Intel®IXP42X Product Line of
Network Processors and IXC1100
Control Plane Processor:
Customizing RedBoot*

Application Note

September 2004

Document Number: 254308-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, CablePort, Celeron, Chips, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, 1960, iICOMP, InstantlP, Intel, Intel Centrino, Intel
Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo,
OverDrive, Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your Command, RemoteExpress, SmartDie,
Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VTune, and Xircom are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © 2004, Intel Corporation

2 Application Note

intel ® Contents

Contents

1.0

2.0

3.0

4.0

5.0

INTFOTUCTION .ottt ettt ettt a e es et neaans 7
O 0 T 1= o o =SSP RPRRR 7
1.2 Related DOCUMENTS ..ot e e e e e e e e e e e e e et e e e e e e e e e e e e eaeaaaaeaeaeens 8
I T o] (0] 1)/ 1 1 £ TP U PP PP PPPPPPPPN 9
What IS CUSTOMIZING?ooiiiiieecee ettt 9
2.1 Production Versus Development BOOIOAUETcceueeiiiiiiiciiiiiieieeee e e e e 9
2.2 RequUIremMents t0 CONSIHETc.ueiiiei ittt e e sttt e e e s bbb e e e s sbbaeeaenans 10
PG B W (o £ oo [PO PRPOPTPPPPPPPR 10
GELLING SEAIMEA ..ot 11
K A S (T {0 [LS LT TP PP P R PPPPPPURPPPRN 11
3.2 DEVEIOPMENT SEEPS .eeiiiiiiiiiiee ittt ettt ettt ettt e st e e e e st bb et e e s s bbb e e e e s abbe e e e e e anbreee e 11
3.3 First Step — Modify the VEISIONooueeiiiiiiiiie e 12
Items to Address When Customizing for a New Boardcccoooevveecceenne, 12
4.1 Moving from the IXDP425 / IXCDP1100 platform to a Custom Board...............ccuuvvreeeeenn. 12
4.2 Where to Make Modifications in the SOUICe Tree.......cvcieiiiiiiii i 12
4.3 Updating the BUild SEUENCEeeiiiiiiiiaiiiiee ettt e e e e e be e 13

4.3.1 Add Packages Created.............eceiiiiiiiiiiiiiiiiiee et 13

4.3.2 Changing the BOARD Variablec.c.uuuiiiiiiiii e 13

4.3.3 APPIY PAICNES ...t e e e 14

4.3.4 RebUIldiNg NOLEScooiiiieee et e e e e e e e e e e e e e e aaaneees 14
HOW-TO'S ettt sttt et seebeere e e et e e e teneensetereas 14
5.1 Obtaining RedBoot from the Public CVS REPOSItOrYuuvuviuuiiiiiiiieieeeeeeeeeeeeeeeeeeeveieninens 14
5.2 How to Modify the Version String REPOIEd........ccccoveeiiiiii e 15
5.3 Where to Modify Diagnostic/Console UART USEcccooeeeeiiiiiieeeeeeeie e 15
5.4 Where to Adjust the Platform Initialization StEPS........covvvvviviiiiiiiiiiieieie e 16

5.4.1 How to Adjust for Alternate Flash Parts and Size.............ccccovviviriiiccccceee, 16

5.4.2 How to Adjust for Alternate SDRAM SizZe€ccccoeiiiiiiiiieiiieieeeeeeee 17

5.4.3 Where to Adjust for PCl Changes...........covuviiiiiiiiiiiiieie e 17

5.4.4 Where to Reconfigure the GPIO ASSIGNMENLScccovviiieiiiiieiiieeeeeeee 17
5.5 Simple Method of Adding an Interrupt Service Routine (ISR)ccccoooeviiiiiiiiiiiiiieeeeis 18
5.6 How Can | Restrict ACCESS t0 COMMANAS?uuiiiiiiiiiieaeiee e 18
5.7 How to Set the Architecture ID for Proper Linux BOOt SUPPOIt.........ccceeeveiiieeeeeeeiieiieieieainnns 18
5.8 Dol Need to Use the EEPROM?.......coiiiiiiiiiiieie ettt e e e e e 19
5.9 How to Remove/Modify the LED Display SUPPOItcovviiiiiiiiiiiiiiis e e e eeeeeeeeeeeeeeeeeveeainens 19
5.10 HOW DO | Add @ SeIf TESE? ...t e e e e e e e e e as 20
5.11 Are There Any Preexisting TeSt ROULINES?.......ccooiiiiiiiieiesiie it 20
5.12 How DO | Add @ COMMENT?uriiiiiiiiieeeeiieee ettt e e e e e e s bbb e e e e e aaeeas 20
5.13 Are Documents Provided With the SOUICE?uuiiiiiiiiiiiiiiii e 21
5.14 Telnet ACCESS 10 REABOOT CLI......iiiiiiiiiiiiiiiiiiiee ettt e e e 21
5.15 How to Update the ROM IMAQGE.......uuuiiiieieiii it e e e e e e e e e e e e e e e eeaeaeeeeeennennas 21
5.16 How to Place RAM Mode Update Image in Flash for Future Useccccccoeeeeiieiiiiiininnnnn, 23
5.17 How Do | Add My Custom Source to the Build Tre@?........coovvrviiiiviiiiiiiiiiic i 23

5.17.1 How to Make Changes to the Source Tree into an eCos Package............cccccc...... 23

Application Note 3

|]
Contents Intel
®

5.17.2 Why Do | Need to Create a Package for Modifications to the Source Tree?......... 24

5.17.3 PacKage CONIENTcoiiiiiiiiii ittt e e e e e e e e s e e ibb b e e e e e e e aaeaeeesaannnes 24

5.17.4 Testing the Package ..o 25

5.18 Passing Information Between RedBoot* and LiNUX...........ccoouiiiiiiiiiiiiiiiieeieeee e 25

5.19 How to Change the Default Values Used for fCoOnfigccooeeiiiiniiiiiiii 25
5.19.1 Configuration OPtioN BASICSeeeiiiiiaaiiiiiiiiiitiieie et e e e e e e e e e e sineees 26

5.19.2 Example: Changing the Default Boot Script in Source Code.........cccccceeeiiiiiiiiinnnns 26

5.19.3 Example: Change the Boot Script in the RedBoot* CDLcccvuviieeiiiieeennnninns 27

5.20 General eCos File Type QUestioNS and ANSWEIS........ccuiiiiaaaiaiiaiiiiieiieeee e e e e eireeeeeee s 27

A Overview Of the SOUICE TrEE ... 28
Al €C0S aNd REUBOOIc.iiieiiiei ittt ettt r e e e s s e e e e s s e e e e s anrneeeens 28

A2 CO0S PACKAES........cccuiiiiiiii i 28

A3 Primary @C0oS PaCKagEeScocuiiiiiiiiiiii i 28

B BUIIA SCIIPT ettt 30
o U - T [30

B.5 What Does the Build SEQUENCE DO?ccceeeeeiie i e e e e e e e s nreneee s 30

B.6 build-redboot SCrPt SOUICEuueiiiiiiiiiiiee e r e e e e e e e e e e e 32

C MABKETII s 35

4 Application Note

]
I ntel Contents
®
Date Revision Description
September 2004 002 Updated product branding.
February 2004 001 Initial release.
Application Note 5

|]
Contents Intel
®

This page is intentionally left blank.

6 Application Note

In Introduction

u tel Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
®

1.0 Introduction

The bootloader is a fundamental software component for most computer systems; it provides the
initialization sequence for the processor and hardware components so that the system is
operational. Primarily intended to boot Linux, RedHat* RedBoot* is the bootloader provided for
the Intel® IXDP425 / IXCDP1100 Development Platform. RedBoot is provided in both binary and
source form, and is developed and maintained by RedHat; for further information regarding
RedBoot, see http://sources.redhat.com/redboot/.

Note that potential issues arise when product development shifts from the IXDP425 / IXCDP1100
platform to a prototype/custom baseboard. This shift will likely involve modification of the
RedBoot source code to support the custom board design. So a fundamental question is:

“What does RedBoot need to do (or be modified to do) in order to support my custom
board and the product that I am intending to ship?”

In many cases, the default bootloader source configuration is acceptable; there may be no need to
modify RedBoot. But, the default configuration may not be acceptable for your final product.

This application note is intended to provide guidance on issues that may arise when customizing
(aka “productizing”) Redboot. Main topics covered in this document include:

¢ What is customizing?
¢ Getting started
* Installing and building RedBoot

A tour of the RedBoot source tree:

— What needs to be modified, reconfigured, added, and removed when moving to a custom
board

— Where are modifications required?

¢ Typical customizing options — How-to’s

1.1 Audience

This document is intended for software engineers (using the RedBoot bootloader) who are
developing software and board support packages (BSPs) for custom hardware based upon the
IXP42X product line and 1XC1100 control plane processors. The application note references the
IXDP425 / IXCDP1100 platform, but can apply to the Coyote* Gateway Reference Design (GRG),
or the Motorola* PrPMC1100* platforms.

This document is NOT intended as a training guide for developing eCos* or RedBoot extensions. It

is merely a guide to help an experienced software developer become more familiar with issues
when modifications to RedBoot are required.

Application Note 7

http://sources.redhat.com/redboot/

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*

Introduction

1.2

Related Documents

INtal.

Document Document Number

Intel® IXP400 Software Programmer’s Guide 252539

® ; ; ,
Intel™ XScale™ Microarchitecture Programmer’s 273473
Reference Manual
Intel® IXP42X Product Line of Network Processors 252479
and IXC1100 Control Plane Processor Datasheet
Intel® IXP42X Product Line of Network Processors
and 1XC1100 Control Plane Processor Developer’s 252480
Manual
Intel® IXP400 Software - RedHat * Boot-loader v1.92 N/A
Software - Software Release Notes
Intel® IXP400 Software Release 1.5 Software N/A
Release Notes
Intel® IXP42X Product Line of Network Processors
and IXC1100 Control Plane Processor: Operating 253548

System Porting Guide

* Most documents are available online at:

http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm

* The software release documents are available at:

http://developer.intel.com/design/network/products/npfamily/ixp425swrl.htm

* For the latest eCos documentation, consult the online reference at

http://sources.redhat.com/ecos/docs-latest/

* A generic RedBoot users guide is available on line at
http://sources.redhat.com/ecos/docs-latest/ref/redboot.html

The following book, a guide on developing eCos applications by Anthony J. Massa provides an

good overview of RedBoot:

Massa, Anthony J., Embedded Software Development with eCos, ISBN 0-13-035473-2 Prentice

Hall, New Jersey, 2003.

Application Note

http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm
http://developer.intel.com/design/network/swsup/IXP400-1_3-relnotes_09052003.pdf
http://developer.intel.com/design/network/swsup/IXP400-Red-Hat-BootLoader-1_92-relnotes_063003.pdf
http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm
http://developer.intel.com/design/network/products/npfamily/ixp425swr1.htm
http://sources.redhat.com/ecos/docs-latest/ref/redboot.html
http://sources.redhat.com/ecos/docs-latest/
http://www.phptr.com/browse/product.asp?product_id={0BEE58C4-0812-4B13-9B8C-A0FC31A4C02F}

u Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
In o What is Customizing?

1.3 Acronyms
Acronym Description
BASH Bourne Again Shell — Linux command shell
BSP Board Support Package
CDL Component Definition Language
ece eCos Configuration — file name extension
eCos Embedded Configurable Operating System
epk eCos Package — file name extension
FIS Flash Image System
GPIO General-Purpose Input Output
GRG Generic Residential Gateway
HAL Hardware Abstraction Layer
ISR Interrupt Service Routine
LAN Local Area Network
LSB Least-Significant Byte
MAC Multiply/Accumulate
MMU Memory Management Unit
MSB Most-Significant Byte
MTD Memory Technology Device
NPE Network Processing Engine
PCI Peripheral Component Interconnect
TCL Tool Command Language
2.0 What is Customizing?
2.1 Production Versus Development Bootloader

The bootloader as provided by Intel for the IXDP425 / IXCDP1100 platform is a development-
platform bootloader. This means it is intended primarily to boot, load and execute images on the
IXDP425 / IXCDP1100 platform and not necessarily intended for a shipping product. It can work
just fine as production bootloader, but depending upon the requirements for the product in the field,
there are features that you may not want customers to access. There may be behavior in the
development bootloader that is not desired and could be considered inconsistent with a bootloader
for use in a production product.
For example:

* Changing the MAC address for the NPE Ethernet ports

¢ Loading and running arbitrary images

* Modifying the boot script or enabling the debug stub

* Changing the bootloader flash image/configuration

Application Note 9

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u
What is Customizing? In o

2.2

2.3

10

Obtaining an IP address by the bootloader

Runtime menu availability/visibility

The following additional changes may need to be made to support your board:

RAM and flash configuration
Processor initialization steps — board setup

Bootloader announcement (version and copyright notice) and boot delays.

Requirements to Consider

Other bootloader functionality that may be required to support product features include:

Loading images in the field

Update of the bootloader itself

Pre-0OS load support

Manufacturing support (board and hardware tests).
Maintaining separate development and production bootloaders

Customizing the command set; it may be desirable to change the commands available to
typical users

Modifying the default configuration; the default, especially for the boot script, may need to be
changed

How/where is the MAC address for the NPE Ethernet ports stored? The Coyote gateway
platform keeps its MAC address in the fconfig space. The MAC is then managed by extending
tr21e command interface. This is a model for storing the MAC address in a location other that
1“C.

If your (Linux-based) application can update itself then you do not need the above-mentioned
capability in the bootloader; this may actually be the cleanest way to handle updates as it turns the
process into a user-space managed application that you can control. If you must have redundant
signed images, then the bootloader, for use and loading, needs to know which images to manage
and how to manage those images.

Licensing

RedBoot is licensed under the eCos license, which affects what you can do, how you release and
redistribute the source code and related customizations.

The eCos license is available on line at:
http://sources.redhat.com/ecos/license-overview.html

The NPE/ixp400 access library is covered by the Intel® 1XP400 DSP Software license
agreement and can be viewed on line at: http://www.intel.com/design/network/swsup/
sla_425.htm

A comprehensive collection of the relevant open source licenses is available at:
http://www.opensource.org/licenses/

Application Note

http://sources.redhat.com/ecos/license-overview.html
http://www.intel.com/design/network/swsup/sla_425.htm
http://www.intel.com/design/network/swsup/sla_425.htm
http://www.opensource.org/licenses/

u Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
In ® Getting Started

3.0 Getting Started

3.1 Prerequisites

It is recommended that you complete the following:

¢ Get and install SourceNavigator*; this will allow you easily search, read, study sections of the
source tree that you may need to modify. SourceNavigator is available at: http://
sourcenav.sourceforge.net/

¢ Get the RedBoot release notes, source code and the NPE epk file (eCos Package containing the
NPE Ethernet driver and portions of the Intel® 1XP400 Software to support running the driver
in eCos). These items are available online at:

http://www.intel.com/design/network/products/npfamily/ixp425swrl.htm
¢ Set up the toolchain and source per the release notes.
¢ Set up the build-redboot script; see Appendix B, “Build Script.”
¢ Build by running the build-redboot script (or suitable replacement).

¢ \rify your binary build loads and runs on the IXDP425. See Chapter 5.0, “How to Update the
ROM Image.”

e Archive.

The fundamental goal of the prerequisites is to make sure that, before proceeding, you can compile
and build a functional baseline version based upon unmodified source. No matter what procedure
you use, this verifies that you have a system setup to start modifying RedBoot.

Note: A useful and highly recommended book is — Embedded Software Development with eCos by
Anthony J. Massa; for further information, see Section 1.2 of this application note. The book
provides the fundamentals on eCos and RedBoot that you will need if you are intending to perform
significant updates to RedBoot.

3.2 Development Steps

The sequence of development steps depends upon production-bootloader requirements. Once
RedBoot is running and loading images for your custom platform, then you have a development
bootloader. So, what are the differences between a development bootloader, production images and
the associated configuration? You need to consider what to customize, e.g., the product
requirements. Customization activities typically include:

¢ Determining the changes necessary to support your custom hardware

¢ Determining the requirements for the bootloader as shipped in the final product
¢ Planning the development

* ‘Porting’ RedBoot to your custom hardware

¢ Making product-specific modifications

¢ Implementing and testing

Application Note 11

http://www.intel.com/design/network/products/npfamily/ixp425swr1.htm
http://sourcenav.sourceforge.net/
http://sourcenav.sourceforge.net/
http://www.intel.com/design/network/products/npfamily/ixp425swr1.htm

Items to Address When Customizing for a New Board In

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u tel
®

3.3

4.0

4.1

4.2

12

Note:

First Step — Modify the Version
Start small by changing the version displayed. To change the version, see the ‘how-to’ in
Chapter 5.0, “How to Modify the Version String Reported.”

* Build

* \ferify

* Archive

For an overview of the RedBoot source tree, see Appendix A, “Overview of the Source Tree”.

For information on building RedBoot, see Appendix B, “Build Script”.

Items to Address When Customizing for a New
Board

Before starting, reference the Intel® IXP42X Product Line of Network Processors and 1XC1100
Control Plane Processor: Operating System Porting Guide. This document provides details on what
needs to be addressed in the Linux kernel for a new platform and contains relevant information that
can be helpful in modifying RedBoot for your platform.

Moving from the IXDP425 / IXCDP1100 platform to a Custom
Board

The number of changes needed to the HAL (Hardware Abstraction Layer) depend upon how close
the baseboard is to the IXDP425 / IXCDP1100 platform or Coyote gateway platform. The primary
change that most boards will need to make is to update the memory. You may need to consider the
items needed to port Linux to your platform; note, however, the RedBoot changes are confined to:

* CDL and configuration files

¢ SDRAM

* Flash

* Interrupts

* GPIO

* PCI

® Other peripherals

* Debug port number (default is 9000)

Where to Make Modifications in the Source Tree

Before making changes to the source or source tree, make a back-up copy. Modify the copy, then
use patch files or epk files to manage your changes. Or use a revision control system like CVS to
track your changes. For an overview of the source tree, see Appendix A, “Overview of the Source
Tree”.

Application Note

http://www.intel.com/design/network/swsup/253548.htm

intel.

4.3

431

4.3.2

Note:

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
Items to Address When Customizing for a New Board

The primary location to make modifications is to the HAL package. Choose a board already
defined in the HAL structure and copy the contents to a new directory under the HAL. For
example, if your board is named “new425”, set up the HAL support initially using the commands

cd hal/arm/xscale/
mkdir new425
cp -a i1xdp425 new425

When creating a new board, be sure to update the handling of the board name by the ${BOARD}
variable in the build script. See Appendix B, “What Does the Build Sequence Do?,”

Rename the file hal_arm_xscale_ixdp425.cdl to hal_arm_xscale_new425.cdl. Modify and update
the following elements as necessary:

* CDL and configuration files
SDRAM

* Flash

* Interrupts

* GPIO

e PCI

¢ Other peripherals

¢ Debug port number (default is 9000)

Updating the Build Sequence

Depending upon the nature of the changes, there is at least one place in the build sequence that may
need to be updated. You may decide that the easiest manner to update the RedBoot source and
configuration files is to copy or patch files. Before starting, review Section B.2, “What Does the
Build Sequence Do?” on page 30 and review the build script source in Appendix B, “Build Script.”

It is recommended that the generated files not be modified; tracking the generated file content and
patching may not be easily maintainable.

Add Packages Created

If a epk file was created to contain your changes, then the package must be added to the ecode.db.;
the ecosadmin command is used for this. If your package is “new425.epk”, then the package is
added using the command

ecosadmin add new425.epk

Place this command just after the existing command used to add the NPE epk file.

Changing the BOARD Variable

If the HAL was copied from an existing board and updates made, then the BOARD variable used in
the script can be set to the name of your board. See Section B.2, “What Does the Build Sequence
Do?” on page 30 for details and use of the ${BOARD}variable.

Application Note 13

How-To’s

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u tel
®

4.3.3

4.3.4

5.0

5.1

14

Note:

In

Apply Patches

If you are modifying small sections of code that do not affect generated source modules, then the
changes should be applied to the baseline code before the ecosconfig tree command.

If you determine that the easiest way to apply changes is to modify generated code, then apply a
patch with your changes just after the ecosconfig tree command.

Rebuilding Notes

Modifying any template files (cdl, ecm, ece) affects generated code. So, in general, you must
perform the configuration and tree generation steps again to have the changes take place in the
source. The build-redboot script cleans the configuration so that this is not an issue.

Itis NOT necessary to change the NPE support for each new board. So, if you DO NOT update the
NPE support, then will need to modify the build script to NOT use the BOARD variable. The build
will need the baseline NPE support. So update the build script commands to replace

ecosconfig add ${BOARD}

with
ecosconfig add ixdp425 npe

How-To’s

Obtaining RedBoot from the Public CVS Repository

RedBoot sources can be obtained from the public repository at http://sources.redhat.com/ecos/
boards/ixdp425.html

You can obtain the RedBoot sources online using CVS:

% cvs -z3 -d :pserver:anoncvs@sources.redhat.com:/cvs/ecos co -D "2003-06-22
00:00:00 GMT" packages net

This command gets the exact modules used the build the RedBoot binaries that Intel provides (hot
including the NPE support library)

To get the most recent source tree use the command:

csv -z3 -d :pserver:anoncvs@sources.redhat.com:/cvs/ecos co ecos ecos-host packages
net

This will get the eCos and eCos-host package source as well.

Alternatively, you can obtain weekly snapshots of the CVS repository from

http://www.ecoscentric.com/devzone/snapshots.shtml

Application Note

http://sources.redhat.com/ecos/boards/ixdp425.html

http://www.ecoscentric.com/devzone/snapshots.shtml

In

5.2

5.3

tel.

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
How-To’s

How to Modify the Version String Reported

There are several ‘components’ that support displaying the version; see information in the file:
packages/redboot/current/src/main.c.

The version is reported in function do_version(). You can add/remove information as desired.
For more detailed customizing, formulating and formatting of the version string, see the file:

packages/redboot/current/src/version.c.

This contains a confusing logic sequence that concludes with the “RedHat Certified Release”
message. The important thing is that the baseline version is in the define

CYGDAT_REDBOOT_CUSTOM_VERSION

This is in the file packages/redboot/current/cdl/redboot.cdl, the CDL option
allows “cdl_option CYGDAT_REDBOOT_CUSTOM_VERSION” to be specified in an ecm or
ecc file. This can then be used to extend the version display. This is the most convenient way to add
a custom version identifier. The macro CYGACC_CALL_IF_MONITOR_VERSION(Q) isanin-
line routine. There are two locations that can be found using SourceNavigator. The routine is in the
file

package/hal/common/current/include/hal _if.h
The file
build/install/include/cyg/hal/hal_if._h

is a generated file that uses the primary file. The configuration item, HAL_PLATFORM_EXTRA, al-
lows for indicating additional platform detail in the version. This is defined in the file

packages/hal/arm/xscale/ixdp425/current/cdl/
hal_arm_xscale_ixdp425.cdl

When the tree is configured, the define is generated using the CDL file to take the configuration
content and write the define with the value into the file

build/install/include/pkgconf/hal_arm_xscale_ixdp425.h

Where to Modify Diagnhostic/Console UART Use

By default, RedBoot supports two console ports for the IXDP425 / IXCDP1100 platform:
¢ UARTO is the common console port for Linux and RedBoot.
* UARTL1 is labeled “Console” on the IXDP425.

For Linux development it is desirable to connect to a single UART for console use — use UARTO.
RedBoot has an interesting feature in that ANY traffic on UARTO or UART1 will cause RedBoot
console control to changed to that UART. So if traffic appears on UART1 while booting, RedBoot
can switch control to that port. Depending on the traffic, it can cause the boot sequence to halt (e.g.,
a ctrl-C character received will halt the boot script from running). This can lead to a problem in
deployment.

To modify RedBoot to select a single or NO UART as a console, modify the file

Application Note 15

How-To’s

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* intel
®

5.4

5.4.1

16

packages/hal/arm/xscale/${BOARD}/current/cdl//hal_arm_xscale_ixsp425.cdl

Find the cdl_options that define the value for CYGSEM_HAL_IXP425 PLF_USES UARTn and
change the default value.

To see how this controls the console output (also referred to as diagnostic output), see the file

packages/hal/arm/xscale/ixp425/current/src/ixp425 diag.c

Where to Adjust the Platform Initialization Steps

Platform initialization consists of:
* Setting up the processor for proper operation
¢ [|nitializing the Chip Select (CS) for new/updated components on the expansion bus — flash
* [|nitializing the SDRAM
* Initializing the PCI bus
Setup MMU
* Setup for Big-endian (BE) or Little-endian (LE)

The primary macros for platform initialization and start-up code is in the files
packages/hal/arm/xscale/{BOARD}/current/include/hal platform setup.h.

packages/hal/arm/xscale/{BOARD}/current/include/hal platform extras.h.
The initialization steps for the board are performed by the code in the file

packages/hal/arm/xscale/{BOARD}/current/src/$ (BOARD} misc.c.

How to Adjust for Alternate Flash Parts and Size

Adjustment for flash parts are made in the device package support code. This can be found in
packages/devs/fTlash/arm

Each of the boards that use the Strataflash has a BOARD named directory. The file
${BOARD)/current/include/$(BOARD}_ strataflash.inl

contains the flash device definitions, including number of devices, size and base address.

In addition, you may need to modify the file

/packages/hal/arm/xscale/ixdp425/current/include/ixdp425.h

Find the line that contains the define IXP425_EXP_CSO_INIT. The current definition is provided
below. Modify the value of the define for the flash organization that you are using. The define sets
the initialization value for the chip select of the expansion bus.

// CSO (flash optimum timing)

#define 1XP425 EXP_CSO_INIT \

(EXP_ADDR_T(3) | EXP_SETUP_T(3) | EXP_STROBE_T(15) | EXP_HOLD T(3)
| \

Application Note

intel.

5.4.2

5.4.3

5.4.4

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
How-To’s

EXP_RECOVERY_T(15) | EXP_SZ 16M | EXP_WR_EN | EXP_BYTE_RD16 |
EXP_CS_EN)

Macros are used to set the define value. The macros set expansion bus control bit values properly
and are named per the ixp425 register set definitions. The definition of the macros can be found in
the file

/packages/hal/arm/xscale/ixp425/current/include/hal ixp425.h

How to Adjust for Alternate SDRAM Size

RedBoot must know the RAM size. To adjust the RAM size, see the file
/packages/hal/arm/xscale/ixdp425/current/include/ixdp425.h
Also note that the values must match the setup in the page table in file

ixdp425/current/include/hal platform extras.
The default value is 256M SDRAM on the IXDP425. This is set by the defines as indicated.

#define SDRAM_SIZE 0x10000000 // 256MB

#define 1XP425_SDRAM_CONFIG_INIT (SDRAM_CONFIG_CAS 3 |
SDRAM_CONFIG_4x32Mx16)

#define I1XP425 SDRAM_REFRESH_CNT 0x081

#define 1XP425_SDRAM_SET_MODE_CMD SDRAM_IR_MODE_SET_CAS3

The 1XP425_SDRAM defines are used to set up the SDRAM configuration registers during plat-
form initialization.

Where to Adjust for PCI Changes
See the function hal_plf_pci_init(). This uses the defines that are in the file
/packages/hal/arm/xscale/ixdp425/current/include/ixdp425.h

Modify the defines as necessary to update the PCI support.

Where to Reconfigure the GPIO Assignments

See the file /packages/hal/arm/xscale/ixdp425/current/include/ixdp425.h
for the defines used to set the GPIO numbers.

#define GP10_EEPROM_SDA 7
#define GP10_EEPROM _SCL 6
#define GPI0_ENET1_INT_N 5
#define GP10_ENETO_INT_N 4
#define GP10_HSSO_INT N 3
#define GP10_HSS1_INT_N 2
#define GP10_DSL_INT_N 1

Application Note 17

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u
How-To’s In ®

5.5 Simple Method of Adding an Interrupt Service Routine (ISR)

An application may configure a normal C function to be an ISR. The address of the function can be
added into the vector table at the correct index and enable the interrupt at its source.

Refer to http://sources.redhat.com/ecos/docs-latest/ref/ixdp425.htmI#AEN6568 for the interrupt
numbers assigned to the IXDP425 / IXCDP1100 platform.

5.6 How Can | Restrict Access to Commands?

There are many ways to restrict access to commands, including:
¢ Hide them (no help); comment-out using #ifdef -#endiT conditional code
* Add a feature to enable menus when in particular mode only
* Use a spare GPIO pin to detect a mode

¢ Seta flag in the fconfig space to enable/disable extended menus

5.7 How to Set the Architecture ID for Proper Linux Boot
Support

Linux kernels after 2.4.18-rmk6 require that the bootloader pass the machine ID to the kernel
decompressor. Some kernels have been modified to work around this requirement as not all ARM
platform have been able to comply. For a summary of the ARM Linux kernel boot requirements,
see http://www.arm.linux.org.uk/developer/booting.php.

The machine ID can be changed by modifying the CDL file
arm/xscale/{BOARD}/current/cdl/hal_ar,m_xscale_{BOARD}.cdl
The define_proc script contains a sequence to write the define
#define HAL_PLATFORM_MACHINE_TYPE nnn,
where nnn is the registers Machine ID number.

The current machine types supported by RedBoot are shown in Table 1.

Table 1. ARM Machine Type IDs
Machine ID Machine Name
254 IXDP425 / IXCDP1100 platform
260 Motorola PrPMS1100 (an IXC1100-based board)
290 Coyote gateway platform

18 Application Note

http://sources.redhat.com/ecos/docs-latest/ref/ixdp425.html#AEN6568
http://sources.redhat.com/ecos/docs-latest/ref/ixdp425.html#AEN6568
http://www.arm.linux.org.uk/developer/booting.php

In

5.8

5.9

tel.

Note:

Note:

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
How-To’s

See http://www.arm.linux.org.uk/developer/machines/ for instructions on how to register the
machine ID. Refer to linux/arch/arm/boot/compressed/head-xscale.S for the Linux code that uses
the machine ID. The machine IDs supported by the kernel are defined in linux/arch/arm/tools/
mach-types.

You can modify the Linux kernel source so that the need for the machine ID is eliminated. But you
may limit the ability to configure the kernel in a manner that is unique to your board -NOT
RECOMMENDED. But modifying the kernel source in this manner may make sense for a
customized system rather than for a general-purpose Linux kernel and bootloader.

Do | Need to Use the EEPROM?

This is specific to designs based closely on the IXDP425 platform; therefore, using the EEPROM

depends on your board design. If you plan to use EEPROM connected via 1°C in your system, then
the support is already enabled in RedBoot and is used to store the MAC address for the NPEs. So if
you only plan to use the EEPROM for storing the MAC addresses, then you may want to evaluate
alternative locations for storing the MAC address. e.g., in flash instead of EEPROM.

What are the trade-offs?

1. With EEPROM, you have BOM costs and GPIO consumed. This is the default RedBoot
support.

2. Flash — uses the configuration space in RedBoot (extended). RedBoot must be modified to use
flash for this. A model for how to do this is already in the Coyote gateway platform support
package, but is NOT a configurable option, so modifications are required in non-Coyote
gateway platform systems.

If you do use the EEPROM, you can reclaim the GPIO used to access EEPROM.

If you want to modify the location (offset) at which the MAC address is stored, the EEPROM is
support is provided in the file

packages/hal/arm/xscale/1XDP425/current/src/ixdp425_misc.c

To store the MAC address in the flash, the ixdp425_misc.c module needs to be updated,
removing the existing EEPROM support and updating the code to extend the platform
configuration in the fconfig structure. Refer to the GRG source for a model on how to modify your
source to add this feature.

How to Remove/Modify the LED Display Support

In the init process macro the macro DISPLAY is used. This is in the file:
packages/hal/arm/xscale/${BOARD}/current/include/hal_platform_setup.h

The DISPLAY macro is defined in:
packages/hal/arm/xscale/${BOARD}/current/include/ixdp425._h.

Use an #i Fdef - #endiT block to remove the code generated in a manner similar to how the

delay is removed. The function HEX_DISPLAY should be removed as it is available for use but
not used in the current source tree.

Application Note 19

http://www.arm.linux.org.uk/developer/machines/

How-To’s

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* intel
®

5.10

5.11

5.12

20

Note:

Note:

The expansion bus does not need to be setup to use CS2 to access the LED displays if they are not
on your board. So the define

#define IXP425_EXP_CS2_INIT

must not be used. This is due to the platform_setup macro applying the CS3 init in the define
if it is available. This is in the file:

hal_platform_setup.h

How Do | Add a Self Test?

In the file
packages/redboot/current/src/main.c

see the declaration for bist():

// Builtin Self Test (BIST)

externC void bist()

This is called when RedBoot is starting up.

It may not be appropriate to add a significant amount of functionality here as this can slow down
the boot and load time for your application. You need to consider the power-on self test
requirements and how these relate/affect the amount of time that the system requires to boot and
become operational.

Are There Any Preexisting Test Routines?

Yes, they are for alternate platforms that are Intel XScale core-based, but can be used and added to
the source tree. An example of this is the RAM test for the 80321 board. The RAM tests and algo-
rithms employed are still valid. The menus and physical location/size are fixed. It should take a min-
imal level of effort to “migrate’ (copy code module, and update) the desired tests routines into the
IXDP425 / IXCDP1100 platform source tree.

See the online reference for the diag command at:

http://sources.redhat.com/ecos/docs-latest/ref/ig80310.htmI#AEN6307

The source for the diag command is available from the on-line CVS repository in the source tree:

packages/hal/xscale/i1g80321/current/src/diag

How Do | Add a Command?

See main.c for the declaration of a few of the key commands. Review the cmd structure in packages/
redboot/current/include/redboot.h. You can add a command to most any ‘main -level’ file as long as
the command declarations follow the pattern in main.c. The command structure is then added to the
main command list as part of the build. The basic steps include:

* Write the command function;

Application Note

http://sources.redhat.com/ecos/docs-latest/ref/iq80310.html#AEN6307

intel.

5.13

5.14

5.15

Note:

Note:

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
How-To’s

¢ Create the cmd structure wrapper.

See the file main.c and how the version command is defined and implemented; use this as an
example of how to add a simple command.

Are Documents Provided with the Source?

Yes. The main entry point for the docs is the file docs/redboot/html/redboot.html.
Also see the files
docs/redboot/html/ixdp425.html for the ixdp425

docs/redboot/html/getting-started-with-redboot._html

Telnet Access to RedBoot CLI

This section provides a hint and a warning about a feature.

If RedBoot is configured for GDB access, this port can also be used for Telnet access to the
RedBoot CLI, prior to loading images. This allows you to connect to a device when a console port
is not provided externally. This is also useful when the serial port hardware is not present in the
production build of the board. To access this, use the Telnet command and specify a port of 9000.
For example, for a board with an IP address of 192.168.200.201, the command is:

telnet 192.168.200.201 9000

To help mitigate this risk of unauthorized access, it is easy to reassign the port number; in addition,
RedBoot will only respond to requests for a short period of time during boot.

When the Telnet session connects, the “RedBoot >” prompt and commands are available. This is a
good reason to add a command-enable sequence as all commands are available. Also depending
upon the configuration, the delay from RedBoot init complete to starting to loading images may be
short. So there is a timing aspect to connecting to the RedBoot prompt via Telnet.

For some products, using Telnet to connect to RedBoot is a way to initiate firmware updates.

How to Update the ROM Image

Updating the image that runs from ROM must be done using an image that runs from RAM instead
of running from flash. Why? The flash partition — that needs to be updated — is also being
accessed for instructions as RedBoot runs out of flash in the ROM configuration. So RedBoot must
be running from RAM to be able to update the flash partition used by the ROM-mode RedBoot.

The basic sequence of steps is:
¢ Change the IMAGE_TYPE to RAM in the build script/makefile.
¢ Build a RAM image.
* Load the RAM image and run.

* Load the ROM image, unlock the flash, use fis to store the new image.

Application Note 21

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u

How-To’s In ®

* Reset

For the IXDP425 / IXCDP1100 platform, the update sequence is captured and the commands
entered are identified.

+Ethernet eth0: MAC address 00:02:b3:3c:15:de
IP: 192.168.200.200/255.255.255.0, Gateway: 0.0.

0
Default server: 192.168.200.254, DNS server IP: 0.0.0

0.
0.
RedBoot (tm) bootstrap and debug environment [ROM]

Red Hat certified release, version 1.92 - built 23:01:46, May 2 2003

Platform: IXDP425 Development Platform (XScale)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x10000000, 0x0001£880-0x0f££d1000 available

FLASH: 0x50000000 - 0x51000000, 128 blocks of 0x00020000 bytes each.
== Executing boot script in 3.000 seconds - enter "“C to abort

“~c

RedBoot> load -v redboot RAM.srec

Using default protocol (TFTP)

Entry point: 0x00020040, address range: 0x00020000-0x0005701c
RedBoot> go 0x20040

+Ethernet eth0: MAC address 00:02:b3:3c:15:de

IP: 192.168.200.200/255.255.255.0, Gateway: 0.0.0.0

Default server: 192.168.200.254, DNS server IP: 0.0.0.0

RedBoot (tm) bootstrap and debug environment [RAM]

Non-certified release, version 1.92 - built 15:58:38, Apr 8 2003

Platform: IXDP425 Development Platform (XScale)
Copyright (C) 2000, 2001, 2002, 2003 Red Hat, Inc.

RAM: 0x00000000-0x10000000, 0x0006d5e0-0x0f£d1000 available

FLASH: 0x50000000 - 0x51000000, 128 blocks of 0x00020000 bytes each.
== Executing boot script in 3.000 seconds - enter “C to abort

“~c

RedBoot> load -v redboot ROM.srec -b 0x01600000

Using default protocol (TFTP)

Address offset = 0xb1600000

Entry point: 0x01600040, address range: 0x01600000-0x0163dldc
RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x50000000 0x50000000 0x00040000 0x00000000
RedBoot config 0x50FC0000 0x50FC0000 0x00001000 0x00000000
FIS directory 0x50FE0000 O0x50FE0000 0x00020000 0x00000000
zimage 0x50040000 0x01600000 0x000C0000 0x01600000
ramdisk 0x50100000 0x00800000 O0x001E0000 0x00800000

RedBoot> fis create RedBoot -b 0x01600000
An image named 'RedBoot' exists - continue (y/n)? y
Erase from 0x50000000-0x50040000:
Program from 0x01600000-0x01640000 at 0x50000000:
Unlock from 0x50£e0000-0x51000000:
Erase from 0x50£fe0000-0x51000000:
Program from O0xO0ffdf000-0x0ffff000 at 0x50fe0000:
... Lock from 0x50£fe0000-0x51000000:
RedBoot >

22 Application Note

intel.

5.16

5.17

5.17.1

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
How-To’s

How to Place RAM Mode Update Image in Flash for Future
Use

It is advantageous to have a corresponding RAM image already available in the FIS so that the
ROM image can be updated. Use the commands shown below to save a RAM-mode RedBoot
image to flash.

RedBoot> load -v redboot_ RAM.srec

Using default protocol (TFTP)

Entry point: 0x00020040, address range: 0x00020000-0x0005701c

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x50000000 0x01600000 0x00040000 0x01600040
RedBoot config 0x50FC0000 O0x50FC0000 0x00001000 0x00000000
FIS directory 0x50FE0000 O0Ox50FE0000 0x00020000 0x00000000
zimage 0x50040000 0x01600000 0x000C0000 0x01600000
ramdisk 0x50100000 0x00800000 0x001E0000 0x00800000

RedBoot> fis create RedBoot-RAM -b 0x20000 -1 0x40000
Erase from 0x502e0000-0x50320000:
.. Program from 0x00020000-0x00060000 at 0x502e0000:
. Unlock from 0x50fe0000-0x51000000:
Erase from 0x50£e0000-0x51000000:
Program from Ox0ffdf000-0x0ffff000 at 0x50£e0000:
Lock from 0x50£e0000-0x51000000:

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x50000000 0x01600000 0x00040000 0x01600040
RedBoot config 0x50FC0000 Ox50FC0000 0x00001000 0x00000000
FIS directory 0x50FE0000 Ox50FE0000 0x00020000 0x00000000
zimage 0x50040000 0x01600000 0x000CO000 0x01600000
ramdisk 0x50100000 0x00800000 0x001E0000 0x00800000
RedBoot -RAM 0x502E0000 0x00020000 0x00040000 0x00020040
RedBoot>

The fis list command shows that the RAM image is stored. To run this images use the commands

RedBoot> fis load RedBooT-RAM
RedBoot> go

How Do | Add My Custom Source to the Build Tree?

It depends upon the nature of the added functionality. It can be added anywhere, but the best way to
add source to the tree is via an eCos package file.

How to Make Changes to the Source Tree into an eCos Package

To make an eCos package:
* Make a copy of the tree
¢ Remove the unmodified files

Create the files pkadd.db and pksadd.txt and place into the top directory of the source tree

* Tar gzip using a command such as:

Application Note 23

How-To’s

In

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u tel
®

Note:

5.17.2

5.17.3

24

Note:

tar czvf mypackage.epk source-tree/

An eCos package is simply a tar.gz file renamed with an .epk extension and a few key files added
to the root directory of the file. For details on exactly what ecosadmin does with the epk file, refer
to the source in ecosadmin.tcl.

For a more detailed instructions, see the online eCos documentation at http://sources.redhat.com/
ecos/docs-latest/cdl-guide/package.distrib.html.

Why Do | Need to Create a Package for Modifications to the Source
Tree?

1. Licensing — you may be required to supply the source updates for this board.
2. ltis fairly easy to do.

3. It makes for a consistent source integration and build mechanism.

Package Content

There are two key files that are in an eCos package file — pkadd.db and pkadd.txt.

The pkgadd.db file is significant in that this file contain a description and instructions for adding
the component(s) in the package to the ecos component database. This is not as difficult as it
sounds.

pkgadd.txt content can consist of a short message identifying the package. Any licensing notice can

be placed here as ecosadmin will ask for y/m acceptance if this file exists. If no notice or license is
desired it can be left out.

For details on the section content in the example pkgadd.db file, see page 264-66 in the Massa
book referred to in Section 1.2.

For example, a new425 board is defined. This board is based on the Coyote gateway platform.

package CYGPKG DEVS FLASH NEW425 {

alias { "FLASH memory support for NEW425" flash NEW425 }
directory devs/flash/arm/NEW425

script flash NEW425.cdl

hardware

description "

This package contains hardware support for FLASH memory
on the NEW425 Reference Board."

}

package CYGPKG DEVS ETH ARM NEW425 I82559 {
alias { "NEW425 / Intel 82559 ethernet driver"
devs_eth arm NEW425 i82559 }

hardware

directory devs/eth/arm/NEW425/182559

script NEW425 182559 eth driver.cdl

description "Ethernet driver for NEW425 with Intel 82559 PCI NIC."

}

package CYGPKG HAL ARM XSCALE NEW425 {

alias { "NEwW425 Reference Board"
hal arm xscale NEW425 }
directory hal/arm/xscale/NEW425

Application Note

http://sources.redhat.com/ecos/docs-latest/cdl-guide/package.distrib.html

5.17.4

5.18

5.19

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
How-To’s

script hal arm xscale NEW425.cdl

hardware

description "
The NEW425 HAL package provides the support needed to run eCos on an
NEW425 Reference Board"

}

target NEW425 {

alias { "Intel NEW425 Wireless SOHO router Reference Board" grg }

packages { CYGPKG_HAL ARM
CYGPKG_HAL_ARM XSCALE_CORE
CYGPKG_HAL ARM XSCALE IXP425
CYGPKG_HAL_ARM XSCALE_ NEW425
CYGPKG_IO PCI
CYGPKG_DEVS_ETH INTEL_I82559
CYGPKG DEVS_ETH ARM NEW425 182559
CYGPKG_DEVS_FLASH_ STRATA
CYGPKG_DEVS FLASH NEW425

}

description "
The NEW425 target provides the packages needed to run
eCos on an Intel NEW425 Reference Board"

}

Testing the Package

Use the following ecosadmin command to verify the package is installs properly:

ecosadmin add mypackage.epk

Passing Information Between RedBoot* and Linux

The Linux kernel can recognize, read and write MTD partitions. RedBoot can create and initialize
partitions. A simple structure can then be used to share information. Also, Linux can read the
fconfig partition.

Linux can also recognize partitions created and maintained by RedBoot. In the kernel config this is
controlled in the CONFIG_MDT_ REDBOOT_PARTS define. This is enabled by default in most
kernels that support the IXDP425 / IXCDP1100 platform.

This allow the user mode applications to access via the /dev/mtd and the /dev/mtdblockO.
These are typically assigned to contain a flash file system. By defining a structure common to
RedBoot and the Linux kernel and applications, a mailbox-like system can be set up.

How to Change the Default Values Used for fconfig

The fconfig command allows the RedBoot configuration to be set up/initialized and changed. The
fconfig command allows modifying the boot script. ANY value in fconfig can be set to a default
value. You can also extend the fconfig structure and add your own values.

The fconfig structure elements and defined configuration items are in
packages/redboot/current/include/flash_config.h

packages/redboot/current/src/flash.c

Application Note 25

How-To’s

In

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u tel
®

5.19.1

5.19.2

26

Note:

Note:

Note:

Configuration Option Basics

All configuration values are identified by the macro
RedBoot_config_option

The arguments to the macro provide the initial values for the following:
* prompt message displayed when interactively setting the option value
* option data variable name
* option data name tag
* enabled state (true/false)
¢ tconfig type (see flash_config.h for config types)
* default value

Use SourceNavigator to find all the configuration variables as they are spread around the source
tree; they are defined in the context of the supporting code and source module.

Example: Changing the Default Boot Script in Source Code

This changes the boot script in generated code.

Follow these steps to change the default (empty) boot script to a new value that loads a kernel
image from flash into RAM and executes.

In the file Flash . c, find the definition for “Boot Script”; look for:
RedBoot_config_option(“Boot Script”,
boot_script_data

“boot_script”, true,
CONFIG_SCRIPT,

);

Change the default value by editing the last line of the macro. Change the following from

to

“fis load -r -v -b 0x01600000 zimage\nexec”

Save the file, rebuild and load onto your board. Use the command
fconfig iInit

to re-initialize the configuration date in flash. This will set all the values to the default value. Use
the command

fconfig -1

to list the configuration and verify the boot script contains the desired value.

This modification can be coupled with a modification to the “Run script and boot” and “Boot script
timeout” configuration values.

Application Note

intel.

5.19.3

5.20

Note:

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
How-To’s

Example: Change the Boot Script in the RedBoot* CDL

This example shows how to change the boot script in the CDL file so that ALL generated code will
use the same boot script.

Edit the file
packages/redboot/current/cdl/redboot.cdl
Find the cdl_option entry for
CYGDAT_REDBOOT_DEFAULT_BOOT_SCRIPT
Change

default_value

to the desired boot script string.

Regenerate the RedBoot source tree.

General eCos File Type Questions and Answers

Q: What is an .ecc file?

A: An ecc file an eCos configuration file. This specifies the packages to load, the template used,
and the option settings.

Q: What is an .ect file
A: An ect file is an eCos template file

Q: When and what updates the ecos.db file?

A: The ecosadmin.tcl program updates the ecos.db file. The add command is used in the build
script to add a package to the build.

Q: What is an ecm file?

A: ecm — This contains eCos configuration macros. The file is imported to provide the minimal
setup of packages for the HAL and the product. This is the file where the “CYGNUM_HAL_*”
variables are set to alter RedBoot; features can be enabled/disabled. See page 188, 253 in the
Massa book referred to in Section 1.2.

Q: What is a CDL file?

A: CDL - Component Definition Language file. The CDL files contain code that is used to
describe package components. This is the basis for eCos configurability. Each package must have
at least one CDL file.

See the following online documentation for eCos:

* The eCos Component Writer’s Guide, http://sources.redhat.com/ecos/docs-latest/cdl-guide/
overview.html

¢ The CDL Language, http://sources.redhat.com/ecos/docs-latest/cdl-guide/language.html

Application Note 27

http://sources.redhat.com/ecos/docs-latest/cdl-guide/overview.html
http://sources.redhat.com/ecos/docs-latest/cdl-guide/overview.html
http://sources.redhat.com/ecos/docs-latest/cdl-guide/language.html

Overview of the Source Tree In

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u tel
®

Appendix A Overview of the Source Tree

Note:

Al

A.2

A.3

28

A complete and detailed tour of the eCos source tree can be found in the Massa book referred to in
Section 1.2. This appendix provides pointers to elements of the RedBoot source tree (a subset of
the eCos source tree) needed for customizing RedBoot, and includes the following general
information:

¢ Basic introduction to eCos and eCos package files
* What the primary packages are and what they are for
* Key source code modules
* Where the prime modules are located in the source tree
In perusing a new source tree, a key question is “Where is main?”. main.c is the source module that

provides a summary of what RedBoot is doing and what facilities are available. main.c is located in
the source file

packages/redboot/current/src/main.c

eCos and RedBoot*

RedBoot is an eCos-based application. There is a comprehensive summary of RedBoot in the
Massa book (pp. 185-206), referred to in Section 1.2.

For a short summary on eCos and the eCos file types, see Section 5.20, “General eCos File Type
Questions and Answers” on page 27.

eCos Packages

eCos is an organized set of packages that are configured by the ecosconfig application. Since
RedBoot is an eCos application, the source tree follows the eCos source tree layout. Each package
has a common structure under the package name:

<packagenames>/current
-cdl
-doc
-include
-misc
-src

Each package has its own configuration ‘database’ in the CDL file. The CDL file is a text file that
contain statements that follow the Component Description Language syntax. See http://
sources.redhat.com/ecos/docs-latest/cdl-guide/language.html for a guide to the language and file
structure.

Primary eCos Packages

The primary packages relevant to RedBoot in the eCos source tree include:
* HAL

Application Note

http://sources.redhat.com/ecos/docs-latest/cdl-guide/package.html
http://sources.redhat.com/ecos/docs-latest/cdl-guide/language.html
http://sources.redhat.com/ecos/docs-latest/cdl-guide/language.html

u Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
In o Overview of the Source Tree

* RedBoot

A.3.1 HAL — Hardware Abstraction Layer
The HAL is essentially the BSP configuration items. The HAL package provides all the processor-
and platform-specific code so that eCos will run on the platform. This includes platform
initialization/startup code, configuration for memory, interrupts, GPI1O, PCI bus, the expansion bus,
etc. The HAL source is located in the directory
packages/hal/arm/

The following subdirectories contain specific HAL code for the 1XP425 network processor-based
boards:

xscale/ixp425 — the primary IXP42X product line and 1XC1100 control plane processors support
code

xscale/ixdp425 — provides specific IXDP425 / IXCDP1100 platform support
xscale/grg — provides specific Coyote gateway platform support

xscale/prpmc1100 — provides specific Motorola Computer Group PrPMC1100* board support.
Note: HAL code for other boards based on Intel XScale® Core processors is available if you obtain the

source from the CVS repository rather than using the source zip file. See Chapter 5.0, “Obtaining
RedBoot from the Public CVS Repository.”

A.3.2 RedBoot*

This is the eCos package that provides the application functionality for RedBoot. The src and
include directories contain the code that defines the functionality available via the command
prompt as well as the networking and filesystem support.

Application Note 29

Build Script

In

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u tel
®

Appendix B Build Script

B.1

B.2

30

Note:

The build-redboot script is a BASH command script to automate the RedBoot build commands
identified in the Intel® IXP400 DSP Software: Red Hat* Boot-Loader 1.92 Software Release Notes,
7/2/03. This script requires that toolchain and source are set up and installed per the release notes.

A command line argument allows the target to be specified — IXDP425 / IXCDP1100 platform,
Coyote gateway platform, or PrPMC1100 platform.

Copy and paste the entire script into a file. Then change the script to set the exec flag using the
command:

chmod +x

which makes it executable.

Usage

The build-redboot script expects to be run in a directory above the directory where the source code
is installed and will check for the source code directory redboot-intel-xscale-030618.

To run, issue the command

build-redboot

This assumes the script is in the path. If you created the script in the current directory, use the
command

./build-redboot
The build is interactive in that you will be asked to accept the license agreement for the NPE
enabling source. Beyond that, it runs to completion. The script defaults to build RedBoot for the
IXDP425 / IXCDP1100 platform; the platform can be specified on the command line.
For the Coyote gateway platform, use:

build-redboot grg
For the PrPMC1100 platform, use:

build-redboot prpcmll00

What Does the Build Sequence Do?

The build sequence uses the command ecosconfig to set up the source tree to create RedBoot. This
uses templates, packages and CDL files defined in the ece file to set up and then generate the tree.
Once the tree is generated a simple make is all that is required to build the configured RedBoot.

Any changes to packages or CDL files require that you regenerate the tree; therefore, to make
development easier, identify the packages, templates and CDL file, modify them, and then use
these to control the configuration without editing the source code. Source code will have to be
patched, modified and/or added to address all the requirements of a customized RedBoot.

Application Note

In

tel.

Note:

Note:

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
Build Script

A primary tool used in building RedBoot is the host application, ecosconfig. ecosconfig manages

the content of the ecos.ecc file. Note that ALL the initialization steps build the eCos configuration
file. This is a CDL file that is the ‘master’ collection of the eCos component hierarchy that define
the application to be built — in this case, RedBoot.

The build script provides the commands to rebuild ecosconfig as the first step in building RedBoot.
Once ecosconfig is compiled for your platform it does not need to be recompiled.

The build script annotation applies to any RedBoot build sequence typically provided in the
README with the source distribution. Refer to Appendix B, “build-redboot Script Source,” for
the complete build script source or Appendix C, “Makefile,” for a makefile.

The first commands are BASH script variable commands
BUILD_ECOSCONFIG="y"
RBSRC="redboot-intel-xscale-030618"

NPE_EPK FILE="npe-1.1l.epk"
IMAGE_TYPE="ROM"

The ${BOARD} variable is set to the default of the IXDP425 / IXCDP1100 platform. Or can be
specified in the command line.

If you need a RAM-mode? image, set IMAGE_TYPE to RAM.
The main command sequence starts with
chmod +x ${ECOS_REPOSITORY}/ecosadmin.tcl
The above command changes the ecosadmin.tcl file (a TCL script) so that it can be executed.

The following command runs the ecosadmin.tcl script

${ECOS REPOSITORY}/ecosadmin.tcl add ../../${NPE-EPK-FILE}

The ecosadmin.tcl script argument ADD causes the script to process the epk file, uncompressing
the package content and placing the package into the source tree. This command has much
functionality. The npe-1.1.epk file contains the NPE Ethernet support package required for
RedBoot to use the NPE Ethernet ports.

The next command is
ecosconfig new ${BOARD} redboot

This creates a new target configuration ${BOARD} using the RedBoot template. The RedBoot
template defines the baseline.

The next command is

ecosconfig import ${ECOS_REPOSITORY}/hal/arm/xscale/${BOARD}/
current/misc/redboot_${IMAGE_TYPE}.ecm

This command imports additional configuration information to set the RedBoot startup mode. The
IMAGE_TYPE variable is either RAM or ROM and defines how the RedBoot image runs.

1. See http://sources.redhat.com/ecos/docs-latest/ref/startup-mode.html for more information on RedBoot startup modes.

Application Note

31

http://sources.redhat.com/ecos/docs-latest/ref/startup-mode.html

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u

Build Script

B.3

32

INtal.

The next command is
ecosconfig add intel_npe

This command adds the intel_npe package to the configuration database

The next command is
ecosconfig add ${BOARD}_npe

This adds the board specific npe package to the configuration database.

The next command is
ecosconfig tree

This creates the build tree using the target configuration. The CDL files are consulted and the
includes are generated. These are all created under the build directory. An example is the version
defines that are configured in the file packages/hal/arm/xscale/ixdp425/current/
cdl/hal_arm_xscale_ixdp425.cdl. When the tree is generated, the CDL is consulted
and the defines are written into the file bui ld/instal 1/include/pkgconf/
hal_arm_xscale_ixdp425.h

The next command (should be obvious by now!)
make

The starts the RedBoot build and may take several minutes to complete.

build-redboot Script Source

#!/bin/bash

Disclaimer

This script is distributed in the hope that it will be useful, but without any
warantee, without even the implied warantee of merchantabilty or fitness for
a particular purpose

All copyrights are owned by their owners, unless specifically noted otherwise.
Use of a term in this document should not be regarded as affecting the
validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.
You are strongly recommended to take a backup of your system before major

installation and backups at regular intervals.

Revision History

20030812 - Released for general use

HoF o HHE

#set +x

BUILD_ECOSCONFIG="y"

RBSRC="redboot-intel-xscale-030618"

NPE_EPK FILE="npe-1.1l.epk"

change IMAGE TYPE to ROM for images that you load into flash

Application Note

u Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*

|n . Build Script

Or use RAM for images that are for testing or update
IMAGE _TYPE="ROM"

if [-n "$1"]; then
case $1 in
"ixdp425" | "grg" | "prpmcll0O")
BOARD=$1

echo "$0: error"
echo "Invalid build target™"
echo "If specified, board must be ixdp425, grg or prpmcllOQ"

exit 1

esac
else

BOARD="1ixdp425"
fi
echo nn
echo M o o e e e e e e e e e e e ——— n
echo "Building RedBoot for the ${BOARD}"
echo N o e e e e e e e e e e e e — — — — — ——— —— — — — — — —— — n
echo nn
if [t -4 ./${RBSRC}]; then

echo "RedBoot source not installed in ${RBSRC}"
fi

cd ./${RBSRC}

export PATH=/opt/redhat/xscale/bin:${PATH}
export TOPDIR=pwd~

export ECOS_REPOSITORY=${TOPDIR}/packages
export VERSION=current

echo "TOPDIR ${TOPDIR}"

echo "ECOS REPOSITORY = ${ECOS_REPOSITORY}"

chmod +x ${ECOS_REPOSITORY}/ecosadmin.tcl
${ECOS_REPOSITORY}/ecosadmin.tcl add ../../${NPE EPK FILE}

if [-d ${TOPDIR}/build 1; then
echo " Cleaning up old build..."
rm -rf ${TOPDIR}/build

fi

mkdir ${TOPDIR}/build
cd ${TOPDIR}/build

B .
you only need to build ecosconfig once for your platform
Once it is built , move it to the tool chain bin
directory, and set BUILD ECOSCONFIG ="n"
#
This section builds it and sets it up for use by the
rest of the script. One you build and move to bin
ecoscfg can be found in the PATH, so ECOSCFG_PATH
is set to empty
if [${BUILD_ECOSCONFIG} = "y"]; then
echo nn
echo N o e e e e e e e e e e e —— n

Application Note 33

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u

Build Script

34

INtal.

echo "Building and setup of ecosconfig..."
echo M o e e e e e e e e e e e e e — n
echo nn

../host/configure

make

cp tools/configtool/standalone/common/ecosconfig
ECOSCFG_PATH=". /"

else
ECOSCFG_PATH=""
fi

echo nn

echo N o o o e e e e e e e e e e e e o n
echo " Building RedBoot..."

echo N o o o o e e e e e e e e e e e e e e e = o n
echo nn

${ECOSCFG_PATH}ecosconfig new ${BOARD} redboot

${ECOSCFG_PATH}ecosconfig import ${ECOS REPOSITORY}/hal/arm/xscale/${BOARD}/
current/misc/redboot ${IMAGE TYPE}.ecm

${ECOSCFG_PATH}ecosconfig add intel npe

${ECOSCFG_PATH}ecosconfig add ${BOARD} npe

${ECOSCFG_PATH}ecosconfig tree

make

echo nn

echo N o o e e e e e e e e e e e e — — n
echo " RedBoot Build compelete - for ${IMAGE TYPE} based images"
echo " Binaries for the ${BOARD} are available at: "

echo " ${TOPDIR}/build/install/bin "

echo nn

1ls ${TOPDIR}/build/install/bin -1

echo nn

Application Note

intel.

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot*
Makefile

Appendix C Makefile

Note:

This makefile is an example method of building RedBoot for the IXDP425 / IXCDP1100 platform.
This could be extended to other platforms by changing the BOARD. The makefile ‘install’ target
will set up and install the toolchain.

make install
make ecosconfig

make

When cutting and pasting the following example, remember that ‘make’ uses tabs for indenting the
target recipe lines.

This script is distributed in the hope that it will be useful, but without any
warantee, without even the implied warantee of merchantabilty or fitness for
a particular purpose

All copyrights are owned by their owners, unless specifically noted otherwise.
Use of a term in this document should not be regarded as affecting the
validity of any trademark or service mark.

H o H o H o HHH

export TOPDIR=$ (CURDIR)
PROOT=/opt/redhat/xscale-030422

PATH +=:${PROOT}/H-1686-pc-linux-gnulibc2.2/bin
BOARD=1xpd425

NPE_EPK FILE=npe-1.1.epk

#INFOPATH=3{ PROOT}/info

export PATH

export ECOS_REPOSITORY=${TOPDIR}/packages
#export VERSION=current

all: npe

cd ${TOPDIR}/build; \

./ecosconfig new ${BOARD} redboot; \

./ecosconfig import ${ECOS_REPOSITORY}/hal/arm/xscale/ixdp425/current/misc/
redboot ROM.ecm; \

./ecosconfig add intel npe;\

./ecosconfig add ${BOARD} npe;\

./ecosconfig tree; \

make
npe:
chmod +x ${ECOS_REPOSITORY}/ecosadmin.tcl
${ECOS_REPOSITORY}/ecosadmin.tcl add ../${NPE EPK FILE}
ecosconfig:

rm -rf ${TOPDIR}/build

mkdir ${TOPDIR}/build

cd ${TOPDIR}/build; \

../host/configure; \

make; \

cp tools/configtool/standalone/common/ecosconfig .

tool chain installation

install:
echo "Installing tool chain for RedBoot..."
cd ../ ; \

Application Note 35

Intel® IXP42X Product Line of Network Processors: Customizing RedBoot* u
Makefile N .

uncompress < 1686-pc-linux-gnulibc2.2-x-xscale-elf.tar.Z | tar xpf - Install ;\
./Install --tape=i686-pc-linux-gnulibc2.2-x-xscale-elf.tar.Z binaries
echo "Installing tool chain for RedBoot complete."

36 Application Note

	Intel®IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor: Customizing RedBoot*
	1.0 Introduction
	1.1 Audience
	1.2 Related Documents
	1.3 Acronyms

	2.0 What is Customizing?
	2.1 Production Versus Development Bootloader
	2.2 Requirements to Consider
	2.3 Licensing

	3.0 Getting Started
	3.1 Prerequisites
	3.2 Development Steps
	3.3 First Step - Modify the Version

	4.0 Items to Address When Customizing for a New Board
	4.1 Moving from the IXDP425 / IXCDP1100 platform to a Custom Board
	4.2 Where to Make Modifications in the Source Tree
	4.3 Updating the Build Sequence
	4.3.1 Add Packages Created
	4.3.2 Changing the BOARD Variable
	4.3.3 Apply Patches
	4.3.4 Rebuilding Notes

	5.0 How-To’s
	5.1 Obtaining RedBoot from the Public CVS Repository
	5.2 How to Modify the Version String Reported
	5.3 Where to Modify Diagnostic/Console UART Use
	5.4 Where to Adjust the Platform Initialization Steps
	5.4.1 How to Adjust for Alternate Flash Parts and Size
	5.4.2 How to Adjust for Alternate SDRAM Size
	5.4.3 Where to Adjust for PCI Changes
	5.4.4 Where to Reconfigure the GPIO Assignments

	5.5 Simple Method of Adding an Interrupt Service Routine (ISR)
	5.6 How Can I Restrict Access to Commands?
	5.7 How to Set the Architecture ID for Proper Linux Boot Support
	5.8 Do I Need to Use the EEPROM?
	5.9 How to Remove/Modify the LED Display Support
	5.10 How Do I Add a Self Test?
	5.11 Are There Any Preexisting Test Routines?
	5.12 How Do I Add a Command?
	5.13 Are Documents Provided with the Source?
	5.14 Telnet Access to RedBoot CLI
	5.15 How to Update the ROM Image
	5.16 How to Place RAM Mode Update Image in Flash for Future Use
	5.17 How Do I Add My Custom Source to the Build Tree?
	5.17.1 How to Make Changes to the Source Tree into an eCos Package
	5.17.2 Why Do I Need to Create a Package for Modifications to the Source Tree?
	5.17.3 Package Content
	5.17.4 Testing the Package

	5.18 Passing Information Between RedBoot* and Linux
	5.19 How to Change the Default Values Used for fconfig
	5.19.1 Configuration Option Basics
	5.19.2 Example: Changing the Default Boot Script in Source Code
	5.19.3 Example: Change the Boot Script in the RedBoot* CDL

	5.20 General eCos File Type Questions and Answers

	Appendix A Overview of the Source Tree
	A.1 eCos and RedBoot*
	A.2 eCos Packages
	A.3 Primary eCos Packages

	Appendix B Build Script
	B.1 Usage
	B.2 What Does the Build Sequence Do?
	B.3 build-redboot Script Source

	Appendix C Makefile

