

Order Number: 330015-003US

Source Level Debug using
OpenOCD/GDB/Eclipse
on Intel® Quark™ SoC X1000

Application Note

May 2014

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
2 Order Number: 330015-003US

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied
and no license, express or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. Go to: http://www.intel.com/products/processor_number/

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by
Intel that have not been made commercially available to the public, i.e., announced, launched or shipped. They are never to be
used as “commercial” names for products. Also, they are not intended to function as trademarks.

Intel, the Intel logo, and Quark are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor_number/

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 3

Contents
1 Introduction ...5

1.1 Terminology ..5
1.2 References ..6

2 Prerequisites ..7
2.1 Supported Operating Systems ..7

3 Setting up Hardware ...8

4 OpenOCD Setup – Linux Host ...9
4.1 Patching and building OpenOCD ...9
4.2 JTAG USB pod access .. 10
4.3 Kernel debug build - Galileo board example .. 10
4.4 Modifying bootloader .. 13
4.5 OpenOCD .. 13

5 OpenOCD Setup – Windows Host .. 15
5.1 Patching and Building OpenOCD ... 15

6 OpenOCD Setup – OS X Host .. 17
6.1 Patching and Building OpenOCD ... 17

7 Debugging ... 18
7.1 GDB ... 18
7.2 Eclipse .. 20
7.3 GDB and kernel modules ... 23

Figures

Figure 1. Debugging Setup ..8

Tables

Table 1. Terminology ...5
Table 2. References ...6

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
4 Order Number: 330015-003US

Revision History

Date Revision Description

May 2014 003 Updates due to release of OpenOCD 0.8.0 (supporting Intel® Quark™ SoC) and
BSP Software Release Version 1.0.0.
Added Section 5, OpenOCD Setup – Windows Host.
Added Section 6, OpenOCD Setup – OS X Host.

March 2014 002 Added Section 1.2 and Section 7.3.

December 2013 001 Initial release of document.

Introduction

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 5

1 Introduction
This document explains how to use OpenOCD with Eclipse* or GDB* for source level
debugging of the Linux* kernel running on the Intel® Quark™ SoC X1000.

You may see references in the code to product codenames:

• Intel® Quark™ SoC X1000 (formerly codenamed Clanton)

• Intel® Quark™ Core (codenamed Lakemont Core)

Note: This document is not a complete guide to source level debugging. It is focused on
debugging the Linux kernel on the Intel® Quark™ SoC X1000 at source level using
OpenOCD with GDB or Eclipse.

1.1 Terminology

Table 1. Terminology

Term Description

Eclipse An integrated development environment (IDE) comprising a base
workspace and an extensible plug-in system for customizing the
environment.

GDB GNU* Debugger is the standard debugger for the GNU operating
system.

GNU*/Linux* Linux is the kernel, one of the essential major components of the
system. The system as a whole is basically the GNU system, with
Linux added. See article here:
https://www.gnu.org/gnu/linux-and-gnu.html

JTAG Joint Test Action Group (JTAG) is the common name for the IEEE
1149.1 Standard Test Access Port and Boundary-Scan Architecture.
Debuggers communicate on chips with JTAG to perform operations
like single stepping and breakpointing.

OpenOCD Free and Open On-Chip Debugger.

https://www.gnu.org/gnu/linux-and-gnu.html

Introduction

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
6 Order Number: 330015-003US

1.2 References

Table 2. References

Title / Location Doc ID

Source Level Debug using OpenOCD/GDB/Eclipse on Intel® Quark™ SoC
X1000
https://communities.intel.com/docs/DOC-22203

330015
(this document)

Intel® Quark™ SoC X1000 Debug Operations User Guide
https://communities.intel.com/docs/DOC-22082

329866

Intel® Quark™ SoC X1000 Datasheet
https://communities.intel.com/docs/DOC-21828

329676

OpenOCD User Guide
http://openocd.sourceforge.net/doc/html/

N/A

GDB* documentation
http://www.gnu.org/software/gdb/documentation/

N/A

Other useful documents about the Intel® Quark™ SoC X1000 and the Intel® Galileo
board may be found at:

https://communities.intel.com/community/makers/documentation

https://communities.intel.com/docs/DOC-22203
https://communities.intel.com/docs/DOC-22082
https://communities.intel.com/docs/DOC-21828
http://openocd.sourceforge.net/doc/html/
http://www.gnu.org/software/gdb/documentation/
https://communities.intel.com/community/makers/documentation

Prerequisites

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 7

2 Prerequisites
Refer to the Intel® Quark™ SoC X1000 Board Support Package (BSP) Build Guide
before attempting the steps outlined in this document.

Required software:

• GNU*/Linux* host system

• OpenOCD

• GDB

• Eclipse (Indigo tested) with CDT Plugin Installed (Main + Optional Features)

• Quark Kernel compiled with debug symbols

• Git

Required hardware:

• OpenOCD supported JTAG debugger.
For a complete set of supporting documentation, please visit the website for your
specific JTAG hardware. Intel has tested the board with the following JTAG
debuggers:
− TinCanTools* FLYSWATTER2

http://www.tincantools.com/wiki/Compiling_OpenOCD

− Olimex* ARM-USB-OCD-H
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/

The following pin adapter was used to connect the JTAG debugger to the Quark board:

https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-10/

2.1 Supported Operating Systems
The steps in this document have been validated against an Ubuntu 12.04 LTS 64 bit
setup, but should work on any recent GNU/Linux distribution with minor adaptations.

Pre-built binaries of OpenOCD for Windows* are available for download. See Section 5
for details. Intel has successfully used OpenOCD commands with Windows but has not
tested gdb/Eclipse on top of the binaries.

Intel has not fully validated OpenOCD on OS X*, however, simple tests have been
successful. See Section 6 for details.

http://www.tincantools.com/wiki/Compiling_OpenOCD
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/
https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-10/

Setting up Hardware

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
8 Order Number: 330015-003US

3 Setting up Hardware
The figure below shows a recommended setup for debugging.
1. Host System running OpenOCD, GDB, and Eclipse
2. USB 2.0 male-male A-B cable
3. Flyswatter 2
4. ARM-JTAG-20-10 Adapter
5. JTAG Port
6. Intel® Galileo Board
7. Serial Cable to view boot process
8. Power Supply

Figure 1. Debugging Setup

Note: Flyswatter2 and many JTAG adapters support JTAG and Serial concurrently. If you
source a serial cable that connects (7) to (3) as shown above, then you will have JTAG
and Serial console data arriving at your host system (1) via USB (2).
For example, this cable has been used: http://www.sfcable.com/D935-06.html

http://www.sfcable.com/D935-06.html

OpenOCD Setup – Linux Host

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 9

4 OpenOCD Setup – Linux Host

4.1 Patching and building OpenOCD
To enable Quark support, you must obtain the OpenOCD source code and then build
it. Follow the steps in this section.

Dependencies:

• git

• libtool

• automake

In addition, to use a JTAG pod with an FTDI/FT2232 chip (like the Flyswatter2) you
must install the related USB development library, using a command like:

$ sudo apt-get install libusb-1.0-0-dev

Check out the OpenOCD source code, create a branch checking out the validated 0.8.0
version, using the following commands:

$ git clone git://git.code.sf.net/p/openocd/code openocd-code
$ cd openocd-code
$ git branch quark v0.8.0
$ git checkout quark

Configure and build OpenOCD:

$./bootstrap
$./configure --enable-ftdi
$ make

It is not strictly necessary to install OpenOCD every time it is rebuilt. The binary and
configuration files can be used from the build/source tree directly if desired. However,
it is recommended to perform this additional step the first time or when modifying
configuration files:

$ sudo make install

OpenOCD Setup – Linux Host

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
10 Order Number: 330015-003US

4.2 JTAG USB pod access
By default, non-root users won’t have access to the JTAG pods connected via USB.
You must grant write access to the proper /dev/bus/usb entry every time a device is
connected to be able to run OpenOCD using a non-root account.

The process can be automated by adding a udev rule. Simply create a text file in the
rules directory:

$ sudo vim /etc/udev/rules.d/99-openocd.rules

The IDs depend on the JTAG pod. For example, for the Flyswatter2 and the Olimex-
ARM-USB-OCD-H, the rules file must have the following content:

SUBSYSTEM=="usb", ATTR{idVendor}=="0403", ATTR{idProduct}=="6010",
MODE="0666"
SUBSYSTEM=="usb", ATTR{idVendor}=="15ba", ATTR{idProduct}=="002b",
MODE="0666"

4.3 Kernel debug build - Galileo board example
To debug the kernel at source level (for example, using C language sources), you
must rebuild the kernel and enable the option to generate debugging information.
Next, the newly built kernel and modules have to be installed on the system.

This section describes how to build a debug-enabled kernel for the Galileo board.
An SD card is required for this process.

Dependencies:

• git

• texinfo

• gawk

• diffstat

• chrpath

Building the kernel and the system for the SPI flash is not covered in this example.

The following steps require fetching packages from the Internet. If the build fails
because missing information, check your proxy settings, git configuration, and try to
rerun the build. Also note that in this document, <version> is used as a placeholder
string for the BSP software version.

Steps:
1. Get the Quark Board Support Package (BSP) software as described in the BSP

Build Guide. Download the latest package
(Board_Support_Package_Sources_for_Intel_Quark_<version>.7z) and unpack
it. It contains several archives. You will use two of them in the steps below:

OpenOCD Setup – Linux Host

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 11

meta-clanton_<version>.tar.gz
quark_linux_<version>.tar.gz

2. Build image-full and create a bootable SD card

You can skip this step if you have already built the image-full and have set up
an SD card using the steps described in the Quark™ BSP Build Guide. In the steps
that follow, you must reference the toolchain that you built previously (that is, to
set the correct environment variables).

Create a working directory of your choice to build the BSP and go there:

$ cd /PATH/TO/MY_BSP_WORK_DIR
$ tar zxf meta-clanton_<version>.tar.gz
$ cd meta-clanton_<version>
$./setup.sh -e meta-clanton-bsp
$. poky/oe-init-build-env yocto_build
$ bitbake image-full

The step above can take as long as several hours, because all packages need to
be fetched from the internet and then built. If you have already downloaded all
the files previously (they will be stored in yocto_build/downloads), you can
execute a build without doing sanity checks on the network to save time. Disable
sanity checks by adding this line in the yocto_build/conf/local.conf file:
CONNECTIVITY_CHECK_URIS = ""

At the end of the build, a message similar to this will be displayed:

NOTE: Tasks Summary: Attempted 1209 tasks of which 269 didn't need to
be rerun and all succeeded.

After the image build is completed successfully, you must copy the files below to
the root of the SD card to be able to boot the system on the Galileo board:

− image-full-clanton.ext3
− core-image-minimal-initramfs-clanton.cpio.gz
− grub.efi
− boot (directory)

The files can be found in:

/PATH/TO/MY_BSP_WORK_DIR/meta-clanton_<version>/yocto_build/tmp/deploy/images/

To make a fully bootable SD card, the kernel file itself (bzImage), must be copied
as well. The kernel file produced by the BSP build does not contain debug
information and cannot be used for source level debugging. The following steps
will create a proper kernel file.

3. Get the kernel

Open a new shell. (The shell used for the BSP build of the previous steps contains
changes to the environment which are no longer needed.)

Create a new directory of your choice to rebuild the kernel and go there:

$ cd /PATH/TO/MY_KERNEL_BUILD_DIR
$ tar zxf quark_linux_<version>.tar.gz
$ cd quark_linux_<version>

OpenOCD Setup – Linux Host

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
12 Order Number: 330015-003US

Make sure you have git configured with a username and email (can be false
values), otherwise the command will fail. For details, use the command
man git-config.

$ locate git-config
$ PATH_TO/git-config –-global user.name
$ PATH_TO/git-config –-global user.email

Enter the following command to fetch the proper kernel version from the internet
and patch it with the appropriate Quark changes.
$./gitsetup.py

4. Specify the correct toolchain

Export binaries of the toolchain built in step 2 to your $PATH as follows:

export PATH=/PATH/TO/MY_BSP_WORK_DIR/meta-
clanton_<version>/yocto_build/tmp/sysroots/x86_64-linux/usr/bin/i586-
poky-linux-uclibc:$PATH

Also, all make commands that deal with the kernel must be specified using the
proper architecture (ARCH) and crosscompiler (CROSS_COMPILE) switches as
described below.

5. Configure and build the kernel

Starting from the directory created in step 3 above, select the proper kernel
configuration and enable debug information generation.

$ cd /PATH/TO/MY_KERNEL_BUILD_DIR
$ cd quark_linux_<version>
$ cd work
$ cp meta/cfg/kernel-cache/bsp/quark/quark.cfg .config
$ ARCH=i386 CROSS_COMPILE=i586-poky-linux-uclibc- make menuconfig

The kernel configuration screen is launched. Go to the General setup group and
find the Local version item. Edit it with the following content:

-yocto-standard

Go back to the initial menu by clicking <tab> and <ok> and go to the Kernel
hacking group. Scroll down the list and find Compile the kernel with debug
info, and enable it (when enabled, [*] will be shown). You can now optionally
choose any other desired kernel options, then exit and confirm saving the
configuration.

Create a file using:

$ touch .scmversion

Issue the command below to build the kernel:

$ ARCH=i386 CROSS_COMPILE=i586-poky-linux-uclibc- make

If you have a multicore machine, add the -jN switch to the make command to
speed up the build.

If the build is successful, the message below is displayed:

Kernel: arch/x86/boot/bzImage is ready (#1)

OpenOCD Setup – Linux Host

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 13

This bzImage file must be copied to the root of your SD card. Once copied, the
Galileo board fully boots Yocto Linux and the kernel can be debugged at source
level.

4.4 Modifying bootloader
To make debugging easier around the kernel idle function, it is recommended to add
the idle=poll parameter in the bootloader entry corresponding to the kernel that is
being debugged. The screenshot below shows a typical /boot/grub/grub.conf file,
which is found in the folder copied to the SD card.

If this modification is not added, you cannot assembly-step away or set hardware
breakpoint and watchpoints when sitting on a HLT instruction. However, software
breakpoints and high level source stepping using software breakpoints will work. In
addition, you can change the default boot to your configuration.

4.5 OpenOCD
The first step to enable source level debug is to connect your JTAG pod to the board
and run OpenOCD selecting the correct interface and board configuration files. The
example below uses a Flyswatter2 JTAG debugger.

openocd -f interface/ftdi/flyswatter2.cfg -f board/quark_x10xx_board.cfg

It is possible to use OpenOCD as a standalone tool for basic debugging. You can
connect to the OpenOCD session using telnet on port 4444 and issue commands (this

OpenOCD Setup – Linux Host

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
14 Order Number: 330015-003US

step is not required for source level debug). This can be seen in the following
screenshot.

Enter help in the telnet console to return a list of available commands and their
description. For complete details, see the OpenOCD user guide here:

http://openocd.sourceforge.net/doc/html/

Even if you are in GDB, you can still run OpenOCD commands by prefixing the
command name with the GDB monitor command. For example, to halt the core CPU
from the GDB command line, issue the monitor halt command. To resume the core
CPU, issue the monitor resume command.

http://openocd.sourceforge.net/doc/html/

OpenOCD Setup – Windows Host

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 15

5 OpenOCD Setup – Windows
Host

5.1 Patching and Building OpenOCD
You can find the updated sources in the git repository and the Source Forge download
area:

http://sourceforge.net/projects/openocd/files/openocd/0.8.0/

There are many online forums and discussions about building OpenOCD on Windows.
Pre-built binaries of OpenOCD for Windows can be found here:

http://www.freddiechopin.info/en/download/category/4-openocd

To install the FTx232 drivers for the Flyswatter2, follow the instructions in this file (in
the package): drivers\libusb-1.0 drivers.txt

Note: It may appear that the drivers install correctly when the USB cable is inserted into the
PC, however, the file above still needs to be followed. One possible workaround is
shown below (used on Windows 7 and completed for both Interface 0 and 1).

After completing the steps in the drivers.txt file, the Flyswatter is listed in the
Universal Serial Bus devices in Device Manager as shown below.

http://sourceforge.net/projects/openocd/files/openocd/0.8.0/
http://www.freddiechopin.info/en/download/category/4-openocd

OpenOCD Setup – Windows Host

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
16 Order Number: 330015-003US

GNU/Linux is required for building the full BSP and kernel, however, using a pre-built
binary in combination with a gdb/Eclipse build for Windows allows you to complete the
debugging steps in this guide.

The screenshot below shows the binaries running on a Windows 7 64-bit system.

Intel has successfully used the OpenOCD commands with the Windows OS but has not
tested gdb/Eclipse on top of the binaries.

Please post any questions or issues in the Maker Community Support Forum:
https://communities.intel.com/community/makers

https://communities.intel.com/community/makers

OpenOCD Setup – OS X Host

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 17

6 OpenOCD Setup – OS X Host

6.1 Patching and Building OpenOCD
Using OpenOCD on OS X is the same as Linux except:

• The names of the devices are different.

• You must install http://www.macports.org/

You can get a prebuilt OpenOCD from macports or use the ported packages to
build a more recent version. Note that the openocd version 0.8 binaries that
include Quark support are not currently available on macports. Intel recommends
that you build from source.

Intel has not fully validated the OpenOCD commands or gdb/Eclipse on OS X, but
simple testing has been successful.

http://www.macports.org/

Debugging

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
18 Order Number: 330015-003US

7 Debugging

7.1 GDB
GDB documentation is available here:

http://www.gnu.org/software/gdb/documentation/

It is possible to perform source level debug using GDB by connecting to the OpenOCD
internal GDB server, which answers on port 3333 by default. OpenOCD must be
running as shown in the previous section.

Run GDB and connect to the OpenOCD internal GDB server. Load the debug info of a
debug compiled Quark Kernel vmlinux file.

For the kernel built in Section 4.3, the commands are:

$ gdb
(gdb) target remote localhost:3333
(gdb) monitor halt
(gdb) symbol-file
/PATH/TO/MY_KERNEL_BUILD_DIR/quark_linux_<version>/work /vmlinux

The screenshot below shows these steps in operation. After they are completed, the
board is ready to be source level debugged using GDB.

http://www.gnu.org/software/gdb/documentation/

Debugging

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 19

Note: Even if you are in GDB, you can still run OpenOCD commands by prefixing the
command name with the GDB monitor command as shown in the screenshot. Use the
command monitor help to see if OpenOCD supports a particular command. For
example, monitor mdw phys allows the physical memory to be read.

Debugging

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
20 Order Number: 330015-003US

7.2 Eclipse
It is also possible to perform source level debug using Eclipse with the C/C++ GDB
Hardware Debugger plug-in. The following configuration is required to enable source
level debugging of the board in the Eclipse environment.

Install the C/C++ GDB Hardware Debugging plug-in, if missing, using the standard
Install Software from the Eclipse Help menu.

Create a new project and switch to the C/C++ perspective. From the Run menu, open
the Debug Configurations dialog, and add a new launch configuration under GDB
hardware debugging, as shown below.

Debugging

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 21

Set application to the debug symbol enabled vmlinux kernel file, as follows.

Enable Use remote target and set the host name and port number.

Debugging

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
22 Order Number: 330015-003US

Select Halt and add the commands: set remotetimeout 20 and monitor halt.

Be sure that Reset and Delay and Load image are not selected, as shown in the
screenshot below.

Eclipse is now set up to perform source level debug on the board as shown below.
Note it is still necessary to first launch OpenOCD in a separate shell, as described in
Section 4.5.

Debugging

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 23

7.3 GDB and kernel modules
Debugging kernel modules requires additional steps. The load address of the module’s
different sections is chosen by the kernel at runtime and thus it is necessary to find
out this information and pass it over to GDB.

In this section, an example kernel module built “out-of-tree” (generating all output in
a separate directory) is used to show the debugging approach.

For additional information, see
https://www.kernel.org/doc/Documentation/kbuild/modules.txt
1. Create a new directory where the module files will be stored.

In this example, it is called simple_timer
$ mkdir simple_timer

https://www.kernel.org/doc/Documentation/kbuild/modules.txt

Debugging

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
24 Order Number: 330015-003US

2. In this directory, create a file named Makefile having the following content:
obj-m := simple_timer.o
ccflags-y := -g -O0
KDIR := /opt/galileo/meta-
clanton_<version>/yocto_build/tmp/work/clanton-poky-linux-
uclibc/linux-yocto-clanton/3.8-r0/linux-clanton-standard-build
all:
 $(MAKE) -C $(KDIR) M=$(PWD) modules
clean:
 $(MAKE) -C $(KDIR) M=$(PWD) clean

3. Modify KDIR to point to the actual kernel build directory, as shown in Section 4.3
of this document.

4. Create the actual module and name the file simple_timer.c having this content:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
MODULE_DESCRIPTION("Simple timer example module, ~1 call per second,
~1 log per minute.");
MODULE_LICENSE("GPL");
static struct timer_list simple_timer;
static unsigned long times_called;
static void simple_timer_function(unsigned long ptr)
{
 unsigned long minutes;
 times_called++;
 minutes = times_called / 60;
 if(times_called % 60 == 0)
 printk(KERN_INFO "simple_timer: ~%ld minute(s) and counting\n",
 minutes);
 mod_timer(&simple_timer, jiffies + HZ);
}
static int __init simple_timer_init(void)
{
 printk(KERN_INFO "simple_timer: loading - %d HZ\n", HZ);
 times_called = 0;
 init_timer(&simple_timer);
 simple_timer.function = simple_timer_function;
 simple_timer.expires = jiffies + HZ;
 add_timer(&simple_timer);
 return 0;
}
static void __exit simple_timer_exit(void)
{
 printk(KERN_INFO "simple_timer: unloading\n");
 del_timer(&simple_timer);
}
module_init(simple_timer_init)
module_exit(simple_timer_exit)

This example module sets up a kernel timer that expires and is set again roughly
every second by calling the simple_timer function. In addition, every minute a
new info kernel message will be logged. This type of message can be examined in
several ways depending on the kernel settings: using the dmesg command, logged
to files, or appearing directly on the console (as with the Galileo board).

Debugging

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 25

5. To build the module, the path to the cross-compile toolchain has to be in the path,
as shown in Section 4.3, step 4, and the make command has to be invoked as
shown in the screenshot below.

A few files are produced and simple_timer.ko is the kernel module itself.

The module can now be copied to the target system.

6. For a Galileo board, copy the file to the SD card and insert it onto the board. After
the board is booted, the SD card is mounted automatically under /media and the
kernel module can be inserted and removed as shown below, where the terminal
program is connected to the Quark board serial port:

Debugging

Source Level Debug on Intel® Quark SoC X1000
Application Note May 2014
26 Order Number: 330015-003US

7. After the module is loaded, the corresponding /sys/module entry on the board
can be queried as shown below:

The address of .text and the other relevant sections are now known and can be
passed to the add-symbol-file GDB command when loading the debug
information for the module.

The .text address is the first, mandatory parameter, the other sections are
optional and can be specified using the –s switch. The command for loading the
debug information of the module in gdb is:
(gdb) add-symbol-file PATH_TO/simple_timer.ko 0xe0717000 –s .rodata
0xe0718024 –s .bss 0xe0719140 –s .exit.text 0xe0717080

Debugging

 Source Level Debug on Intel® Quark SoC X1000
May 2014 Application Note
Order Number: 330015-003US 27

The setup is complete and the kernel module can be source-level debugged.

If the module is unloaded and then loaded, the section addresses must be checked
again. Typically the addresses are different each time.

§

	1 Introduction
	1.1 Terminology
	1.2 References

	2 Prerequisites
	2.1 Supported Operating Systems

	3 Setting up Hardware
	4 OpenOCD Setup – Linux Host
	4.1 Patching and building OpenOCD
	4.2 JTAG USB pod access
	4.3 Kernel debug build - Galileo board example
	4.4 Modifying bootloader
	4.5 OpenOCD

	5 OpenOCD Setup – Windows Host
	5.1 Patching and Building OpenOCD

	6 OpenOCD Setup – OS X Host
	6.1 Patching and Building OpenOCD

	7 Debugging
	7.1 GDB
	7.2 Eclipse
	7.3 GDB and kernel modules

