBlue Prism What-if Exploration Running on Sequential Code 
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Power Performance Tools 
 
As previously mentioned, the “race to idle” power optimization strategy is 
implemented by employing the single-core and multi-core performance tools 
mentioned previously. The focus of this section is on tools to assist with idle 
mode optimization. 
 
Two types of tools assess power performance. The first type of tool 
measures the actual power used by the device via physical probes, a 
technique referred to as probe-based profiling. The second type of tool 
employs counters in the platform that measure power state transitions, a 
technique referred to as power state-based profiling. For the sake of 
completeness a brief description of each type of tool follows; however only 
power state-based profiling is discussed at length and employed in the case 
study. 
 
Probe-based profiling employs an external device to measure and record the 
power utilized by the system as a specific application executes. Typically, 
there is some mechanism to correlate the power readings with points in the 
application. An industry example of such a tool is the TMS320C55x† Power 
Optimization DSP Starter Kit, which integrates National Instruments Power 
Analyzer to provide a graphical view of power utilization over time. The Intel 
Energy Checker SDK6 is another probe-based profiling tool that targets 
desktop and server platforms. This tool measures power from the AC 
adaptor using a measurement tool such as those available from Watts up? 
and enables correlation with specific regions of application code. The data 
transfer assumes a shared file system, which currently limits applicability to 
desktop and server computing platforms. 
 
Power-state profiling tools rely upon software interfaces into the platform’s 
power states, which, instead of providing a measure of power utilization, 
provide the number of times transitions occur between the platform power 
states. The process of idle-mode optimization works by enabling increasing 
application functionality and inspecting the recorded power data at every 
stage. In many cases, additional power state transitions will be recorded. 
Many of these additional transitions are necessary because as more 
functionality of the application is enabled, more processing is required. 
However, at each step, power state differences should be measured, 
understood, and optimized away if truly unneeded. 
 
PowerTOP is a Linux targeted tool that performs power state profiling and 
targets idle mode optimization techniques. The tool executes on the target 
device with an operating mode similar to the common Unix† tool, top, where 
the tool provides a dashboard-like display. The intent is that the display 
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would provide real-time updates as your applications execute on the target 
device. Figure 10 displays a screenshot of PowerTOP and highlights its 
functionality. The tool provides six categories of information, which are 
summarized as follows: 

 C state residency information. The average amount of time spent in 
each C state and the average duration that is spent in each C state. 

 P state residency information. The percentage of time the processor is 
in a particular P state. 

 Wakeups per second. The number of times per second the system 
moves out of an idle C state. 

 Power usage. An estimate of the power currently consumed and the 
amount of battery life remaining. 

 Top causes for wakeups. A rank ordered list of interrupts, processes, 
and functions causing the system to transition to C0. 

 Wizard mode. Suggestions for changes to the operating system that 
could reduce power utilization. 

 
 

 
 

Figure 10 PowerTOP 
 
 
 
For more information about performance optimization and architecture 
options, please refer to the book Break Away with Intel® Atom™ 
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Processors:  A Guide to Architecture Migration by Lori Matassa and Max 
Domeika. 
 

About the Authors 

Lori Matassa is a Sr. Staff Platform Software Architect in Intel’s Embedded 
and Communications Division and holds a BS in Information Technology. She 
has over 25 years experience as an embedded software engineer developing 
software for platforms including mainframe and midrange computer system 
peripherals, as well as security, storage, and embedded communication 
devices. In recent years at Intel she has contributed to driver hardening 
standards for Carrier Grade Linux, and has led the software enablement of 
multi-core adoption and architecture migration for embedded and 
communication applications. Lori is a key contributor to Intel’s Embedded 
Design Center, with numerous whitepapers, blogs, and industry 
contributions on a variety of topics critical to embedded migration. 
  
Max Domeika is an embedded software technologist in the Developer 
Products Division at Intel, creating tools targeting the Intel architecture 
market. Over the past 14 years, Max has held several positions at Intel in 
compiler development, which include project lead for the C++ front end and 
developer on the optimizer and IA-32 code generator. Max currently 
provides embedded tools consulting for customers migrating to Intel 
architecture. In addition, he sets strategy and product plans for future 
embedded tools. Max earned a BS in Computer Science from the University 
of Puget Sound, an MS in Computer Science from Clemson University, and a 
MS in Management in Science & Technology from Oregon Graduate Institute. 
Max is the author of Software Development for Embedded Multi-core 
Systems from Elsevier. In 2008, Max was awarded an Intel Achievement 
Award for innovative compiler technology that aids in architecture 
migrations. 
 
 

Copyright © 2010 Intel Corporation. All rights reserved. 

 

This article is based on material found in book Break Away with Intel® 
Atom™ Processors: A Guide to Architecture Migration by Lori Matassa and 
Max Domeika. Visit the Intel Press web site to learn more about this book: 
http://www.intel.com/intelpress/sum_ms2a.htm 

 

No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means, electronic, 



Copyright © 2010 Intel Corporation  24 

mechanical, photocopying, recording, scanning or otherwise, except as 
permitted under Sections 107 or 108 of the 1976 United States 
Copyright Act, without either the prior written permission of the 
Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, 
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests 
to the Publisher for permission should be addressed to the Publisher, 
Intel Press, Intel Corporation, 2111 NE 25 Avenue, JF3-330, Hillsboro, 
OR 97124-5961. E-mail: intelpress@intel.com . 

 


