WHITE PAPER
Intel® Distribution for Apache Hadoop* Software

Financial Services
Big Data Analytics

Better Performance for Big Data

One of the Largest Banks in Italy Speeds Processing for Big Data Analytics with

Intel® Distribution for Apache Hadoop Software

The new solution helped the bank
meet its data challenges and

enjoy faster performance for data
acquisition, extraction, and analysis.
It also delivered more flexibility to
let the bank adapt to the nature

of the data generated.

Authors

Bhasker Allene, Intel Corporation
bhasker.allene@intel.com

Marco Righini, Intel Corporation
marco.righini@intel.com

EXECUTIVE SUMMARY

A large Italian bank needed a more cost-effective way to manage the vast amounts of
data it must organize and report on to comply with government regulations. It worked
with Intel to pilot a solution based on Intel® Distribution for Apache Hadoop software.
The new solution helped the bank meet its data challenges and enjoy faster performance
for data acquisition, extraction, and analysis. It also delivered more flexibility to let the
bank adapt to the nature of the data generated. The bank is now investigating whether
other applications and datasets could benefit from an infrastructure based on Apache

Hadoop software.

The Data Challenge

Financial institutions, especially in the
European Union (EU), must comply with
numerous regulations. In most countries,
they need to report to their respective
central banks the overall health of both
the financial institution itself and the enti-
ties it supervises.

In Italy, banks require vast amounts of data
from several sources, using it for control activ-
ities and to help identify new areas of admin-
istrative inspection as well as to understand
their market segment. A bank uses the infor-
mation to make risk assessments for the enti-
ties it supervises and to identify early signs of
anomalies to prevent potential crises.

Basic information and business analysis of
the data also allows the bank to:

= Exercise its powers of authorization
and veto regarding the structure and
operation of intermediaries in the cases
provided by law

= Study the evolution of the banking and
financial system and its potential to
update the regulatory framework

= Comply with requests for information
from institutional representatives of the
supervisory board (i.e., judiciary,
Parliament, ministries, and other organi-
zations and national and foreign super-
visory authorities)

The data in the statistical reports allows the
bank to carry out systematic analysis on the
technical standing, risk profiles, assets, and
income of banks and financial groups and to
verify compliance with both individual and
consolidated prudential rules.

Today, most banks analyze their data using
either mainframes or very costly solutions.
One bank in Italy wanted to prove that it
could get the same results with less expen-
sive and more scalable and flexible solutions
such as those based on Apache Hadoop, an
open-source framework that allows for the
distributed processing of large data sets
across clusters of computers using simple
programming models.

One of the biggest banks in the country had

started years ago to migrate workloads from
the mainframe to a distributed environment.
Cost control, scalability, flexibility, and choice
were the primary drivers behind this strate-

gy, which implies calculated risks around the
company's core business.

In 2001, the bank purchased an application
stack that was able to get input data from
the mainframe, extract it, and perform all
mandatory monthly and quarterly reports to
the central bank.

The project was only partially successful. For
the last four years, the bank has been con-
sidering how to completely redesign its

Better Performance for Big Data

solution and move from its current application to
an Oracle*-based, closed solution. If successful,
this would improve on all the negative aspects
of the previous solution, which included:

= Long processing time

= Inability of the existing database to handle
data tables with more than 1,024 columns

= Need for a specific programming language
to interface with the bank’s proprietary
solution

= Limited capacity and data quality and
inability to create a bigger data ware-
house containing all the required data

= The increasing costs associated with a
three-year postponement of the migration
to the new solution, caused by lack of
tools, the syntax of semi-structured data,
and the bank's speed of change

Intel proposed a pilot solution based on Intel
Distribution for Apache Hadoop software, using
its flexibility to address all these challenges
and deliver:

= Faster performance in the load (data
acquisition) phase

= The same or better performance in the
extraction and analysis phase

= More flexibility to adapt to the nature of
the data generated by the bank (a perfect
fit with the Hadoop usage model)

= Containment of the Oracle footprint with-
in the bank

Besides these critical considerations, the bank
realized that Hadoop was able to do many of
the most frequent conversions and that the
Intel Distribution for Apache Hadoop software
is a great tool for downsizing batch processing.

The return on investment was another key
consideration. The bank could pay for the new
hardware, software, and support subscription,
plus four weeks of professional services,

through savings on storage changes. The bank
realized that moving from storage area net-
work (SAN) storage to Hadoop-based distrib-
uted storage would, on its own, pay back most
of the initial investment.

Historically, financial institutions have run their
core IT banking applications on mainframes.
Data is stored on a Mainframe in Extended
Binary Coded Decimal Interchange Code
(EBCDIC). To comply with mandatory regula-
tions, the bank needs to run monthly jobs on
the mainframe, export some specific data, and
transform it from EBCDIC to ASCIL.

Those files then need to be converted and
loaded monthly into a data warehouse, which
keeps 24 months worth (approximately 74 ter-
abytes) of data online.

It is hard to process the data with traditional
approaches due to:

= The variety of data. The data
changes structure frequently. Every
month, columns can vary in both quan-
tity and order.

= Semi-structured data. The type of data
the bank uses is semi-structured and very
close to XML.

= Processing speed. To meet legal require-
ments, reports based on the data need to
be delivered on time. It was challenging
for the bank to transform the data and
put it into a structured database. A single
130-gigabyte file, for example, was taking
close to seven hours to process.

This Italian bank was considering a new solution
called SISBA* 3, which would offload MIPS from
the mainframe onto the X86 architecture using
Oracle CUBE*. However, the bank disagreed with
Oracle on licensing and decided to try a new
approach using the Hadoop framework.

The bank’s goals for a successful pilot with
Intel Distribution for Apache Hadoop software
were to:

= Reduce software licensing costs
= Scale more and different types of data
= Convert and process data more quickly

= Gain flexibility in data types, table column
formats, and data transformation on col-
umn changes

* Reduce overall infrastructure costs

= Maintain skill sets and query tools in
which the bank had already invested

= Have an open solution without vendor
lock-in

Technical Solution

What is Hadoop?

Apache Hadoop is an open-source software
framework, licensed under the Apache v2
license, that supports data-intensive distributed
applications. It enables the running of applica-
tions on large clusters of commodity hardware.
Hadoop was derived from Google's MapReduce*
and Google File System* (GFS*) papers.

The Hadoop framework transparently provides
both reliability and data motion to applications.
Hadoop implements MapReduce, a computa-
tional paradigm that divides the application
into many small fragments, each of which may
be executed, or re-executed, on any node in
the cluster. MapReduce also provides a distrib-
uted file system that stores data on the com-
pute nodes, providing very high aggregate
bandwidth across the cluster.

Both MapReduce and the distributed file sys-
tem are designed so that node failures are
automatically handled by the framework. This
enables applications to work with thousands of
computation-independent computers and
petabytes of data.

The entire Apache Hadoop platform is now
commonly considered to consist of the Hadoop
kernel, MapReduce, and Hadoop Distributed
File System* (HDFS*), as well as a number of

Better Performance for Big Data

related projects including Apache Hive*, Apache
HBase*, and others.

Written in the Java* programming language,
Hadoop is an Apache top-level project being built
and used by a global community of contributors.
Hadoop and its related projects (e.g., Hive,
HBase, and Zookeeper*) have many contributors
from across the ecosystem. Though Java code is Figure 1. EBCDIC File Opened with Tail Command
most common, any programming language can

be used with streaming to implement the map

and reduce parts of the system.

A Good Fit 0-3 4-19 20-24 20-2,025 (Maximum)
Hadoop immediately appeared to be a good fit COD-BK NDG Nl ol

for this Italian bank, both from the architectural Record and
perspective and because of the nature of data Length Values

to be processed.
Figure 2. Record Split within Figure 1

Architecturally, Hadoop provides the intrinsic
scalability and high availability a bank requires
without need for huge investments. The sched-
uling management tools, the control of the
MapReduce tasks with the self-healing mecha-
nisms like speculative scheduling, and Oozie*, a

Connectors Intel® Manager for Apache Hadoop* Software
Ingest, Analysis, Visual yment, Configuration, Monitoring

powerful workflow engine, all made this solution " Oozie*

a perfect fit for this bank. Sl 330 e
143 orkflow Scripting Machine
Data Learning

From a data perspective, the advantage of the Exchange

Hadoop solution was not the quantity of the

dat-a itself (today, approximately ?5 terabytes of Distributed Pros e
online data), but the nature of this data. - Cl
Figure 1 shows some records opened with a tail
command in EBCIDIC format this before conver- e HDFS*0.1.3
sion. Figure 2 shows how each single record is Hadoop Distributed File
formatted and self-described so that these

semantics are used for conversion. Intel Propristar Intel Enhancements
P v Contributed to Open Components

- . . Source Included without
The data in Figure 2 is based on fixed columns Change

at the beginning and a field describing the
length of that specific record. Figure 3. Intel Distribution for Apache Hadoop Software Framework

Open Source

The three files considered in the pilot follow the
same pattern line, fixed part of records with
fixed length columns, variable part length, and
variable part with key value pairs somewhat sim-
ilar to JSON.

Better Performance for Big Data

The number of columns can change without
notice and, therefore, the semantics need to
adapt easily. Each new added column would be
integrated seamlessly without the need to
reprocess older data. The table structure is
altered accordingly.

The number of columns was reaching the limit
of the Microsoft SQL Server* database version
used for the actual application.

Pilot Steps
To move quickly, the team divided the pilot into
two major steps:

= Demo proof of concept (PoC)

= Pilot

Demo PoC
This step aimed to:

= Understand whether the project was
viable and whether Hadoop could meet the
base requirements for performance and
application compatibility.

= Verify whether, for the bank’s basic
queries, the Hadoop-based solution would
deliver the same results in an acceptable
amount of time.

Since the schema is complex, understanding all
of the components was not a simple exercise.

The bank provided anonymized data that was
brought onto a remote lab running on an Intel
internal cloud infrastructure. The dataset con-
sisted of:

= One table with 10.6 million records
= Records with between two and 20 columns

Data were not necessarily present in all
records. Columns were optional and could
appear in any order.

Figure 3 shows the Intel Distribution for Hadoop
framework with its components used during the
PoC. Not all components have been used.

Hadoop* Distributed
File System (HDFS)

Mainframe — Data Collector
. . EBCDICto ASCII

Converter

+ Converts EBCDIC File -

to ASCl File
+ Each Record will be on
a Separate Line

DataNormalizer

+ Converts Each Semi-
Structured Recordinto
a Structured Record

Figure 4. High-Level Data Flow

= Intel Manager facilitates cluster adminis- =
tration and monitoring of jobs

Optimized the data for Hadoop

= Ran simple queries in an acceptable way
= Sqoop* and Flume* are connectors to

external data From PoC to Pilot

The pilot required real, non-anonymized data
with a very large dataset. Intel delivered to the
bank’s data center a rack of five Intel® Xeon®
processor-based servers.

= Zookeeper provides distributed configura-
tion service

= Oozie is a workflow scheduler

= Pig* scripting language interface to Hadoop Hardware included:

= Mahout* is a free implementation of distrib-
uted scalable machine learning algorithms

Five Intel Xeon processor E5-2690-based
servers

= Hive enables SQL queries on Hadoop » Twenty JBOD SAS* drives for each server

= MapReduce is the distributed processing .
framework

Two Intel® Solid-State Drives 3700 series,
each with 64 gigabytes of RAM and one 10-

* HDFS is the Hadoop Distributed Filesystem gigabyte Intel* Ethernet Controller X520

= HBase is a non-relational, distributed database Software included:

During this phase, a first activity: * Centos* 6.3 x64 operating system

Intel Distribution for Apache Hadoop soft-
ware version 2.3

= Converted the data set from EBCDIC to
ASCII. This was developed with JAVA from

Intel Consulting * Intel® Cache Acceleration Software (Intel® CAS)

The production dataset included three input files:

= File name 00A011: 18.6 million records
with 109 columns

= File name 00A021: 25.2 million records
and 464 columns

= File name O0A025R: 21.7 million records
and 822 columns

€ach record had between three and 822
columns. Not all data was present in all the
records. Columns were optional and appeared
in any order.

The pilot required treating the bank’s produc-
tion data with the same procedures as the
PoC. The difference was that the pilot used
more complex queries and compared the out-
puts and execution times to the bank’s pro-
duction environment.

For the pilot, the team connected the Intel
Distribution for Hadoop software cluster to the
mainframe to download the data and start con-
verting the data from EDCIDIC into ASCII, and
then optimized the ASCII file into a better for-
mat for HIVE.

During the first phase, the team did not use
any workflow mechanism. In the pilot, they
started to use Oozie to schedule and manage
the workflows.

Figure 5 shows the steps used in Oozie. Figure
6 shows the Oozie workflow.

After first EBCDIC conversion, the data file
looks like Figure 7.

Why Optimize the Data Already Converted
from EBCDIC to ASCII?

One of the steps was to optimize the data for
HIVE. This step is, in theory not required, but
data is complicated for analysis. Each record is
amalgamated with metadata.

Better Performance for Big Data

Convert Scan for New Move Optimize MoveData to Dropand

EBCDIC to Columns Columns List Datafor Hive CreateHive

ASCI toMetadata Hive* Wwfarehouse Table
Structure

Figure 5. All Phases Executed into the Oozie Workflow

©

1

step 5 of 6 move o=
utput_te warehause

1ol § step T of & stan 1-
adic.ind or new columne

1

step 6_of 6 _create-
_hive_table

! .
wtep_4_of_8_optimi=
ze_data _for hive

Figure 6. Oozie Workflow

Better Performance for Big Data

For example, to fetch all records where the
NO11 valueis 1:

"

= Split each record with *;" and further split
each split with “="

= Scan through all splits to find out a split
which got NO11 in the first part and 1 in
the second part

By optimizing the data, we: Figure 7. Data After EBCDIC Conversion

= Scan the file for new columns

CC148
= Add the columns
+0. 001

= Use “CTRL-A" to delimit each column o ters - * '. oty el A Al

Figure 8 shows the output usable file after
optimizations.

This results in several benefits:

Figure 8. Optimized Records within Hadoop

= Datais stored in a normalized way, similar
to a table in RDBMS without the con-

straints of RDBMS Table 1. Records Extracted with HIVE Query
= Hive queries are very similar to NO47 NO51 \[e]0)4 NO56 NO71
RDBMS queries
627901 121004 221213 290800
= The learning curve is minimized, with
fewer computations and less disk space 221213 654123 200600
= Datais easily consumable for data analy- 527901 221213
sis tools

Once the record is normalized, the records
looks like this:

Table 2. Time to Import and Optimize Data

« Record 1: N0O47=627901:N051= Filename SI-_\pp[(();)é) M&IIionTj of c INo. C0|;y Time Corjlyersion Optlilr_r_lizatim 1('::_::“ 1;im;e
_ i _) ize ecords olumns rom ime ime inutes

121004;N071=290800;N002=221213; Mainframe (Seconds) (Seconds)

- Record 2:N071=200600N002=221213; (Seconds)
N056=654123; 00AO011 10 18 109 300 300 75 11

= Record 3: N0O47=627901;N002=221213; 00A021 15 25 464 480 480 118 8

Table 1 shows a populated table with the 00AO25R | 10 21 822 300 300 62 11

data coming from the imported and convert-

ed records.

Table 2 shows how the time to import convert
and optimize the data dropped from approxi-

mately six hours to between 11 and 18 minutes.

Results

The goal of the pilot was to see if Hadoop
could, in the short-term, replace the RDBMS
with which this bank runs important communi-
cations to the central bank and, long-term,
replace other data warehouses.

The bank gave the team some queries to be
run on HIVE on the data previously loaded. The
bank’s IT team has broad SQL* knowledge and,
therefore, wanted to use SQL statements as
much as possible.

The team ran three queries:

Query 1
= RDBMS: select distinct tp_ndg as NO10
from scontrpf50m0130331

= Hive: SELECT DISTINCT NO10 FROM
00AO011 LIMIT10;

Query 2

= RDBMS: SELECT DISTINCT B. COD_UQ, b.
Tp_conto, a. Tp_ndg as NO10 FROM A JOIN
SCONTRPF50M0130331
CUBOMO100M0130331 B ON A. NDG = B.
NDG WHERE POSIZ_SOFF_INCAGLT ="1
‘and a. TP_NDG in (‘'DIN’, 'I0C,, 'SPF’) and b.
dt_accs_rapprt> ='2013-03-01 ‘and b.
dt_accs_rapprt <='2013-03-15' ORDER
BY B. COD_UO, b. Tp_conto, a. TP_NDG

= HIVE: SELECT DISTINCT B.DOOR,
B.TP_INCOME, ANO10 FROM O0AQ11 A
JOIN CUBOMO100M0130331 B ON ANDG
=B.NDG WHERE NOT1 ="1" AND ANO10 in
('DIN’, 10C', 'SPF’) AND B.RO21 > 130100

AND B.RO21 < "130316"; ORDER BY DOOR,

TP_INCOME, NO10;

4 Hadoop/Hive
/ RDBMS

G

Figure 9. Execution Tme for Three
Typical Queries

Query 3

= RDBMS: select b. cod_uo, b. forma_tec,
TP_NDG as NO10, substring (a. sae_rae, 1,
3) as NOO3, a. u_segmgest_2004 as
NO88, a. u_modserv_gest as NO8S, sum
(b. qc_rata_scd) as D505 from scon-
trpf50m0130331 to join
cubom0100m0130331 b on a. ndg = b.
ndg where a. TP_NDG in ('DIN’, I0C’, 'SPF’)
and b. forma_tec in (MW500’, 'MW 100',
‘MW200°) group by b. cod_uo, b. forma_tec,
a. TP_NDCG, substring (a. sae_rae, 1, 3), a.
u_segmgest_2004, a. u_modserv_gest
order by cod_uo, forma_tec, TP_NDG, sub-
string (a. sae_rae, 1, 3), a. u_seg-
mgest_2004, a. u_modserv_gest

Table 3 and Figure 9 show the time to execute
and give results back for each of the three queries
comparing execution time and results between a
traditional RDBMS and Intel Distribution for Apache
Hadoop software HIVE query.

After one and one-half months, the team was
able to prove that Hadoop is a great fit for the

Better Performance for Big Data

Table 3. Execution Tme for Three
Typical Queries

Query RDBMS Hadoop/
Hive
1 40 32
2 343 89
3 42 127
Average 141.66 82.66

types of workloads the bank runs, able to
match the performance of its existing system
and perform even faster in extracting the data.
At the same time, the new solution provides
much more flexibility, reduces load times, and
dramatically reduces the bank’s overall costs.

The flexibility and the velocity with which the
pilot was able to solve some of the bank’s long-
standing issues proved that Hadoop is the right
solution for these types of workloads. The
bank is now investigating whether other appli-
cations and datasets could benefit from a
Hadoop infrastructure.

Flexible and Cost-Effective Platform
Consider whether the same regulations apply
to your institution and your central bank. This
step could begin an evolution toward a flexible
architecture complementary to your existing
RDBMS solution. Although architected for big
data, Hadoop allows data analysis and predic-
tive modeling on a more flexible and cost-effec-
tive platform.

For more information, contact Marco
Righini (marco.righini@intel.com) for
technical questions and Paolo Ossola
(paolo.ossola@intel.com) for business-
related questions.

Better Performance for Big Data

Appendix: Glossary

Hive

Hive is a data warehouse system for Hadoop
that facilitates easy data summarization, ad-
hoc queries, and the analysis of large datasets
stored in Hadoop-compatible file systems. Hive
provides a mechanism to project structure onto
this data and query the data using a SQL-like
language called HiveQL*. At the same time this
language also allows traditional map/reduce
programmers to plug in their custom mappers
and reducers when it is inconvenient or ineffi-
cient to express this logic in HiveQL.

Copyright © 2013 Intel Corporation. All rights reserved.

Oozie
Oozie is a workflow scheduler system to man-
age Apache Hadoop jobs.

Oozie Workflow jobs are directed acyclical
graphs (DAGs) of actions.

Oozie Coordinator jobs are recurrent Oozie
Workflow jobs triggered by time (frequency)
and data availability.Oozie is integrated with
the rest of the Hadoop stack supporting sev-
eral types of Hadoop jobs out of the box
(e.g., Java* map-reduce, streaming map-
reduce, Pig*, Hive, Sqoop*, and Distcp*) as
well as system-specific jobs (e.g., Java pro-
grams and shell scripts).

Oozie is a scalable, reliable, and exten-
sible system.

HBase

HBase is a column-oriented database manage-
ment system that runs on top of Hadoop
Distributed File System (HDFS). It is well suited
for sparse data sets, which are common in
many big data use cases. Unlike relational data-
base systems, HBase does not support a struc-
tured query language like SQL*. In fact, HBase
isn't a relational data store at all. HBase appli-
cations are written in Java, much like a typical
MapReduce application.

Intel, Xeon, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PROD-
UCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS,
AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN
THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to
http://www.intel.com/performance.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever
for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design
with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifica-
tions and before placing your product order.

0713 MR/SS

intel.

8

