White Paper

Intel® Advanced Vector
Extensions (Intel® AVX)

Signal Processing
Embedded Computing

Umberto Santoni

Platform Architect,
Embedded Communications
Group

Thomas Long

Software Engineer,
Embedded Communications
Group

intel)

Signal Processing on Intel® Architecture:
Performance Analysis using Intel®
Performance Primitives

Engineers can quickly determine whether Intel® processor-
based platforms with Intel® Advanced Vector Extensions
(Intel® AVX) satisfy signal processing requirements

Signal processing functions have often required special-purpose hardware such as
DSPs and FPGAs. However, recent enhancements to Intel® architecture processors are
providing developers an alternative; execute signal processing workloads on an Intel®
Processor.

Signal processing on the latest Intel processors is now a viable option due to continued
improvements in multi-core architectures. The increased parallelism from vector
instructions, along with other continuing performance improvements, enables the
efficient execution of data parallel workloads such as digital transforms and filters.
Additionally, by consolidating signal processing functions with other workloads on a
multi-core Intel processor, it is possible to save hardware cost, simplify the application
development environment and reduce time to market. This approach can be applied to
many applications in aerospace (radar, sonar), communications infrastructure (baseband
processing, transcoding) and healthcare (medical imaging).

This paper describes an easy process that allows developers to quickly determine
how fast 2" generation Intel® Core™ i/-2710QE processor will execute their signal
processing algorithms, based on performance data' that is relatively easy to obtain.
Developers can complete the process in a straightforward manner, as demonstrated
with two simple examples in this paper: fast convolution and amplitude demodulation.
The paper concludes by reviewing some of the development tools available to
developers to conduct their own evaluations.

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

Table of Contents

Why Intel® Architecture for Signal ProcesSiNgo ettt i i s i i s ranness 3
SIMD Instructions Enhanced By Intel® Advanced Vector Extensions (Intel® AUX)ciiiiiiiiiiiiinnnnnnnn, 3
The Process for Evaluating Signal Processing Performance. ...ttt it it teii e eeeans 4
Signal Processing Performance Data.oiiiiiiiiii ittt ittt ittt sttt aaaa s tenaaa s einnnanaeennns 4
Overview of DENChMaArk datao e 5
A) Forward and inverse Fast Fourier Transtorm (FET).o e 5
B) 2D Complex to Complex FFT Throughput (GFLOPS/s and absolute time)ovviiiiiiii i 6
L0 I =Tl == U1 T3 T 1= 7
D) Discrete HilDert Tranms Omm. ..ottt e e e e e et e e e e 7
E) Discrete CoSINe TranS Or M.« .ttt ettt et e s e e e e e e 7
Speedup with Intel® Advanced Vector Extensions (Intel® AVX)t i it st tene e eeans 6
Two Signal Processing Workload EXamplesttt it e ta e eaaaa s s ennansseennnnnns 8
Example T: Fast Convolution USING FRT ... e e e et e e et e e 8

Example 2: Discrete Envelope Detection /

AMPlITUdE DEMOAUI BT ON Lttt e e e 9
Floating Point Speeds Developmentt i ittt it tette et taaaa st taaaaa e ianaaaaas 9
Development TOOIS OUeIVIOWottt ettt e ettt iaaae s naaasseeannnasseennnnesseennnnnnns 14

1 =] O 0 3 0 = 14

Intel® Math Kernel Library (INtel® MKL) e e e e e i 14

Intel® Integrated Performance Primitives (INtel® IPP) i e 14

Intel® VTUne™ Performance ANalyZerttt et e e e s 14

INtel® APPIICAtioN DEDUGGET . . .\ttt et e et e e e e e e 14

Eclipse*-based Integrated Development ENVITONMENT i e i 14
Consider Intel® Architecture Processors for Signal Processingcooiiiiiiiiii i iiiiiiniiinnnnneennns 14
Appendix A: Test ConfigUIatioN.ttt ittt ettt ettt st i etataaaaaaeaanaaaaaanaaaanaansnsensns 15
o0 1 15

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

Why Intel® Architecture for Signal Processing

There is a natural tendency to assume that just about any signal
processing application requires a DSP, FPGA or ASP. That's because tradi-
tionally, it was necessary to use specialized hardware in order to satisfy
performance objectives. However, for hybrid designs utilizing a mix of
specialized signal processing algorithms and a broader set of applications,
implementing two separate computing architectures may pose some
significant disadvantages, such as:

= Hardware and board space for two computing systems: higher
product cost

= Multiple tool chains: additional technical training and project
management complexity

= Multiple code bases: larger software management effort

= Power consumption for two computing systems: more expensive
thermal design

= Intersystem communication: greater design complexity or possibility
for bottlenecks

= Time to market: extra time needed to design, validate and integrate
subsystems

= Two development teams; unique communication challenges (e.g, silos)

One alternative is to perform signal processing workloads on an existing
Intel architecture processor in the system. Workload consolidation is a
powerful concept that has been delivering significant payoffs in data-
centers with respect to reduced server cost, power consumption and
footprint. This is made possible by multi-core processors with scalable,
efficient performance, coupled with significant memory and I/0 band-
width. This consolidation approach can be equally powerful in embedded
systems, addressing issues around cost, software complexity, power, time
and communication.

Often, performance efficiency is foremost on the minds of embedded
system developers when running signal processing workloads. This is
discussed in the next section, which presents performance data for key
signal processing kernels running on 2" generation Intel® Core™ i/ proces-
sors. Yet, for most embedded applications, raw performance isn't the only
factor; itis also necessary to meet overall system cost goals, and the
highly scalable family of embedded Intel architecture processors helps to
dojust that.

The embedded Intel processor roadmap gives developers a wide choice
with respect to the number of cores, cache and system memory size,

/0 and footprint. In addition, there are many other technologies avail-
able for enhancing system capabilities, like virtualization technology,
remote management and various security features. Nevertheless, itis the
enhanced vector single-instruction, multiple-data (SIMD) instructions that
open the door to using Intel architecture processors for signal processing.

More specifically, the Intel® Advanced Vector Extensions (Intel® AVX)
- available for the first time with 2" generation Intel Core i7 processors—
provide significantly improved floating point performance (see sidebar).

Engineers who code floating point algorithms for Intel architecture
processors can leverage a mature software ecosystem that offers a
very wide breadth and depth of development tools. Also available are
Intel development tools and libraries that employ Intel AVX and Intel®
Streaming SIMD Extensions 4 (Intel® SSE4) instructions. Equipment
manufacturers can choose from many hardware vendors supplying
commercial off-the-shelf (COTS) embedded boards and systems that
support embedded lifecycles and benefit from the economics of the
PC/server supply chain.

SIMD Instructions Enhanced By Intel®
Advanced Vector Extensions (Intel® AVX)

Many signal processing applications are highly parallel, performing
the same arithmetic operation on large number sets. Speeding
up these workloads, single-instruction, multiple-data (SIMD)
instructions were introduced in the mid 1990's, and they
perform the same operation on multiple data elements simul-
taneously, as illustrated below.

3 5 11 20
9 1 5
11 14 7 12 25

The throughput of a SIMD instruction is a function of register
Size because larger registers translate into greater throughput.
With the introduction of 2™ generation Intel® Core™ i7 processors,
the size of the 16 registers available for floating point opera-
tions doubles, increasing from 128 bits to 256 bits. Additionally,
new three and four operand instructions establish a destination
argument that results in fewer register copies, better register
usage, faster execution and smaller code size. These are just
some of the recent architectural enhancements, called Intel®
Advanced Vector Extensions (Intel® AVX).

128 bits
(Intel® SSE4)

' 256 bits
(Intel” AVX)

XMM15

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

The Process for Evaluating Signal Processing
Performance

Requiring different levels of effort, there are a number of ways to evaluate
the performance of Intel processors, such as using Intel® G-+ and Intel®
Fortran Compilers, calling optimized performance libraries, or coding
optimizations in assembly language and employing compiler intrinsics.
The approach presented in this paper strikes a balance between effort
and optimization to quickly achieve good estimates for the performance
of signal processing algorithms. This is done in two ways. The first is to
utilize the Intel® Integrated Performance Primitives (Intel® IPP) library. It
provides a quick way to assess the performance of hundreds of algo-
rithms and math functions optimized for Intel architecture. Furthermore,
the signal processing portion of the Intel IPP library includes over 250
functions, each often supporting multiple data types and in-place versus
not in-place variants. There are also many image processing calls that are
useful for DSP applications.

The Intel IPP library distribution includes a performance tool (with docu-
mentation) that allows developers to obtain performance metrics for all
the functions in the library. For example, Figure T shows the results
generated by a shell script written to automatically collect performance
data on the number of clocks, execution time, and in some cases MFLOPs,
for a function. For Figure 2, an .ini file was used in conjunction with the
shell script, to report 2D FFT performance for specific input sizes.

#!/bin/bash
source /opt/intel/composerxe/bin/compilervars.sh intel64
DATE="date +%Y-%m-%d"

OUTPUT_DIR=results_avx_${DATE}
OUTPUT_PATH=${PWD}/S{OUTPUT_DIR}
PERF_TOOL_DIR=${IPPROQT}/tools/intel64/perfsys
FILE_EXT_1=_lin_avx_1

FILE_EXT_2=_lin_avx_2

mkdir ${OUTPUT_DIR}

#IPPS

${PERF_TOOL_DIR}/ps_ipps -r${OUTPUT_PATH}/ippsS{FILE_
EXT_1}.csv -0${OUTPUT_PATHYippsS{FILE_EXT_1}.txt -N1
-YHIGH -TAVX -B

${PERF_TOOL_DIR}/ps_ipps -r${OUTPUT_PATH}/ippsS{FILE_
EXT_2}.csv -0${OUTPUT_PATHYippsS${FILE_EXT_2}.txt -N1
-YHIGH -TAVX -B

#2DFFT

S{PERF_TOOL_DIRY/ps_ippi -r${OUTPUT_PATH}/2dfftS{FILE_
EXT_1}.csv -0${OUTPUT_PATH}/2dfftS{FILE_EXT_1}.txt -N1
-YHIGH -TAVX -B -i${PWD}/2dfft.ini -fippiFF TFwd_CToC_32fc_C
S{PERF_TOOL_DIRY/ps_ippi -r${OUTPUT_PATH}/2dfftS{FILE_
EXT_2}.csv -0${OUTPUT_PATH}/2dfftS{FILE_EXT_2}.txt -N1
-YHIGH -TAVX -B -i${PWD}/2dfft.ini -fippiFF TFwd_CToC_32fc_C

Figure 1. Sample shell script running IPP performance tool

[Perf System]

FFT_OrderXY=4x4; 5x5; 6x5; 6x6; 7x4; 7x5; 7x7; 8x3; 8x4; 8x6;
8x7; 8x8; 9x3; 9x5; 9x6; 9x8; 9x9;10x4; 10x5; 10x7; 10x8;
10x10; 11x3; 11x4; 11x6; 11x7; 11x11; 11x12; 11x13; 11x14;
11x15;12x3; 12x5; 12x6; 12x12; 13x4; 13x5; 13x13; 14x3; 14x4;
15x3; 15x4; 16x4; 17x3; 17x4;

Figure 2. Sample .ini file generating 2D FFT performance data

Another way to estimate signal processing performance is to focus the
performance assessment on key kernels that are often used in signal
processing workloads. By selecting a subset of the signal processing
functions, developers can produce a manageable set of data that
contains the most relevant functions and provides a reference with
which to estimate the performance of other functions. For instance,
this can be done by choosing forward and inverse FFTs of various sizes
- both complex and real - along with FIR and IR filters of varying
complexities, and other useful functions such as discrete cosine and
Hilbert transforms, Developers may certainly need data on functions
other than the ones covered in this paper; in those cases, the Intel IPP
performance tool can be used to gather the necessary data.

In summary, this process for evaluating the signal processing performance
of Intel architecture utilizes Intel-collected performance data and gives
developers a straightforward method to quickly estimate performance
for their own workloads. Although the data provided is on 2" generation
Intel Core i7-2710QE processor, the methods described here are extensible
to the full range of Intel processors. With a manageable effort, this
process gives developers a quick readout of the signal processing perfor-
mance of next generation Intel processors and provides an estimate of
how much general-purpose computing headroom is available for other
applications. The next section reviews the performance data collected
and demonstrates the process using two examples.

[tisimportant to note that although using Intel IPP to assess the signal
processing performance of Intel processors provides a good starting point
that balances effort and optimization, it need not be the endpoint. Going
beyond Intel IPP, it may be possible to capture significant performance
improvements for specific algorithms through the use of compiler optimi-
zations, primitives and assembly language programming. The flexibility of
Intel architecture and its supporting software infrastructure provides
developers with all of these degrees of freedom that can ultimately iden-
tify the most appropriate tradeoff between performance and effort.

Signal Processing Performance Data

The following lists a sample of the signal processing performance data'?
collected by Intel on 2" Intel Core i7-2710QE processors. The algorithms
were run on a single execution thread, on Linux* (Fedora* 13 distribution),
and repeated until the results of iterations were within 5 percent
accuracy. Developers can create results for their own algorithms and
functions of interest using an Intel® compiler and the Intel IPP package,

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

which includes sample code and the Intel IPP performance test tool. More
details about the test configuration are provided in Appendix A.

This single threaded execution environment provides an approximation of
the performance of a single core and an indication of available computing
headroom. Processor cores not used for signal processing can be targeted
at other algorithms or applications running on the system. Intel® develop-
ment tools and libraries also provide extensive support for development,
validation and performance tuning of multi-threaded applications.

Overview of benchmark data

A. Forward and inverse Fast Fourier Transform (FFT).
Format: Complex-to-Complex, Real-to-Complex Conjugate Symmetric

Input range: 64B to 1024KB
Data type: Single and double precision floating point
Purpose: Decompose a discrete sequence into a set of frequencies.

Complex-to-complex FFT performance of the IPP library is in the
range of 16.1 - 23.7 single precision GFLOPs / sec for sizes between
64B and 4KB. Similarly, the performance of real-to-complex conju-
gate FFT isin the range of 15 - 17.3 single precision GFLOPs/sec for
sizes between 64B and 4KB.

For larger sizes, FFT performance declines as the execution of the
algorithm becomes less compute-bound and more memory-bound.
Additionally, the FFT throughput of double precision floating point
is approximately half that of single precision, and it scales with input
size similarly to single precision.

100,000.00

10,000.00

1,000.00

100.00

Time (pSec)

10.00

1.00

0.10

0.01

256 | 512

Complex-To-Complex FFT

]
H 1l

r 25

F 20

GFLOP / sec

16K 64K | 128K | 256K | 512K [1024K]|

=== SP Float (uSec) 008 | 025 [053 | 1.14 | 244 | 6.04

153

380

838 464 | 981 | 2274 | 5425 (12800

DP Float (pSec)
mmm SP Float (GFLOP/s)
DP Float (GFLOP/s)

0.15
237
126

042
183
106

094
193
109

136
187
83

31.7
16.1
78

716
14
75

17
137
6.7

2.09
204
1.1

516
210
100

842
n3
6.2

1970
14
57

4966
104
4.8

11450
9.2

44

25250
82
4.2

Input Size

Figure 3. Complex-to-Complex FFT and Inverse FFT

Real-To-CCS FFT

100,000.00 20
18
10,000.00
16
14
1,000.00
< ?g
3 d
2] ~
% 100.00 0 g
E T
- I L g o
-
10.00
t6
4
10
L 2
01 | m_ L o
128 | 256 | 512 | 1K | 2K | 4K | 8K | 16K | 32K | 64K | 128K | 256K | 512K [1024K
=== SP Float (Sec) 014 | 034 [073 | 1.51 | 3.26 | 756 | 184 | 447 | 98 | 229 | 528 |1120 | 2625 | 5989
DP Float (uSec) 023 | 059 | 124 | 272 | 639 | 163 | 375 | 851 | 197 | 447 | 965 |2295 |5525 12663
wmm SP Float (GFLOP/s)| 164 | 150 | 157 | 170 [173 | 163 | 145 [129 | 126 | 115 | 106 | 106 | 95 88
DP Float (GFLOP/s)| 96 | 87 | 93 | 94 | 88 | 76 | 71 | 68 | 62 | 59 | 58 | 52 | 45 | 41
Input Size

Figure 4. Real-to-CCS (Complex Conjugate Symmetric) FFT

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

B. 2D Complex to Complex FFT Throughput (GFLOPS/s and
absolute time)
Format: Complex-to-Complex, 2 dimensional array data
Input range: Various sizes ranging from 64B x 64B to 128KB x 16B
Data type: Single precision floating point
Purpose: Decompose a two dimensional array of discrete
sequences into a set of frequencies.

Two dimensional complex-to-complex FFT performance of the Intel
IPP library is in the range of 12.9 - 17.2 for sizes ranging from 648 x
64B 10 4KB x 64B.

As with the one dimensional FFT case, 2D FFT performance declines
for larger sizes as the FFT becomes more memory-bound. Table 1
contains sample data points of interest, and it is possible to generate
2D FFT throughput data for other sizes using the Intel IPP library.

InputSize | 64X64 | 128x128 | 256x64 | 256x256 | 512x64 | 1Kx256 | 2Kx 128 | 4Kx64 | 8Kx32 | 16Kx 16 | 32Kx 16 | 128K x 16
GFLOP/S 172 136 149 129 14.2 136 130 129 11.3 109 85 74
Time (pSec) 143 84.5 769 407 173 1744 1823 1834 2088 2163 5893 29838

Table 1. 2D Complex to Complex FFT Throughput (GFLOPS/s)

Speedup with Intel® Advanced Vector Extensions (Intel® AVX)

The improved performance from Intel® Advanced Vector Extensions
(Intel® AVX) s illustrated in Figure 5, which shows the speed up

compared to the prior generation Intel® Streaming SIMD Extensions

3 (Intel® SSE3) instructions. The comparison is for Complex-to-
Complex FFT and Inverse FFT functions, which are averaged
together and charted for both single and double precision floating
point routines. For smaller input sizes, the speedup is over two
times, and for very large inputs, the speedup is around 20 percent.

The floating point performance improvements for 2™ generation
Intel® Core™ i/ processors are the result of architectural enhance-
ments, which enable the processor to:

- Retire one floating point instruction per CPU clock cycle
- Dispatch up to 4 floating point instructions per CPU clock cycle

Speedup of Intel® AVX Speedup vs. Intel® SSE4 for Complex-to Complex FFT and Inverse FFT (averaged)

28

26

Higher is better

24

2.2

18

16

14

12

64 2K 4K

8K

Input Size

—&— Single precision (SP) floating point

16K 32K 64K 128K 256K 512K 1024K

—l- Double precision (DP) floating point

Figure 5. Intel® Advanced Vector Extensions (Intel® AVX) Speedup over Intel® Streaming SIMD Extensions 4 (Intel® SSE4)

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

C. Filter Execution Times
Format: Single precision floating point complex data, complex
coefficients.
Finite Impulse Response Filter: 8,32, and 128 taps

Input Size / Execution Time (Microseconds)

Infinite Impulse Response Filter: Orders ranging from 2 - 12 taps.
Inputs: Complex data ranging from 32B - 32KBin size.
Purpose: Suppress unwanted components from a discrete-time series.

32 input 128 input 512 input 2K 8K input 32K input
8 Tap Fir 0.2 05 18 70 282 1130
32 Tap FIR 06 20 4.2 153 594 2440
128 Tap FIR 2.1 7.7 6.2 186 676 2760
Order 2 IIR 0.2 0.7 24 97 385 156.0
Order 3 lIR 03 09 35 137 544 2215
Order 4 IIR 04 11 38 149 594 2390
Order 6 IIR 06 14 4.5 174 695 2775
Order 7 lIR 0.7 16 5.2 203 81.3 3300
Order 8 lIR 1.1 1.7 53 204 808 3245
Order 10 lIR 1.1 2.1 6.3 24.2 970 387.0
Order 12 1IR 1.2 25 73 275 1120 4450
Order 11 lIR 1.2 23 70 266 1070 4270

Table 2. Filter Execution Time

D. Discrete Hilbert Transform
Format: Single precision floating point complex data.

Inputs: Complex data ranging from 128B - 32KB in size.

_ Input Size / Execution Time (Microseconds)

Purpose: Create analytic representation of a real-valued

discrete signal.

128 512 2K 8K 32K
INT16 to Complex Short FP 07 27 130 74.2 3853
IN16 to Complex SP FP 06 24 115 64.1 3536
SP Float to Complex SP Float 06 23 110 628 3410

Table 3. Hilbert Transform Execution Times

E. Discrete Cosine Transform Purpose: Express a discrete signal as a series of cosine frequencies
Format: that can be used for lossy signal compression.
Inputs: 128B - 32KB

_ Input Size / Execution Time (Microseconds)

128 512 2K 8K 32K
SP Float Forward 08 37 206 1118 5638
SP Float Inverse 08 37 206 1110 5673
DP Float Forward 06 23 111 60.0 3005
DP Float Inverse 06 23 110 589 3018

Table 4. Discrete Cosine Transform Execution Times

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

Two Signal Processing Workload Examples

In this section, two generic signal processing workload examples are
presented, and the performance of the 2" Intel Core i7-2710QE proces-
sor is estimated in two ways, according to the methods described

earlier. The first method is a simple manual approximation that adds

the performance data of underlying functions obtained from the Intel
IPP performance tool. Interpolation is used where measured data is

not available. Though this is a rough approximation, it produces a quick
performance estimate and a directional check of whether the system
performance and headroom is adequate. The second method estimates
the performance of the algorithms by coding them in G++ using Intel IPP
and measuring their performance directly with hardware counters. In the
following examples, the results from both methods are presented, which
provides an indication of how well the manual method approximates
actual measured results. The objective of this exercise is to produce a
reasonable estimate of performance in order to determine where effort
is best applied during optimization. Ultimately, detailed design work may
be needed to complete product development,

Example 1: Fast Convolution using FFT

The following example performs a fast convolution of two discrete
signals, x(n) and y(n) shown in Figure 6. The example is also a frequency
domain FIR filter when one of the input sequences represents the
transfer function of an FIR filter. A sample C-code snipet using Intel
IPPs is provided in Figure 7.

x(n) ﬂ
—_—

“_'W_’ O(n)
—_—

Figure 6. Fast Convolution using FFT Example

Inputs: x(n), y(n): 16KBinput size

Output: o(n): 16KB output size

Operations: Single precision floating point in-place FFT,
Complex Multiply, Inverse FFT

Sample C-code snipet for Example 1 using Intel® Integrated
Performance Primitives (Intel® IPP):

/* allocate and initialize specification structures */
ippsFFTInitAlloc_C_32fc(&FFTspecl_p, order, IPP_FFT_DIV_
FWD_BY_N, ippAlgHintFast);
ippsFFTGetBufSize_C_32fc(FFTspecl, &BufSize);

Buf1_p = (Ipp8u *) ippsMalloc_32sc(BufSize*sizeof(Ipp8u));

/* compute in-place FFTs of input sequences*/
ippsFFTFwd_CToC_32fc_I(x_p, FFTspecl_p, Buf1_p);
ippsFFTFwd_CToC_32fc_I(y_p, FFTspecl_p, Bufl1_p);

/* perform complex multiplication and inverse FFT*/
ippsMul_32fc(x_p, y_p, o_p, veclength);
ippsFFTInv_CToC_32fc_I(o_p,FFTspecl_p, Bufl_p);

/* free specification structures */
ippsFFTFree_C_32fc(FFTSpecl_p);
ippsFree(Buf1_p);

Figure 7. Sample C-code Snipet for Example 1

Table 5 summarizes Fast Convolution execution times, calculated

and measured, for various data sizes. The calculated times sum the
execution times of individual functions, using times for Intel IPP signal
processing functions obtained from the Intel IPP performance test tool
running in batch mode. The measured times were generated by running
the entire algorithm (Figure 6), which was coded in G-+ and used Intel
IPP, and by calculating the elapsed time based on the hardware clock
count. The runtimes were averaged across 10,000 runs.

For comparison, the calculated times were within 16 percent of the
measured results. However, the calculated times took a few hours of
unattended run time (no human effort aside from installing the Intel
IPP and running the aforementioned shell script) and less than an hour
of calculating results in a spreadsheet. The measured results took

an engineer familiar with the Intel IPP and G-+ programming a couple

psec clocks psec clocks Hsec clocks psec clocks psec clocks

64 7.96€E-02 167€+02 802€E-02 1.68E+02 5.25E-02 1.10E+02 292E-01 6.136+02 299€-01 6.28E+02 -2%

128 2.30E-01 4.83E+02 230€E-01 483E+02 1.05E-01 221E+02 7.95€-01 167E+03 806E-01 169€E+03 -1%

256 5.04€-01 1.06E+03 4.92€-01 1.03E+03 1.84€-01 387E+02 1.68E+00 354€6+03 1.69E+00 3556+03 0%

512 1.07E+00 2.256+03 1.04E+00 2.18E+03 317€-01 666€+02 350€+00 734€E+03 380E+00 799€E+03 -8%
1024 2.32E+00 4.87E+03 2.27€+00 4.77€+03 6.12E-01 1.296+03 7.528+00 1.58E+04 833E+00 1.75e+04 -10%
2048 591E+00 1.24E+04 593E+00 1.256+04 1.18E+00 248E+03 1.896+01 3.98E+04 211E+01 4.428+04 -10%
4096 149€E+01 3.13E+04 149E+01 3.13E+04 2556+00 534€E+03 4.72E+01 992E+04 5.22E+01 1.10E+05 -10%
8192 365E+01 767E+04 360E+01 756E+04 546€E+00 1.156+04 1.14E+02 240E+05 1.28E+02 2.70e+05 -11%
16384 8.13E+01 1.71E+05 819E+01 1.72E+05 1.19e+01 2.50E+04 2.56E+02 538E+05 296E+02 6.21E+05 -13%
32768 2.00E+02 4.20E+05 202E+02 4.24E+05 257€+01 540E+04 6.28E+02 1.32E+06 747€+02 1.57E+06 -16%
65536 4.54E+02 9.53E+05 4.53E+02 951E+05 5.14€+01 1.08E+05 141E+03 297€+06 1.63E+03 343E+06 -14%

Table 5. Fast Convolution Execution Times

8

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

of days for coding, debugging and executing the runtime. From this
example, it is clear the simple manual approximation method (i.e, calcu-
lated times) delivers a performance estimate at a fraction of the effort
required for the coding approach, and it provides an early read on where
to invest optimization effort. Still, coding the algorithm using Intel PP
took significantly less effort than the alternative, which is to manually
optimize custom libraries for each generation of Intel processor.

Floating Point Speeds Development

Voice quality is still a major concern for countless wireless, cable
and internet service providers relying on Voice over IP (VolIP) to
deliver telephony services. To ensure quality is on par with the
Public Switched Telephone Network (PSTN), service provid-

ers require an economical and automatic means to continuously
test calls in real time. A commonly used family of standards is
PESQ? (Perceptual Evaluation of Speech Quality), which defines
a MOS voice quality score that closely correlates to human listen-
ing experience, as shown in Figure 8. The algorithms perform
voice encoding and measurements related to jitter, packet loss,
time-clipping and channel errors. Many of the algorithms are
computationally intensive and use floating point fast Fourier
transforms.

For manufacturers of voice quality test equipment, passing
industry conformance tests demands 32-bit float-like behavior
throughout the application. This is exceptionally difficult to achieve
with integer CPUs or FPGAs without suffering dire performance
consequences. Likewise, fixed point math - add, multiply or divide
- is not an option because of the loss of accuracy every time an
instruction throws out a remainder. With a fixed point integer type,
intermediate results of @ multiply or add can grow beyond the fixed
point type, causing overflow and truncation errors. This can make
the result shrink below its fractional component and lead to
incorrect results, like a PESQ score of 3.5 instead of 4.2.

Example 2: Discrete Envelope Detection / Amplitude
Demodulation

The following example performs a fast convolution of two discrete
signals, x(n) and y(n) shown in Figure 6. The example is also a frequency
domain FIR filter when one of the input sequences represents the
transfer function of an FIR filter. A sample C-code snipet using Intel
IPPs is provided in Figure 7.

One possible optimization is to parallelize the algorithm by going
beyond vector instructions and executing the two FFTs on sepa-

rate threads. Further parallelizing the execution, the threads can be
dispatched to two processor cores and the results combined back to a
single thread for the complex multiply and inverse FFT.

Ixia* a leading supplier of test and measurement equipment,
decided to use multi-core Intel® processors with high performance
floating point units because they could run the PESQ code as-is,
hence minimal migration effort. The processors delivered accurate
PESQ results and proved to have floating pointing performance on
par with, and even superior to, many floating point DSPs. “Using
Intel, we were able to get near-final performance numbers in just
a few days, significantly lowering our project risk,” says Bryan
Rittmeyer, System Architect at Ixia.

R User Satisfaction
100

MOS

Very Satisfied

90

Satisfied
80

Some Users Dissatisfied
70

Many Users Dissatisfied
60

Nearly All Users Dissatisfied
50

Not Recommended

Figure 8. MOS Diagram

The second example is an envelope detector for a discrete time
sequence, shown in Figure 9. The Hilbert transform produces the
analytic representation of the signal, whose magnitude is obtained

in order to generate the envelope of the signal, which is then down-
sampled. The downsampling is done in two stages since the carrier

is operating at 200x the frequency of the message bandwidth. This
keeps the FIRs to reasonable sizes. Finally, the DC component is
removed from the discrete output sequence. Figure 10 contains a code
snipet of the MATLAB* model for the envelope detector and Figure
shows the results.

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

x(n) = (A + M-f(w.nt.))*
sin(w.nt,) + noise " + e o(m)
g ‘ > R — removal

Discrete Envelope Low Pass Filtering, Downsampling,
Hilbert Formation & DC removal

Transform

Figure 9. Discrete Envelope Detection / Amplitude Demodulation Example

Input: Amplitude modulated message. Message bandwidth = 5KHz.
Carrier frequency: 1000KHz. Input sampling frequency: 2200KHz.
Output sampling frequency: 11KHz

LPF1: 128 tap FIR, 44KHz cutoff frequency. D1: Downsampling by 25.
LPF2: 128 tap FIR, 5.5KHz cutoff frequency. D2: Downsampling by 8.

%Form analytic signal for envelope
inenv = abs(hilbert(in));

%Downsample, take out DC and LPF envelope

Ipf1 = firl(Ipf1tap,cutoff1/(Fsi/2), low’,chebwin(Ipf1tap+1));
out1 = fftfilt(Ipf1.inenv);

outl = downsample(out1,D1);

tout1 = downsample(tin,D1);

%Stage 2 Downsample & LPF envelope

Ipf2 = firl(lpf2tap,cutoff2/(Fs1/2),'low’,chebwin(lpf2tap+1));
out = fftfilt(Ipf2,outl);

out = downsample(out,D2);

out = out - mean(out);

out = out(17:length(out));

tout = downsample(tout1,D2);

tout = tout(17:length(tout));

Figure 10. Snipet of MATLAB* model

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

Figure 11 shows the MATLAB results for a simulated noisy AM signal
containing messages centered at 1KHz, 3KHz, and 4.75KHz. The
figure also shows the single sided spectrum magnitude of the input,

after LPF1, after LPF2 and downsampling D2, and at the final output.
Superimposed to the frequency spectrum is the frequency response of
the LPFs (thin blue line).

Single Sided Spectrumn for AM Signal

|Irf] in dB

Tas0 960 970 980 980

1000 1010 1020 1030 1040 1050
Freguency (KHz)
Single Sided Spectrum for AM Signal Envelope, Sampling Rate =2200KHz

T T T T T T T T T I
© 0 — Spectrum []
c .0 ——LPE{
=
=
D -
o 100 200 300 400 500 600 700 800 900 1000 1100
Frequency (KHz)
Single Sided Spectrum after Downsampling by25, and LPF with cutoff =44KHz, Sampling Rate =88KHz
T T T T T T T I
m Spectrum []
5 ——
£ 2 \ w2 ||
S -40 —
60
0 5 10 15 20 25 30 35 40
Fregquency (KHz)
Single Sided Spectrum after Downsampling by8, and LPF with cutoff =5.5KHz, Sampling Rate =11KHz
0 T T T T T T T T T T
m
-
£
5
=
A0 | 1 1 | | 1 | 1 1
0 05 1 15 2 2.5 3 35 4 45 5 55

Fregquency (KHz)

Figure 11. MATLAB* Results

Table 6 summarizes the execution times for the Amplitude Demodulation
for various data sizes. Similar to Example 1, the calculated times summed
the execution times of the individual functions, and the measured times
were generated from hardware clock count measurements collected
while the algorithm executed (see Figure 10 for the code snipet). The
runtimes were averaged across 10,000 runs.

The calculated times are within 11 percent of the measured results. Here
again, the calculated times took a few hours of unattended run time and
less than an hour of spreadsheet calculation time. An engineer familiar

with Intel IPP, G-+ and the algorithm generated the measured results in
three days, which included coding using Intel IPP functions, debugging
and executing the runtime. This example is similar to Example 1,in that
the manual approximation method offers a good compromise between
accuracy and effort, and it provides a relatively quick indication of perfor-
mance and focus areas for further optimization. As in the prior example,
going to the next step of coding the algorithm using Intel IPP took an
acceptable amount of effort, given the degree of optimization and
compared to manually optimizing libraries to Intel processors.

11

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

Hilbert Tran sf (32f - 32fc) 128 tap FIR #1 DownSampling by 8 DownSampling by 25

psec clocks psec clocks psec clocks psec clocks psec clocks
32 141E-01 296E+02 4,05€-02 851E+01 4.49€-01 943E+02 246E-02 5.17E+01 769€-02 161E+02
128 582E-01 1.226+03 140€-01 294E+02 163E+00 342E+03 2.25E-02 4.73€E+01 7.03E-02 1.48E+02
512 233E+00 4.896+03 552E-01 1.16E+03 639€E+00 1.34€+04 3.78E-02 794€+01 1.18€E-01 248E+02
2048 1.096+01 2.29E+04 2.20E+00 4.62E+03 263E+01 5.52E+04 967€-02 203E+02 3.02€-01 6.356+02
8192 6.17E+01 1.30E+05 890E+00 1.87E+04 761E+01 1.60E+05 6.34€-01 1.33E+03 1.98€+00 4.16€+03
9000 7.09€+01 1.49€+05 991€E+00 2.08E+04 8.10E+01 1.70+05 741€-01 1.56E+03 231E+00 486€+03
18000 1.74€+02 364E+05 2.12E+01 445E+04 136€+02 285E+05 1.93E+00 4.05€+03 6.03€+00 1.27E+04
27000 2.76E+02 580E+05 3.256+01 6.82E+04 1.90E+02 399€+05 3.12E+00 6.556+03 974€+00 2056+04
32768 342E+02 7.18E+05 397€+01 834€+04 2.25E+02 4.73E+05 388E+00 8156+03 1.21E+01 255E+04
36000 3.76€+02 7.89E+05 436€E+01 9.16€+04 247E+02 5.19E+05 4.26E+00 895€+03 1.336+01 2.80E+04
psec clocks Hsec clocks
32768 569E+00 1.20E+04 356€E-02 747€+01
360 6.09E+00 1.28E+04 368E-02 7.748+01
720 1.57€+01 330E+04 6.54€-02 1.37€+02
1080 2.04E+01 4.286+04 7.92€-02 1.66E+02
131072 2.34E+01 491E+04 881E-02 1856+02
1440 251E+01 5.26E+04 930€-02 1.95€+02
| _inputsize | Demod Calculated | DemodMeasued | Deita
psec clocks Hsec clocks
8192 1.54E+02 324E+05 1.596+02 3.34E+05 -3%
9000 1.70E+02 358E+05 1.75€+02 367€E+05 -3%
18000 352E+02 7.39E+05 368E+02 772E+05 -4%
27000 529E+0¢2 1.11E+06 597€+02 1.256+06 -11%
32768 642E+02 1.356+06 7.18E+02 151€+06 1%
36000 7.05€+02 1.48E+06 786E+02 1.656+06 -10%

Il Measured Data Il Interpolation From Measured Data Il Calculated Data

Table 6. Amplitude Demodulation Execution Times

/* allocate and initialize specification structures */
ippsHilbertlnitAlloc_32f32fc(&HilbertSpec_p, insmpl, ippAlgHintNone);
ippsFIRInitAlloc_32f(&LPF1FIRState_p, (Ipp32f *)Ipf1taps, LPF1TAPCNT, NULL);
ippsFIRInitAlloc_32f(&LPF2FIRState_p, (Ipp32f *)Ipf2taps, LPF2TAPCNT, NULL);

/* Form the analytic signal and its envelope */
ippsHilbert_32f32fc((Ipp32f *)in_p, inenv_p, HilbertSpec_p);
ippsMagnitude_32fc(inenv_p, inenvabs_p, insmpl);

/* First stage of LPF and downsampling */
ippsFIR_32f_I(inenvabs_p, insmpl, LPF1FIRState_p);
ippsSampleDown_32f((Ipp32f *)inenvabs_p, insmpl, outD1_p, &D1smpl, D1, &phm);

/* Second stage of LPF and downsampling */
ippsFIR_32f_I(outD1_p, D1smpl, LPF2FIRState_p);
ippsSampleDown_32f(outD1_p, D1smpl, outD2_p, &D2smpl, D2, &phm);

/* Remove DC */
ippsMean_32f(outD2_p, D2smpl, &dcval, ippAlgHintNone);
ippsSubC_32f_I((Ipp32f)dcval, outD2_p, D2smpl);

/* free states */
ippsHilbertFree_32f32fc(HilbertSpec_p);
ippsFIRFree_32f(LPF1FIRState_p);
ippsFIRFree_32f(LPF2FIRState_p);

Figure 12. Sample C-code Snipet for Example 2 using Intel® Integrated Performance Primitives (Intel® IPP)

12

The single-sided spectrum magnitude output of the Intel IPP imple-
mentation is shown in Figure 13 and indicates the resulting envelope

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

and message recovery at the 11KHz sampling frequency.

Spectrum Magnitude (dB)

-50

-60

Single-Sided Output Spectrum

0.0

0.5

1.0

15

3.0 3.5

Frequency (KHz)

4.0 4.5 5.0

5.5

Figure 13. Output Spectrum Magnitude for Intel® Integrated Performance Primitives (Intel® IPP) implementation.

Table 7 summarizes the measured execution time for various lengths of
input sample sequences. Of note is the column labeled Utilization Rate.
This is the algorithm's execution time divided by the duration of the

input sample, which provides a measure of core utilization over the time

interval of the algorithm (i.e, before the next set of input samples need
10 be processed). It is anindication of the amount of headroom the core
has available for additional signal processing functions, or perhaps, for

other applications.

Input Size in Samples AVX Speedup Over SSE AVX Time (psec) Utilization Rate (%)

9000 1.32x 174.70 4.30%
18000 1.30x 36764 4.50%
27000 1.27x 59704 4.90%
36000 1.29x 78595 4.80%
45000 1.26x 104831 510%
54000 1.27x 122371 5.00%
63000 1.25x 148568 5.20%
72000 1.26x 165940 510%
81000 1.25x 1,986.38 540%
90000 1.26x 215575 530%

Table 7. Measured Execution Time for Envelope Detector

13

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

Development Tools Overview

Developers of signal processing applications have a wide choice of devel-
opment tools from Intel and the broad Intel ecosystem. The benefits of
using these comprehensive tool suites are many and impact every phase
of the software development process.

Intel® C++ Compiler

The Intel G-+ Compilers for Linux and Microsoft* Windows* operating
systems are optimized to harness key properties of Intel architecture
processors and deliver optimal performance. They take advantage

of a complex set of heuristics to decide which assembly instructions
can best optimize the performance in various area, including memory
access, branch prediction, vectorization and floating point operations.

Intel® Math Kernel Library (Intel® MKL)

Intel® Math Kernel Library (Intel® MKL) is a library of highly optimized,
extensively threaded math routines that rely heavily on floating point
computations for maximum performance. Core math functions include
BLAS, LAPACK, ScaLAPACK, Sparse Solvers, Fast Fourier Transforms,
Vector Math and more.

Intel® Integrated Performance Primitives (Intel® IPP)

Intel IPP offers a rich set of library functions and codecs capable of
speeding up the development of highly optimized routines for the
handling of multimedia formats and data of any kind. They have been
hand optimized at a low level to provide maximum performance and
ease of use with Intel architecture processor-based platforms.

Intel® VTune™ Performance Analyzer

Designed to help developers find bottlenecks in their applications, the
tool profiles how the application is using CPU time and computing plat-
form resources throughout the code.

Intel® Application Debugger

Arich and user friendly Eclipse* RCP-based graphical user interface,
combined with OS signal and thread awareness, enable developers to
cross-debug more easily by finding coding issues that affect applica-
tion runtime behavior.

Eclipse*-based Integrated Development Environment

Intel® software development products can be used with the Eclipse
Integrated Development Environment (IDE).

Consider Intel® Architecture Processors for Signal
Processing

Although today's Intel architecture processors are already being used for
signal processing workloads, the release of 2™ generation Intel Core i/
processors with Intel AVX makes this approach much more compelling.
Intel AVX delivers over twice the performance' for some floating point-
based workloads compared to prior generation Intel SSE instructions. Itis
relatively straightforward for developers to evaluate the signal process-
ing performance of next generation Intel architecture processors using
the data available collected with Intel® tools and libraries.

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

Appendix A: Test Configuration
= Single thread execution
= Emerald Lake Platform (Fab A)
- BIOS - American Megatrends 4.6.3.2 (Project Version - ASNBCPT1.86C. 0054.P00)

- CPU: Z2nd generation Intel® Core™ i7-2710QE processor (4 core, 2.1GHz, BMB LLC, Intel® Hyper-Threading
Technology off)

- PCH: Mobile Intel® QM67 Chipset, BO stepping.
- 2 GBRAM (2x1GB Samsung DIMM DDR3 1333, dual rank, PN: M471B2874EH1-CH9)
- Western Digital 160GB HDD (WD1600AAJS)
* Fedora* 13 Linux* 2.6.33.3-85.fc13.x86_64 operating system
= Intel® Composer XE 2011
- Intel® G++ Compiler Pro, version 12.0.1, build 107.
- Intel® Integrated Performance Primitives (Intel® IPP) version 70, build 205.23, September 2, 2010 (libippseS.50.70)
- Intel IPP performance tool version 70 (part of the Intel IPP package)

= Allindividual Intel IPP measurements were taken using the Intel IPP performance test tool. Standard batch
mode (-B) input was used. The automatic timing mode with default accuracy was used. The tests were run with
high priority (Y=HIGH) and on one thread only (N=1). More information on the command line parameters can be
obtained by running the performance applications with the —hh switch

= Frequency domain FIR was compiled in release mode (Release x64) with the Intel G-+ Compiler. The cache is
warmed before the test. Optimizations are enabled using the /03, -xHost, and -std=c99 compiler flags. FDFIR
data averaged among in place, fast, and no divide by N options

= Other data averaged among in place and not in place, fast & accurate switches, divide by N, divide by sart(n),
and no divide by N, as applicable to each algorithm

= Data s at fixed CPU clock frequency and may change with Intel® Turbo Boost Technology enabled.

= Software libraries, drivers, operating systems, and compilers used are not fully tuned for performance and
additional performance gains may be possible.

Acronyms

ASIC Application-specific integrated circuit FFT Fast Fourier transform

ASP Application-specific processor FPCA Field-programmable gate array
DSP Digital signal processor IR Infinite impulse response

FIR Finite impulse response SIMD Single-instruction, multiple data

15

"Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

2For more information go to http:/www.intel.com/performance

*Source: PESQ website at http://www.pesq.org/
Copyright © 2011 Intel Corporation. All rights reserved. Intel, the Intel logo and Intel Core are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries.

*Other names and brands may be claimed as the property of others.

Printed in USA 0111/S2D/BM/XX/PDF ﬁ Please Recycle 324910-001US

intel,

