FinFET and III-V/Ge technology impact on 3T1D cell behavior

E. AMAT, A. CALOMARDE, C.G. ALMUDÉVER, N. AYMERICH, R. CANAL AND A. RUBIO

UNIVERSITAT POLITÈCNICA DE CATALUNYA
Terascale Reliable Adaptive Memory System project

System architecture

3T1D-DRAM CNFET

6T/8T-SRAM

Device modeling
Motivation

- Higher **density**.
- Lower **cost** per chip.
- Performance **improvement**.
- **Higher** frequency.

Moores Law

- **Worsening reliability**.
- **Leakage** current.
- **Device variability**.
- **Soft Errors** Rate.

Intel courtesy

Imec courtesy

IIRC’13 - Nov 22, Dublin (Ireland)
Index

- Introduction
- Simulation framework
- Results
 - 3T1D-DRAM cell performance
 - Variability
 - SER impact
- Conclusions
Reliability drawbacks (I)

Introduction

Simulation

Results

Conclusions

Gate leakage currents

Mobility reduction

High-k gate dielectrics
Reliability drawbacks (II)

Device variability

Soft Error Rate

A. Asenov et al., DATE, 2011

P. Shivakumar et al., IEEE ICSN, 2002

R. Baumann et al., IEEE D&T, 2005

IIRC’13 - Nov 22, Dublin (Ireland)
Bulk MOSFETs are the conventional transistor structure, but to **improve** their performance:

1. **Adv. MOSFET**
 - Leakage reduction:
 - **High-k** dielectrics.
 - Mobility:
 - **Strained** channels.
 - Variability:
 - **Difficult** to reduce doping, due to SCE.

2. **III-V/Ge MOSFETs**
 - **Significant** mobility improvement.
 - **Non** relevant fabrication process modification.

3. **FinFETs**
 - **Lower** doping.
 - **Better** SCE.
 - **Lower** leakage.
 - **Higher** mobility

IIRC’13 - Nov 22, Dublin (Ireland)
Memory cells

- Microprocessor area is **mainly** occupied by memory circuits.
- **RDF** is of particular concern in memories.
 - Designed using **minimum** feature sizes for density reasons.
- **6T-SRAM** is usually the main memory cell implemented.
Memory cells

6T-SRAM

- **Not** enough robust cell against the process variations.
- Relevant performance **lost** is stated, i.e. speed reduction & cell instability.

3T1D-DRAM

- **Dynamic** cell, refresh needed.
- **Non-destructive** read process.
- Low **area** cost.
- Higher variability **tolerance**.
- Promising for **data caches**.

W.Luk et al., VLSI, 2006
Device models

- **16nm** technology node.
- Planar MOSFETs
 - HP PTM (ASU).
 - High-k + strained channel
- III-V/Ge MOSFETs
 - EU TRAMS project (UoG).
- FinFETs
 - HP PTM-MG (ASU).

![Graph](image)

- Sub-threshold Slope
 - FinFET stepper
 - GeMOS slower

- I_{on}: FinFET higher, GeMOS smaller
- I_{off} (i.e., $I_{leakage}$)
 - MOSFET lower, GeMOS higher
Simulations (I)

- 3T1D-DRAM cell performance:
 - Parameters: WAT, RAT, PW & RT.
 - V_{DD} relevance, 0.4 – 1V.
 - Temperature influence, 25 – 125ºC.

- Variability impact (ΔV_T):
 - 10,000 Monte Carlo simulations.

<table>
<thead>
<tr>
<th>Variability Levels</th>
<th>Planar</th>
<th>FinFET</th>
<th>III-V/Ge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate (M)</td>
<td>10%</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>High (H)</td>
<td>20%</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>Very High (VH)</td>
<td>40%</td>
<td>30%</td>
<td>40%</td>
</tr>
</tbody>
</table>
Simulations (II)

- **Soft Error Rate (SER)**
 - Only at drain terminal.
 - Minimum injected charge (IC_{min}).
- I_{\text{pulse}} shape **differs** for each technology trend.
 - Simulated by a **double exponential** function.

L. Huichu et al., IEDM, 2012

F. Yi-Pin et al., IEEE TDMR, 2011
FinFET-based cells show the best performance:

- Largest RT and lowest access times.
Higher temperature **robustness** for planar cells.
- FinFET-based cells show worst behavior than planar ones, due to **self-heating** effect.
Variability impact on 3T1D

- FinFETs memories are more robust against device fluctuation.
- For memory blocks, FinFET-based 3T1D cells outperform the other two technology trends.
SER relevance on 3T1D cells

- Ion strikes @D1 & T3 aren’t regarded.
- **Highest** SER impact on T1 drain.
- **Lineal** V_S-shift in function of IC.
- FinFET cells are more SER robust.

IIRC’13 - Nov 22, Dublin (Ireland)
Conclusions

- **FinFET**-based 3T1D-DRAM cells outperform the other technology trends:
 - The **highest** RT, due to the lower \(I_{\text{leakage}} \).
 - Lower access times, **fastest** performance.
 - Larger **robustness** against variability (3X) and SER (10X) is also depicted.
Acknowledgement

A.Rubio C.G.Almudéver N.Aymerich A.Calomarde R.Canal
Thank you for your attention!

Time for questions!