
Signal processing functions have often required special-purpose hardware such as 
DSPs and FPGAs. However, recent enhancements to Intel® architecture processors are 
providing developers an alternative: execute signal processing workloads on an Intel® 
processor.

Signal processing on the latest Intel processors is now a viable option due to continued 
improvements in multi-core architectures. The increased parallelism from vector 
instructions, along with other continuing performance improvements, enables the 
efficient execution of data parallel workloads such as digital transforms and filters. 
Additionally, by consolidating signal processing functions with other workloads on a 
multi-core Intel processor, it is possible to save hardware cost, simplify the application 
development environment and reduce time to market. This approach can be applied to 
many applications in aerospace (radar, sonar), communications infrastructure (baseband 
processing, transcoding) and healthcare (medical imaging).

This paper describes an easy process that allows developers to quickly determine 
how fast  2nd generation Intel® Core™ i7-2710QE processor will execute their signal 
processing algorithms, based on performance data1 that is relatively easy to obtain. 
Developers can complete the process in a straightforward manner, as demonstrated 
with two simple examples in this paper: fast convolution and amplitude demodulation. 
The paper concludes by reviewing some of the development tools available to 
developers to conduct their own evaluations.
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More specifically, the Intel® Advanced Vector Extensions (Intel® AVX) 
– available for the first time with 2nd generation Intel Core i7 processors– 
provide significantly improved floating point performance (see sidebar).

Engineers who code floating point algorithms for Intel architecture 
processors can leverage a mature software ecosystem that offers a 
very wide breadth and depth of development tools. Also available are 
Intel development tools and libraries that employ Intel AVX and Intel® 
Streaming SIMD Extensions 4 (Intel® SSE4) instructions. Equipment  
manufacturers can choose from many hardware vendors supplying 
commercial off-the-shelf (COTS) embedded boards and systems that 
support embedded lifecycles and benefit from the economics of the  
PC/server supply chain.

Why Intel® Architecture for Signal Processing
There is a natural tendency to assume that just about any signal 
processing application requires a DSP, FPGA or ASP. That’s because tradi-
tionally, it was necessary to use specialized hardware in order to satisfy 
performance objectives. However, for hybrid designs utilizing a mix of 
specialized signal processing algorithms and a broader set of applications, 
implementing two separate computing architectures may pose some 
significant disadvantages, such as:

• �Hardware and board space for two computing systems: higher  
product cost

• �Multiple tool chains: additional technical training and project  
management complexity

• �Multiple code bases: larger software management effort

• �Power consumption for two computing systems: more expensive 
thermal design

• �Intersystem communication: greater design complexity or possibility 
for bottlenecks

• �Time to market: extra time needed to design, validate and integrate 
subsystems

• �Two development teams: unique communication challenges (e.g., silos)

One alternative is to perform signal processing workloads on an existing 
Intel architecture processor in the system. Workload consolidation is a 
powerful concept that has been delivering significant payoffs in data-
centers with respect to reduced server cost, power consumption and 
footprint. This is made possible by multi-core processors with scalable, 
efficient performance, coupled with significant memory and I/O band-
width. This consolidation approach can be equally powerful in embedded 
systems, addressing issues around cost, software complexity, power, time 
and communication. 

Often, performance efficiency is foremost on the minds of embedded 
system developers when running signal processing workloads. This is 
discussed in the next section, which presents performance data for key 
signal processing kernels running on  2nd generation Intel® Core™ i7 proces-
sors. Yet, for most embedded applications, raw performance isn’t the only 
factor; it is also necessary to meet overall system cost goals, and the 
highly scalable family of embedded Intel architecture processors helps to 
do just that.

The embedded Intel processor roadmap gives developers a wide choice 
with respect to the number of cores, cache and system memory size, 
I/O and footprint. In addition, there are many other technologies avail-
able for enhancing system capabilities, like virtualization technology, 
remote management and various security features. Nevertheless, it is the 
enhanced vector single-instruction, multiple-data (SIMD) instructions that 
open the door to using Intel architecture processors for signal processing. 

SIMD Instructions Enhanced By Intel® 
Advanced Vector Extensions (Intel® AVX)
Many signal processing applications are highly parallel, performing 
the same arithmetic operation on large number sets. Speeding 
up these workloads, single-instruction, multiple-data (SIMD) 
instructions were introduced in the mid 1990’s, and they 
perform the same operation on multiple data elements simul-
taneously, as illustrated below.

SMID 2 3 5 11 20

+ 9 11 2 1 5

= 11 14 7 12 25

The throughput of a SIMD instruction is a function of register 
size because larger registers translate into greater throughput. 
With the introduction of 2nd generation Intel® Core™ i7 processors, 
the size of the 16 registers available for floating point opera-
tions doubles, increasing from 128 bits to 256 bits. Additionally, 
new three and four operand instructions establish a destination 
argument that results in fewer register copies, better register 
usage, faster execution and smaller code size. These are just 
some of the recent architectural enhancements, called Intel® 
Advanced Vector Extensions (Intel® AVX).

XMM0

XMM1

XMM2

XMM15

128 bits
(Intel® SSE4)

256 bits
(Intel® AVX)
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The Process for Evaluating Signal Processing 
Performance
Requiring different levels of effort, there are a number of ways to evaluate 
the performance of Intel processors, such as using Intel® C++ and Intel® 
Fortran Compilers, calling optimized performance libraries, or coding  
optimizations in assembly language and employing compiler intrinsics. 
The approach presented in this paper strikes a balance between effort 
and optimization to quickly achieve good estimates for the performance 
of signal processing algorithms. This is done in two ways. The first is to 
utilize the Intel® Integrated Performance Primitives (Intel® IPP) library. It 
provides a quick way to assess the performance of hundreds of algo-
rithms and math functions optimized for Intel architecture. Furthermore, 
the signal processing portion of the Intel IPP library includes over 250 
functions, each often supporting multiple data types and in-place versus 
not in-place variants. There are also many image processing calls that are 
useful for DSP applications. 

The Intel IPP library distribution includes a performance tool (with docu-
mentation) that allows developers to obtain performance metrics for all 
the functions in the library. For example, Figure 1 shows the results 
generated by a shell script written to automatically collect performance 
data on the number of clocks, execution time, and in some cases MFLOPs, 
for a function. For Figure 2, an .ini file was used in conjunction with the 
shell script, to report 2D FFT performance for specific input sizes.

Another way to estimate signal processing performance is to focus the 
performance assessment on key kernels that are often used in signal 
processing workloads. By selecting a subset of the signal processing 
functions, developers can produce a manageable set of data that 
contains the most relevant functions and provides a reference with 
which to estimate the performance of other functions. For instance,  
this can be done by choosing forward and inverse FFTs of various sizes 
– both complex and real – along with FIR and IIR filters of varying 
complexities, and other useful functions such as discrete cosine and 
Hilbert transforms. Developers may certainly need data on functions 
other than the ones covered in this paper; in those cases, the Intel IPP 
performance tool can be used to gather the necessary data.

In summary, this process for evaluating the signal processing performance 
of Intel architecture utilizes Intel-collected performance data and gives 
developers a straightforward method to quickly estimate performance 
for their own workloads. Although the data provided is on 2nd generation 
Intel Core i7-2710QE processor, the methods described here are extensible 
to the full range of Intel processors. With a manageable effort, this 
process gives developers a quick readout of the signal processing perfor-
mance of next generation Intel processors and provides an estimate of 
how much general-purpose computing headroom is available for other 
applications. The next section reviews the performance data collected 
and demonstrates the process using two examples.

It is important to note that although using Intel IPP to assess the signal 
processing performance of Intel processors provides a good starting point 
that balances effort and optimization, it need not be the endpoint. Going 
beyond Intel IPP, it may be possible to capture significant performance 
improvements for specific algorithms through the use of compiler optimi-
zations, primitives and assembly language programming. The flexibility of 
Intel architecture and its supporting software infrastructure provides 
developers with all of these degrees of freedom that can ultimately iden-
tify the most appropriate tradeoff between performance and effort.

Signal Processing Performance Data
The following lists a sample of the signal processing performance data1,2 
collected by Intel on 2nd Intel Core i7-2710QE processors. The algorithms 
were run on a single execution thread, on Linux* (Fedora* 13 distribution), 
and repeated until the results of iterations were within 5 percent  
accuracy. Developers can create results for their own algorithms and 
functions of interest using an Intel® compiler and the Intel IPP package, 

Figure 2. Sample .ini file generating 2D FFT performance data

Figure 1. Sample shell script running IPP performance tool

[Perf System]

FFT_OrderXY=4x4; 5x5; 6x5; 6x6; 7x4; 7x5; 7x7; 8x3; 8x4; 8x6; 

8x7; 8x8; 9x3; 9x5; 9x6; 9x8; 9x9;10x4; 10x5; 10x7; 10x8; 

10x10; 11x3; 11x4; 11x6; 11x7; 11x11; 11x12; 11x13; 11x14; 

11x15;12x3; 12x5; 12x6; 12x12; 13x4; 13x5; 13x13; 14x3; 14x4; 

15x3; 15x4; 16x4; 17x3; 17x4;

#!/bin/bash 

source /opt/intel/composerxe/bin/compilervars.sh intel64 

DATE=`date +%Y-%m-%d`

OUTPUT_DIR=results_avx_${DATE} 

OUTPUT_PATH=${PWD}/${OUTPUT_DIR} 

PERF_TOOL_DIR=${IPPROOT}/tools/intel64/perfsys 

FILE_EXT_1=_lin_avx_1 

FILE_EXT_2=_lin_avx_2

mkdir ${OUTPUT_DIR}

#IPPS 

${PERF_TOOL_DIR}/ps_ipps -r${OUTPUT_PATH}/ipps${FILE_

EXT_1}.csv -o${OUTPUT_PATH}/ipps${FILE_EXT_1}.txt -N1 

-YHIGH -TAVX -B 

${PERF_TOOL_DIR}/ps_ipps -r${OUTPUT_PATH}/ipps${FILE_

EXT_2}.csv -o${OUTPUT_PATH}/ipps${FILE_EXT_2}.txt -N1 

-YHIGH -TAVX -B

#2DFFT 

${PERF_TOOL_DIR}/ps_ippi -r${OUTPUT_PATH}/2dfft${FILE_

EXT_1}.csv -o${OUTPUT_PATH}/2dfft${FILE_EXT_1}.txt -N1 

-YHIGH -TAVX -B -i${PWD}/2dfft.ini -fippiFFTFwd_CToC_32fc_C 

${PERF_TOOL_DIR}/ps_ippi -r${OUTPUT_PATH}/2dfft${FILE_

EXT_2}.csv -o${OUTPUT_PATH}/2dfft${FILE_EXT_2}.txt -N1 

-YHIGH -TAVX -B -i${PWD}/2dfft.ini -fippiFFTFwd_CToC_32fc_C
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Figure 3. Complex-to-Complex FFT and Inverse FFT

Figure 4. Real-to-CCS (Complex Conjugate Symmetric) FFT
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	 Input range:  64B to 1024KB
	 Data type:  Single and double precision floating point
	 Purpose: Decompose a discrete sequence into a set of frequencies.

	� Complex-to-complex FFT performance of the IPP library is in the 
range of 16.1 – 23.7 single precision GFLOPs / sec for sizes between 
64B and 4KB. Similarly, the performance of real-to-complex conju-
gate FFT is in the range of 15 – 17.3 single precision GFLOPs/sec for 
sizes between 64B and 4KB.

	� For larger sizes, FFT performance declines as the execution of the 
algorithm becomes less compute-bound and more memory-bound. 
Additionally, the FFT throughput of double precision floating point 
is approximately half that of single precision, and it scales with input 
size similarly to single precision.

which includes sample code and the Intel IPP performance test tool. More 
details about the test configuration are provided in Appendix A.

This single threaded execution environment provides an approximation of 
the performance of a single core and an indication of available computing 
headroom. Processor cores not used for signal processing can be targeted 
at other algorithms or applications running on the system. Intel® develop-
ment tools and libraries also provide extensive support for development, 
validation and performance tuning of multi-threaded applications.

Overview of benchmark data

A.	 Forward and inverse Fast Fourier Transform (FFT).
	 �Format:  Complex-to-Complex, Real-to-Complex Conjugate Symmetric
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B.	� 2D Complex to Complex FFT Throughput (GFLOPS/s and  
absolute time)

	� Format:  Complex-to-Complex, 2 dimensional array data
	 Input range:  Various sizes ranging from 64B x 64B to 128KB x 16B
	 Data type:  Single precision floating point
	 �Purpose: Decompose a two dimensional array of discrete 

sequences into a set of frequencies.

	� Two dimensional complex-to-complex FFT performance of the Intel 
IPP library is in the range of 12.9 – 17.2 for sizes ranging from 64B x 
64B to 4KB x 64B.

	� As with the one dimensional FFT case, 2D FFT performance declines 
for larger sizes as the FFT becomes more memory-bound. Table 1 
contains sample data points of interest, and it is possible to generate 
2D FFT throughput data for other sizes using the Intel IPP library.

Table 1.  2D Complex to Complex FFT Throughput (GFLOPS/s)     

The improved performance from Intel® Advanced Vector Extensions 
(Intel® AVX) is illustrated in Figure 5, which shows the speed up 
compared to the prior generation Intel® Streaming SIMD Extensions 
3 (Intel® SSE3) instructions. The comparison is for Complex-to-
Complex FFT and Inverse FFT functions, which are averaged 
together and charted for both single and double precision floating 
point routines. For smaller input sizes, the speedup is over two 
times, and for very large inputs, the speedup is around 20 percent.

The floating point performance improvements for 2nd generation 
Intel® Core™ i7 processors  are the result of architectural enhance-
ments, which enable the processor to:

-  Retire one floating point instruction per CPU clock cycle 
-  Dispatch up to 4 floating point instructions per CPU clock cycle

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

64 128 256 512 1K 2K 4K

Input Size

Higher is better

Speedup of Intel® AVX Speedup vs. Intel® SSE4 for Complex-to Complex FFT and Inverse FFT (averaged)

8K 16K 32K 64K 128K 256K 512K 1024K

Single precision (SP) floating point Double precision (DP) floating point

Figure 5. Intel® Advanced Vector Extensions (Intel® AVX) Speedup over Intel® Streaming SIMD Extensions 4 (Intel® SSE4)

Speedup with Intel® Advanced Vector Extensions (Intel® AVX)

Input Size 64 X 64 128 x 128 256 x 64 256 x 256 512 x 64 1K x 256 2K x 128 4K x 64 8K x 32 16K x 16 32K x 16 128K x 16

GFLOP/S 17.2 13.6 14.9 12.9 14.2 13.6 13.0 12.9 11.3 10.9 8.5 7.4

Time (µSec) 14.3 84.5 76.9 407 173 1744 1823 1834 2088 2163 5893 29838
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C.	 Filter Execution Times
	� Format:  Single precision floating point complex data, complex 

coefficients.
	 Finite Impulse Response Filter:  8, 32, and 128 taps

D.	 Discrete Hilbert Transform
	 Format: Single precision floating point complex data.
	 Inputs: Complex data ranging from 128B – 32KB in size.

E.	 Discrete Cosine Transform
	 Format:
	 Inputs: 128B – 32KB

	 Infinite Impulse Response Filter:  Orders ranging from 2 – 12 taps.
	 Inputs:  Complex data ranging from 32B – 32KB in size.
	 �Purpose:  Suppress unwanted components from a discrete-time series.	

	 �Purpose: Create analytic representation of a real-valued  
discrete signal.

	 �Purpose: Express a discrete signal as a series of cosine frequencies 
that can be used for lossy signal compression.

Table 2.  Filter Execution Time

Table 3.  Hilbert Transform Execution Times

Table 4.  Discrete Cosine Transform Execution Times

 Input Size / Execution Time (Microseconds)

128 512 2K 8K 32K

	 SP Float Forward 0.8 3.7 20.6 111.8 563.8

	 SP Float Inverse 0.8 3.7 20.6 111.0 567.3

	 DP Float Forward 0.6 2.3 11.1 60.0 300.5

	 DP Float Inverse 0.6 2.3 11.0 58.9 301.8

 Input Size / Execution Time (Microseconds)

128 512 2K 8K 32K

INT16 to Complex Short FP 0.7 2.7 13.0 74.2 385.3

IN16 to Complex SP FP 0.6 2.4 11.5 64.1 353.6

SP Float to Complex SP Float 0.6 2.3 11.0 62.8 341.0

Input Size / Execution Time (Microseconds)

32 input 128 input 512 input 2K 8K input 32K input

	 8 Tap Fir 0.2 0.5 1.8 7.0 28.2 113.0

	 32 Tap FIR 0.6 2.0 4.2 15.3 59.4 244.0

	 128 Tap FIR 2.1 7.7 6.2 18.6 67.6 276.0

	 Order 2 IIR 0.2 0.7 2.4 9.7 38.5 156.0

	 Order 3 IIR 0.3 0.9 3.5 13.7 54.4 221.5

	 Order 4 IIR 0.4 1.1 3.8 14.9 59.4 239.0

	 Order 6 IIR 0.6 1.4 4.5 17.4 69.5 277.5

	 Order 7 IIR 0.7 1.6 5.2 20.3 81.3 330.0

	 Order 8 IIR 1.1 1.7 5.3 20.4 80.8 324.5

	 Order 10 IIR 1.1 2.1 6.3 24.2 97.0 387.0

	 Order 12 IIR 1.2 2.5 7.3 27.5 112.0 445.0

	 Order 11 IIR 1.2 2.3 7.0 26.6 107.0 427.0



8

White Paper: Signal Processing on Intel® Architecture: Performance Analysis using Intel® Performance Primitives

Two Signal Processing Workload Examples
In this section, two generic signal processing workload examples are 
presented, and the performance of the 2nd Intel Core i7-2710QE proces-
sor is estimated in two ways, according to the methods described 
earlier. The first method is a simple manual approximation that adds 
the performance data of underlying functions obtained from the Intel 
IPP performance tool. Interpolation is used where measured data is 
not available. Though this is a rough approximation, it produces a quick 
performance estimate and a directional check of whether the system 
performance and headroom is adequate. The second method estimates 
the performance of the algorithms by coding them in C++ using Intel IPP 
and measuring their performance directly with hardware counters. In the 
following examples, the results from both methods are presented, which 
provides an indication of how well the manual method approximates 
actual measured results. The objective of this exercise is to produce a 
reasonable estimate of performance in order to determine where effort 
is best applied during optimization. Ultimately, detailed design work may 
be needed to complete product development.

Example 1:  Fast Convolution using FFT

The following example performs a fast convolution of two discrete 
signals, x(n) and y(n) shown in Figure 6. The example is also a frequency 
domain FIR filter when one of the input sequences represents the 
transfer function of an FIR filter. A sample C-code snipet using Intel 
IPPs is provided in Figure 7.

Inputs:  x(n), y(n): 16KB input size 
Output:  o(n): 16KB output size 
Operations:  Single precision floating point in-place FFT,  
Complex Multiply, Inverse FFT

Table 5 summarizes Fast Convolution execution times, calculated 
and measured, for various data sizes. The calculated times sum the 
execution times of individual functions, using times for Intel IPP signal 
processing functions obtained from the Intel IPP performance test tool 
running in batch mode. The measured times were generated by running 
the entire algorithm (Figure 6), which was coded in C++ and used Intel 
IPP, and by calculating the elapsed time based on the hardware clock 
count. The runtimes were averaged across 10,000 runs.

For comparison, the calculated times were within 16 percent of the 
measured results. However, the calculated times took a few hours of 
unattended run time (no human effort aside from installing the Intel 
IPP and running the aforementioned shell script) and less than an hour 
of calculating results in a spreadsheet. The measured results took 
an engineer familiar with the Intel IPP and C++ programming a couple 

Figure 7.  Sample C-code Snipet for Example 1

Sample C-code snipet for Example 1 using Intel® Integrated 

Performance Primitives (Intel® IPP):

/* allocate and initialize specification structures */ 

ippsFFTInitAlloc_C_32fc(&FFTspec1_p, order, IPP_FFT_DIV_

FWD_BY_N,  ippAlgHintFast); 

ippsFFTGetBufSize_C_32fc(FFTspec1, &BufSize); 

Buf1_p = (Ipp8u *) ippsMalloc_32sc(BufSize*sizeof(Ipp8u)); 

… 

/* compute in-place FFTs of input sequences*/ 

ippsFFTFwd_CToC_32fc_I(x_p, FFTspec1_p, Buf1_p);  

ippsFFTFwd_CToC_32fc_I(y_p, FFTspec1_p, Buf1_p); 

/* perform complex multiplication and inverse FFT*/ 

ippsMul_32fc( x_p, y_p, o_p, veclength); 

ippsFFTInv_CToC_32fc_I(o_p,FFTspec1_p, Buf1_p); 

… 

/* free specification structures */ 

ippsFFTFree_C_32fc( FFTSpec1_p); 

ippsFree(Buf1_p); 

Table 5.  Fast Convolution Execution Times

Size FFT iFFT Complex Mul Fast Convolution Calculated Fast Convolution Measured Delta

µsec clocks µsec clocks µsec clocks µsec clocks µsec clocks

64 7.96E-02 1.67E+02 8.02E-02 1.68E+02 5.25E-02 1.10E+02 2.92E-01 6.13E+02 2.99E-01 6.28E+02 -2%

128 2.30E-01 4.83E+02 2.30E-01 4.83E+02 1.05E-01 2.21E+02 7.95E-01 1.67E+03 8.06E-01 1.69E+03 -1%

256 5.04E-01 1.06E+03 4.92E-01 1.03E+03 1.84E-01 3.87E+02 1.68E+00 3.54E+03 1.69E+00 3.55E+03 0%

512 1.07E+00 2.25E+03 1.04E+00 2.18E+03 3.17E-01 6.66E+02 3.50E+00 7.34E+03 3.80E+00 7.99E+03 -8%

1024 2.32E+00 4.87E+03 2.27E+00 4.77E+03 6.12E-01 1.29E+03 7.52E+00 1.58E+04 8.33E+00 1.75E+04 -10%

2048 5.91E+00 1.24E+04 5.93E+00 1.25E+04 1.18E+00 2.48E+03 1.89E+01 3.98E+04 2.11E+01 4.42E+04 -10%

4096 1.49E+01 3.13E+04 1.49E+01 3.13E+04 2.55E+00 5.34E+03 4.72E+01 9.92E+04 5.22E+01 1.10E+05 -10%

8192 3.65E+01 7.67E+04 3.60E+01 7.56E+04 5.46E+00 1.15E+04 1.14E+02 2.40E+05 1.28E+02 2.70E+05 -11%

16384 8.13E+01 1.71E+05 8.19E+01 1.72E+05 1.19E+01 2.50E+04 2.56E+02 5.38E+05 2.96E+02 6.21E+05 -13%

32768 2.00E+02 4.20E+05 2.02E+02 4.24E+05 2.57E+01 5.40E+04 6.28E+02 1.32E+06 7.47E+02 1.57E+06 -16%

65536 4.54E+02 9.53E+05 4.53E+02 9.51E+05 5.14E+01 1.08E+05 1.41E+03 2.97E+06 1.63E+03 3.43E+06 -14%

FFT

Inverse
FFT

x(n)

o(n)

y(n)

X

FFT

Figure 6.  Fast Convolution using FFT Example
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of days for coding, debugging and executing the runtime. From this 
example, it is clear the simple manual approximation method (i.e., calcu-
lated times) delivers a performance estimate at a fraction of the effort 
required for the coding approach, and it provides an early read on where 
to invest optimization effort. Still, coding the algorithm using Intel IPP 
took significantly less effort than the alternative, which is to manually 
optimize custom libraries for each generation of Intel processor.

One possible optimization is to parallelize the algorithm by going 
beyond vector instructions and executing the two FFTs on sepa-
rate threads. Further parallelizing the execution, the threads can be 
dispatched to two processor cores and the results combined back to a 
single thread for the complex multiply and inverse FFT.

Floating Point Speeds Development
Voice quality is still a major concern for countless wireless, cable 
and internet service providers relying on Voice over IP (VoIP) to 
deliver telephony services. To ensure quality is on par with the 
Public Switched Telephone Network (PSTN), service provid-
ers require an economical and automatic means to continuously 
test calls in real time. A commonly used family of standards is 
PESQ3 (Perceptual Evaluation of Speech Quality), which defines 
a MOS voice quality score that closely correlates to human listen-
ing experience, as shown in Figure 8. The algorithms perform 
voice encoding and measurements related to jitter, packet loss, 
time-clipping and channel errors. Many of the algorithms are 
computationally intensive and use floating point fast Fourier 
transforms.

For manufacturers of voice quality test equipment, passing 
industry conformance tests demands 32-bit float-like behavior 
throughout the application. This is exceptionally difficult to achieve 
with integer CPUs or FPGAs without suffering dire performance 
consequences. Likewise, fixed point math – add, multiply or divide 
– is not an option because of the loss of accuracy every time an 
instruction throws out a remainder. With a fixed point integer type, 
intermediate results of a multiply or add can grow beyond the fixed 
point type, causing overflow and truncation errors. This can make 
the result shrink below its fractional component and lead to  
incorrect results, like a PESQ score of 3.5 instead of 4.2.

Ixia*, a leading supplier of test and measurement equipment, 
decided to use multi-core Intel® processors with high performance 
floating point units because they could run the PESQ code as-is, 
hence minimal migration effort. The processors delivered accurate 
PESQ results and proved to have floating pointing performance on 
par with, and even superior to, many floating point DSPs. “Using 
Intel, we were able to get near-final performance numbers in just 
a few days, significantly lowering our project risk,” says Bryan 
Rittmeyer, System Architect at Ixia.
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Example 2:  Discrete Envelope Detection / Amplitude 
Demodulation

The following example performs a fast convolution of two discrete 
signals, x(n) and y(n) shown in Figure 6. The example is also a frequency 
domain FIR filter when one of the input sequences represents the 
transfer function of an FIR filter. A sample C-code snipet using Intel 
IPPs is provided in Figure 7.

The second example is an envelope detector for a discrete time 
sequence, shown in Figure 9. The Hilbert transform produces the 
analytic representation of the signal, whose magnitude is obtained 
in order to generate the envelope of the signal, which is then down-
sampled. The downsampling is done in two stages since the carrier 
is operating at 200x the frequency of the message bandwidth. This 
keeps the FIRs to reasonable sizes. Finally, the DC component is 
removed from the discrete output sequence. Figure 10 contains a code 
snipet of the MATLAB* model for the envelope detector and Figure 
shows the results.

Figure 8.  MOS Diagram
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Input:  Amplitude modulated message. Message bandwidth = 5KHz. 
Carrier frequency:  1000KHz.  Input sampling frequency:  2200KHz. 
Output sampling frequency:  11KHz 
LPF1:  128 tap FIR, 44KHz cutoff frequency.  D1: Downsampling by 25. 
LPF2:  128 tap FIR, 5.5KHz cutoff frequency.  D2: Downsampling by 8.

x(n) = (A + M.f(ωmnts))*
           sin(ωcnts) + noise

Envelope
Formation

Low Pass Filtering, Downsampling,
& DC removal

+

+

o(m)
Z-N/2 |xc| LPF1 D1

j
Discrete
Hilbert

Transform

LPF2 D2 DC
removal

Figure 9.  Discrete Envelope Detection / Amplitude Demodulation Example

Figure 10.  Snipet of MATLAB* model 

%Form analytic signal for envelope 

inenv = abs(hilbert(in));

%Downsample, take out DC and LPF envelope 

lpf1 = fir1(lpf1tap,cutoff1/(Fsi/2),’low’,chebwin(lpf1tap+1)); 

out1 = fftfilt(lpf1,inenv); 

out1 = downsample(out1,D1); 

tout1 = downsample(tin,D1);

%Stage 2 Downsample & LPF envelope 

lpf2 = fir1(lpf2tap,cutoff2/(Fs1/2),’low’,chebwin(lpf2tap+1)); 

out = fftfilt(lpf2,out1); 

out = downsample(out,D2); 

out = out - mean(out); 

out = out(17:length(out)); 

tout = downsample(tout1,D2); 

tout = tout(17:length(tout));
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Figure 11.  MATLAB* Results	
  

Table 6 summarizes the execution times for the Amplitude Demodulation 
for various data sizes.  Similar to Example 1, the calculated times summed 
the execution times of the individual functions, and the measured times 
were generated from hardware clock count measurements collected 
while the algorithm executed (see Figure 10 for the code snipet). The 
runtimes were averaged across 10,000 runs.

The calculated times are within 11 percent of the measured results. Here 
again, the calculated times took a few hours of unattended run time and 
less than an hour of spreadsheet calculation time. An engineer familiar 

Figure 11 shows the MATLAB results for a simulated noisy AM signal 
containing messages centered at 1KHz, 3KHz, and 4.75KHz.  The 
figure also shows the single sided spectrum magnitude of the input, 

with Intel IPP, C++ and the algorithm generated the measured results in 
three days, which included coding using Intel IPP functions, debugging 
and executing the runtime. This example is similar to Example 1, in that 
the manual approximation method offers a good compromise between 
accuracy and effort, and it provides a relatively quick indication of perfor-
mance and focus areas for further optimization. As in the prior example, 
going to the next step of coding the algorithm using Intel IPP took an 
acceptable amount of effort, given the degree of optimization and 
compared to manually optimizing libraries to Intel processors. 

after LPF1, after LPF2 and downsampling D2, and at the final output.  
Superimposed to the frequency spectrum is the frequency response of 
the LPFs (thin blue line). 
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Table 6.  Amplitude Demodulation Execution Times

Figure 12.  Sample C-code Snipet for Example 2 using Intel® Integrated Performance Primitives (Intel® IPP)

/* allocate and initialize specification structures */ 

ippsHilbertInitAlloc_32f32fc(&HilbertSpec_p, insmpl, ippAlgHintNone); 

ippsFIRInitAlloc_32f(&LPF1FIRState_p, (Ipp32f *)lpf1taps, LPF1TAPCNT, NULL); 

ippsFIRInitAlloc_32f(&LPF2FIRState_p, (Ipp32f *)lpf2taps, LPF2TAPCNT, NULL); 

… 

/* Form the analytic signal and its envelope */ 

ippsHilbert_32f32fc((Ipp32f *)in_p, inenv_p, HilbertSpec_p); 

ippsMagnitude_32fc(inenv_p, inenvabs_p, insmpl);

/* First stage of LPF and downsampling */ 

ippsFIR_32f_I(inenvabs_p, insmpl, LPF1FIRState_p); 

ippsSampleDown_32f((Ipp32f *)inenvabs_p, insmpl, outD1_p, &D1smpl, D1, &phm);

/* Second stage of LPF and downsampling */ 

ippsFIR_32f_I(outD1_p, D1smpl, LPF2FIRState_p); 

ippsSampleDown_32f(outD1_p, D1smpl, outD2_p, &D2smpl, D2, &phm);

/* Remove DC */ 

ippsMean_32f(outD2_p, D2smpl, &dcval, ippAlgHintNone); 

ippsSubC_32f_I((Ipp32f)dcval, outD2_p, D2smpl); 

… 

/* free states */ 

ippsHilbertFree_32f32fc(HilbertSpec_p); 

ippsFIRFree_32f(LPF1FIRState_p); 

ippsFIRFree_32f(LPF2FIRState_p);

Input Size Hilbert Tran sf (32f - 32fc) Magnitude 128 tap FIR #1 DownSampling by 8 DownSampling by 25

µsec clocks µsec clocks µsec clocks µsec clocks µsec clocks

32 1.41E-01 2.96E+02 4.05E-02 8.51E+01 4.49E-01 9.43E+02 2.46E-02 5.17E+01 7.69E-02 1.61E+02

128 5.82E-01 1.22E+03 1.40E-01 2.94E+02 1.63E+00 3.42E+03 2.25E-02 4.73E+01 7.03E-02 1.48E+02

512 2.33E+00 4.89E+03 5.52E-01 1.16E+03 6.39E+00 1.34E+04 3.78E-02 7.94E+01 1.18E-01 2.48E+02

2048 1.09E+01 2.29E+04 2.20E+00 4.62E+03 2.63E+01 5.52E+04 9.67E-02 2.03E+02 3.02E-01 6.35E+02

8192 6.17E+01 1.30E+05 8.90E+00 1.87E+04 7.61E+01 1.60E+05 6.34E-01 1.33E+03 1.98E+00 4.16E+03

9000 7.09E+01 1.49E+05 9.91E+00 2.08E+04 8.10E+01 1.70E+05 7.41E-01 1.56E+03 2.31E+00 4.86E+03

18000 1.74E+02 3.64E+05 2.12E+01 4.45E+04 1.36E+02 2.85E+05 1.93E+00 4.05E+03 6.03E+00 1.27E+04

27000 2.76E+02 5.80E+05 3.25E+01 6.82E+04 1.90E+02 3.99E+05 3.12E+00 6.55E+03 9.74E+00 2.05E+04

32768 3.42E+02 7.18E+05 3.97E+01 8.34E+04 2.25E+02 4.73E+05 3.88E+00 8.15E+03 1.21E+01 2.55E+04

36000 3.76E+02 7.89E+05 4.36E+01 9.16E+04 2.47E+02 5.19E+05 4.26E+00 8.95E+03 1.33E+01 2.80E+04

Input Size Demod Calculated Demod Measured Delta

µsec clocks µsec clocks

8192 1.54E+02 3.24E+05 1.59E+02 3.34E+05 -3%

9000 1.70E+02 3.58E+05 1.75E+02 3.67E+05 -3%

18000 3.52E+02 7.39E+05 3.68E+02 7.72E+05 -4%

27000 5.29E+02 1.11E+06 5.97E+02 1.25E+06 -11%

32768 6.42E+02 1.35E+06 7.18E+02 1.51E+06 -11%

36000 7.05E+02 1.48E+06 7.86E+02 1.65E+06 -10%

Input Size 128 tap FIR #2 DownSampling by 8

µsec clocks µsec clocks

327.68 5.69E+00 1.20E+04 3.56E-02 7.47E+01

360 6.09E+00 1.28E+04 3.68E-02 7.74E+01

720 1.57E+01 3.30E+04 6.54E-02 1.37E+02

1080 2.04E+01 4.28E+04 7.92E-02 1.66E+02

1310.72 2.34E+01 4.91E+04 8.81E-02 1.85E+02

1440 2.51E+01 5.26E+04 9.30E-02 1.95E+02

Measured Data Interpolation From Measured Data Calculated Data
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Table 7. Measured Execution Time for Envelope Detector

Figure 13.  Output Spectrum Magnitude for Intel® Integrated Performance Primitives (Intel® IPP) implementation.

The single-sided spectrum magnitude output of the Intel IPP imple-
mentation is shown in Figure 13 and indicates the resulting envelope 

and message recovery at the 11KHz sampling frequency.

	
  

Table 7 summarizes the measured execution time for various lengths of 
input sample sequences.  Of note is the column labeled Utilization Rate. 
This is the algorithm’s execution time divided by the duration of the 
input sample, which provides a measure of core utilization over the time 

interval of the algorithm (i.e., before the next set of input samples need 
to be processed). It is an indication of the amount of headroom the core 
has available for additional signal processing functions, or perhaps, for 
other applications.

Input Size in Samples AVX Speedup Over SSE AVX Time (µsec) Utilization Rate (%)

9000 1.32x 174.70 4.30%

18000 1.30x 367.64 4.50%

27000 1.27x 597.04 4.90%

36000 1.29x 785.95 4.80%

45000 1.26x 1,048.31 5.10%

54000 1.27x 1,223.71 5.00%

63000 1.25x 1,485.68 5.20%

72000 1.26x 1,659.40 5.10%

81000 1.25x 1,986.38 5.40%

90000 1.26x 2,155.75 5.30%
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Development Tools Overview
Developers of signal processing applications have a wide choice of devel-
opment tools from Intel and the broad Intel ecosystem. The benefits of 
using these comprehensive tool suites are many and impact every phase 
of the software development process.

Intel® C++ Compiler

The Intel C++ Compilers for Linux and Microsoft* Windows* operating 
systems are optimized to harness key properties of Intel architecture 
processors and deliver optimal performance. They take advantage 
of a complex set of heuristics to decide which assembly instructions 
can best optimize the performance in various area, including memory 
access, branch prediction, vectorization and floating point operations.

Intel® Math Kernel Library (Intel® MKL) 

Intel® Math Kernel Library (Intel® MKL) is a library of highly optimized, 
extensively threaded math routines that rely heavily on floating point 
computations for maximum performance. Core math functions include 
BLAS, LAPACK, ScaLAPACK, Sparse Solvers, Fast Fourier Transforms, 
Vector Math and more. 

Intel® Integrated Performance Primitives (Intel® IPP)

Intel IPP offers a rich set of library functions and codecs capable of 
speeding up the development of highly optimized routines for the 
handling of multimedia formats and data of any kind. They have been 
hand optimized at a low level to provide maximum performance and 
ease of use with Intel architecture processor-based platforms. 

Intel® VTune™ Performance Analyzer

Designed to help developers find bottlenecks in their applications, the 
tool profiles how the application is using CPU time and computing plat-
form resources throughout the code. 

Intel® Application Debugger

A rich and user friendly Eclipse* RCP-based graphical user interface, 
combined with OS signal and thread awareness, enable developers to 
cross-debug more easily by finding coding issues that affect applica-
tion runtime behavior. 

Eclipse*-based Integrated Development Environment

Intel® software development products can be used with the Eclipse 
Integrated Development Environment (IDE).

Consider Intel® Architecture Processors for Signal 
Processing 

Although today’s Intel architecture processors are already being used for 
signal processing workloads, the release of 2nd generation Intel Core i7 
processors with Intel AVX makes this approach much more compelling. 
Intel AVX delivers over twice the performance1 for some floating point-
based workloads compared to prior generation Intel SSE instructions. It is 
relatively straightforward for developers to evaluate the signal process-
ing performance of next generation Intel architecture processors using 
the data available collected with Intel® tools and libraries.
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Appendix A: Test Configuration

•	 Single thread execution

•	 Emerald Lake Platform (Fab A)

	 –  BIOS – American Megatrends 4.6.3.2 (Project Version – ASNBCPT1.86C. 0054.P00)

	 –  �CPU: 2nd generation Intel® Core™ i7-2710QE processor (4 core, 2.1GHz, 6MB LLC, Intel® Hyper-Threading 
Technology off)

	 –  PCH: Mobile Intel® QM67 Chipset, B0 stepping.

	 –  2 GB RAM (2x1GB Samsung DIMM DDR3 1333, dual rank, PN: M471B2874EH1-CH9)

	 –  Western Digital 160GB HDD (WD1600AAJS)

•	 Fedora* 13 Linux* 2.6.33.3-85.fc13.x86_64 operating system

•	 Intel® Composer XE 2011

	 –  Intel® C++ Compiler Pro, version 12.0.1, build 107.

	 –  �Intel® Integrated Performance Primitives (Intel® IPP) version 7.0, build 205.23, September 2, 2010 (libippse9.so.7.0)

	 –  Intel IPP performance tool version 7.0 (part of the Intel IPP package)

•	 �All individual Intel IPP measurements were taken using the Intel IPP performance test tool. Standard batch 
mode (-B) input was used. The automatic timing mode with default accuracy was used. The tests were run with 
high priority (Y=HIGH) and on one thread only (N=1). More information on the command line parameters can be 
obtained by running the performance applications with the –hh switch

•	 �Frequency domain FIR was compiled in release mode (Release x64) with the Intel C++ Compiler. The cache is 
warmed before the test. Optimizations are enabled using the /O3 , -xHost, and –std=c99 compiler flags.  FDFIR 
data averaged among in place, fast, and no divide by N options

•	 �Other data averaged among in place and not in place, fast & accurate switches, divide by N, divide by sqrt(n),  
and no divide by N, as applicable to each algorithm

•	 �Data is at fixed CPU clock frequency and may change with Intel® Turbo Boost Technology enabled.  

•	 �Software libraries, drivers, operating systems, and compilers used are not fully tuned for performance and  
additional performance gains may be possible.

Acronyms

ASIC	 Application-specific integrated circuit

ASP	 Application-specific processor

DSP	 Digital signal processor

FIR 	 Finite impulse response

FFT	 Fast Fourier transform

FPGA	 Field-programmable gate array

IIR	 Infinite impulse response

SIMD	 Single-instruction, multiple data



	1	�Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark,  
are measured using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult 
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.  

	2	�For more information go to http://www.intel.com/performance 

	3	�Source: PESQ website at http://www.pesq.org/
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