

Intel® Platform Innovation Framework
for EFI

Human Interface Infrastructure
Specification

Version 0.92
October 21, 2005

Human Interface Infrastructure Specification

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2000–2005, Intel Corporation.

Intel order number xxxxxx-001

ii October 2005 Version 0.92

Revision History
Revision Revision History Date
0.9 First public release. 9/16/03

0.91 • Changed, added, and/or corrected the following:

– EFI_FORM_BROWSER_PROTOCOL.CreatePopUp()

– EFI_FORM_BROWSER_PROTOCOL.SendForm()

– EFI_FORM_CALLBACK_PROTOCOL.CallBack()

– EFI_FORM_CALLBACK_PROTOCOL.NvRead()

– EFI_HII_FONT_PACK
– The Type values in EFI_HII_PACK_HEADER

– EFI_HII_PROTOCOL (Forms Entries)

– EFI_HII_PROTOCOL (Keyboard Functions)

– EFI_HII_PROTOCOL.ExportDatabase()

– EFI_HII_PROTOCOL.GetDefaultImage()

– EFI_HII_PROTOCOL.GetForms()

– EFI_HII_PROTOCOL.GetKeyboardLayout()

– EFI_HII_PROTOCOL.NewPack()

– EFI_HII_PROTOCOL.NewPack() (Font-Related Entries)

– EFI_HII_PROTOCOL.NewPack() (String-Related Entries)

– EFI_HII_PROTOCOL.NewString()

– EFI_HII_PROTOCOL.UpdateForm()

– EFI_HII_STRING_PACK

– EFI_IFR_FORM_SET

– The "Description" subsection in EFI_IFR_NUMERIC

– EFI_IFR_ONE_OF

– EFI_IFR_OP_HEADER

– EFI_NARROW_GLYPH

– Glossary

– Human Interface Overview Introduction

– Introduction in Code Definitions

– Numeric: <numeric> in Design Discussion

– Overview in Introduction

– References
• Created a new GUID for EFI_HII_PROTOCOL.
• Added the Keyboard Layout section in Design Discussion.
• Deleted the "Results Routing" topic in Design Discussion >

Design Rationale.
• Added the opcode value that applies to each IFR tag.

4/1/04

continued

Version 0.92 October 2005 iii

Human Interface Infrastructure Specification

Revision Revision History Date
0.91 (cont’d) • Moved any type definitions that were included in protocol

definitions to the first function that calls them and updated all links
and references.

• Updated descriptions for many parameters.
• Made minor, nontechnical grammatical improvements throughout

the specification.

4/1/04

0.92 • Changed, added, and/or corrected the following:
• EFI_HII_PROTOCOL.NewString()
• EFI_HII_PROTOCOL.GetString()
• EFI_HII_PROTOCOL.GetForms()
• EFI_HII_PROTOCOL.GetDefaultImage()

10/21/05

iv October 2005 Version 0.92

Contents

1 Introduction .. 9
Overview ... 9
Purpose... 9
Overview ... 10
Glossary .. 10
References.. 13
Conventions Used in This Document.. 14

Data Structure Descriptions ... 14
Protocol Descriptions ... 15
Procedure Descriptions.. 15
Pseudo-Code Conventions .. 16
Typographic Conventions... 16

2 Design Discussion ... 19
Design Rationale... 19

Introduction .. 19
String Management .. 19

String Management ... 19
Limiting Glyphs in Firmware Volumes ... 19
Unicode ... 20

Localization Issues... 21
User Input...22
HTML and IFR.. 23

Human Interface Overview.. 24
Human Interface Introduction... 24
Package Header .. 25
Package Manipulation.. 25
Packages Definition.. 25
Human Interface Infrastructure (HII) Protocol .. 25

Font Package.. 26
Introduction .. 26
Glyph Sizes .. 26
Glyph Representation... 26

Strings... 26
Introduction .. 26
Internal String Representation.. 27

Form Packages... 28
Goals ... 28
Forms and Form Sets... 29
Semantics and Tag Structures... 29

Form Packages and Scoping .. 29
Forms ... 30
Device Descriptions... 30
Titles, Subtitles, and Text: <subtitle>, <text>... 30

Version 0.92 October 2005 v

Human Interface Infrastructure Specification

Questions ... 30
Image ... 34
Background ... 34
Visibility Control: <grayout>, <suppress> .. 35
Boolean Expressions... 35
Using Grayed-Out Parts of a Form.. 36
Consistency Checking ... 36

Dynamic Data... 37
Labels ... 37

Advanced Operations (Optional) .. 37
Advanced Operations (Optional) ... 37
String Input .. 37

Keyboard Layout ... 38
Keyboard Mapping ... 38
Modifier Keys ... 39
Dead Keys.. 40
Keyboard Layout Switching.. 41

Dynamic Processing of NV/IFR Data .. 41
Form Callback Protocol .. 41

Browser Interface.. 41
Form Browser Protocol... 41

Runtime Representations.. 42
Using IFR at Runtime... 42
Limitations of Presentation Mechanisms.. 42

3 Code Definitions... 43
Introduction ... 43
Packages .. 44

Package Header .. 44
EFI_HII_PACK_HEADER.. 44

Packages Definition.. 45
EFI_HII_PACKAGES... 45

Human Interface Infrastructure (HII) Protocol .. 47
EFI_HII_PROTOCOL .. 47
EFI_HII_PROTOCOL.NewPack().. 50
EFI_HII_PROTOCOL.RemovePack() ... 52
EFI_HII_PROTOCOL.FindHandles()... 53
EFI_HII_PROTOCOL.ExportDatabase() ... 54

Font Package.. 59
Glyph Representation... 59

EFI_NARROW_GLYPH .. 59
EFI_WIDE_GLYPH ... 60
EFI_HII_FONT_PACK... 61

HII Protocol Font-Related Entries... 63
HII Protocol Font-Related Entries.. 63
EFI_HII_PROTOCOL (Font-Related Entries).. 63
EFI_HII_PROTOCOL.NewPack() (Font-Related Entries) 64

vi October 2005 Version 0.92

 Contents

EFI_HII_PROTOCOL.TestString() .. 65
EFI_HII_PROTOCOL.GetGlyph().. 66
EFI_HII_PROTOCOL.GlyphToBlt() ... 68

Strings... 70
String ... 70

EFI_STRING ... 70
String Package Structure ... 71

EFI_HII_STRING_PACK ... 71
HII Protocol String Functions.. 73

EFI_HII_PROTOCOL (String Functions)... 73
EFI_HII_PROTOCOL.NewPack() (String-Related Entries) 75
EFI_HII_PROTOCOL.NewString() .. 76
EFI_HII_PROTOCOL.GetPrimaryLanguages()... 78
EFI_HII_PROTOCOL.GetSecondaryLanguages() .. 79
EFI_HII_PROTOCOL.GetString().. 81
EFI_HII_PROTOCOL.GetLine() .. 83

Form Packages... 85
Form Language Syntax .. 85
Meta-Syntax ... 85
Internal Form Representation (IFR) Language Syntax Definition 86

EFI_IFR_OP_HEADER ... 86
EFI_IFR_FORM_SET.. 88
EFI_IFR_FORM... 90
EFI_IFR_SUBTITLE .. 91
EFI_IFR_TEXT .. 92
EFI_IFR_ONE_OF .. 93
EFI_IFR_CHECKBOX ... 96
EFI_IFR_NUMERIC .. 98
EFI_IFR_PASSWORD .. 100
EFI_IFR_ORDERED_LIST.. 102
EFI_IFR_REF .. 104
EFI_IFR_HIDDEN ... 105
EFI_IFR_GRAY_OUT ... 106
EFI_IFR_SUPPRESS.. 107
EFI_IFR_INCONSISTENT .. 108
EFI_IFR_LABEL .. 109
EFI_IFR_VARSTORE ... 110
EFI_IFR_VARSTORE_SELECT ... 111
EFI_IFR_VARSTORE_SELECT_PAIR ... 112
Boolean Expressions... 113

HII Protocol Forms Entries ... 116
EFI_HII_PROTOCOL (Forms Entries) .. 116
EFI_HII_PROTOCOL.NewPack() (Form-Related Entries) 117
EFI_HII_PROTOCOL.GetForms()... 118
EFI_HII_PROTOCOL.GetDefaultImage().. 120
EFI_HII_PROTOCOL.UpdateForm()... 122

Version 0.92 October 2005 vii

Human Interface Infrastructure Specification

Keyboard Layout ... 125
HII Protocol Keyboard Entries .. 125

EFI_HII_PROTOCOL (Keyboard Functions)... 125
EFI_HII_PROTOCOL.GetKeyboardLayout()... 126

Dynamic Processing of NV/IFR Data .. 130
Form Callback Protocol .. 130

EFI_FORM_CALLBACK_PROTOCOL ... 130
EFI_FORM_CALLBACK_PROTOCOL.NvRead() 131
EFI_FORM_CALLBACK_PROTOCOL.NvWrite() 133
EFI_FORM_CALLBACK_PROTOCOL.CallBack() 135

Browser Interface.. 139
Form Browser Protocol... 139

Form Browser Protocol.. 139
EFI_FORM_BROWSER_PROTOCOL.. 139
EFI_FORM_BROWSER_PROTOCOL.SendForm() 140
EFI_FORM_BROWSER_PROTOCOL.CreatePopUp() 143

4 Conventions for IFR to HTML Translation ... 145
Conventions for IFR to HTML Translation... 145

Figures
Figure 2-1. Managing Human Interface Components .. 24
Figure 2-2. Keyboard Layout.. 38
Figure 3-1. Keyboard Layout.. 128

Tables
Table 2-1. Localization Issues .. 21
Table 2-2. Differences between HTML and IFR ... 23
Table 3-1. Value Passed in the Data Pointer... 136
Table 4-1. Suggested Translations between IFR and HTML.. 145

viii October 2005 Version 0.92

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
Human Interface Infrastructure (HII) of the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the "Framework"). This specification does the following:
• Describes the basic mechanisms to manage user input
• Provides code definitions for the HII-related protocols, functions, and type definitions that are

architecturally required by the Intel® Platform Innovation Framework for EFI Architecture
Specification

Purpose
This document describes the mechanisms by which the Intel® Platform Innovation Framework for
EFI (the "Framework") manages user input. The major areas described include the following:
• String and font management.
• User input abstractions (for keyboards and mice), mainly those used during the Driver

Execution Environment (DXE) and Boot Device Selection (BDS) phases.
• Internal representations of the forms (in the HTML sense) that are used for running a preboot

setup
• External representations, and the derivations of those representations, of the forms that are used

to pass configuration information to runtime applications and the mechanisms to allow the
results of those applications to be driven back into the firmware.

General goals include:
• Simplified localization, the process by which the interface is adapted to a particular language.
• A "forms" representation mechanism that is rich enough to support the complex configuration

issues encountered by platform developers, including stock keeping unit (SKU) management
and interrelationships between questions in the forms.

• Definition of a mechanism to allow most or all the configuration of the system to be performed
during boot (DXE/BDS), at runtime, and remotely. Where possible, the forms describing the
configuration should be expressed using existing standards such as XML.

• Ability for the different drivers (including those from add-in cards) and applications to
contribute forms, strings, and fonts in a uniform manner while still allowing innovation in the
look and feel for Setup.

Version 0.92 October 2005 9

Human Interface Infrastructure Specification

• Encourage a "walk up and use" (WUU) user interface. Most applications are designed to be
used repeatedly. User interface designers must trade off learnability for usability. The goal of
WUU applications is to be instantly usable without a learning curve or other documentation.
Design characteristics include the following:
⎯ A simplified interface.
⎯ Continual display of both keys and context-sensitive help, rather than having the user ask

for it.
⎯ Minimal shortcuts (most people become confused by more than one method for doing

things).
⎯ An interface that is analogous to a common interface. At this time, a generic web browser

is probably the most universal nonproprietary interface.

Overview
This document describes the following:
• General design rationale and concepts
• Data structures. They are described more or less bottom up, in the following order:
• Fonts
• Strings
• Internal Form Representations (IFRs)
• Mechanisms to map internal representations
• Mechanisms to map to external representations (such as XHTML).
• Code interfaces
It is important to note which concepts are required by the architecture and which are considered
possible implementations. In general, all of the definitions expressed in the Extensible Firmware
Interface (EFI) standard protocol/member function format are architectural. Except where noted,
database information and representations are architectural. The tools are not architectural, nor is, of
course, the rationale. Variances from these general rules are noted.

Glossary
The following definitions, except where noted, are not EFI specific. See the master glossary in the
Framework Interoperability and Component Specifications help system for additional terms.

Alt-GR Unicode
Represents the Unicode value of a key when the Alt-GR modifier key is being held down.
This key (A2) in some keyboard layouts is defined as the right alternate key and serves the
same function as the left alternate key. However, in many other layouts it is a secondary
modifier key similar to shift. For instance, key C1 is equated to the letter a and its Unicode
value in the typical U.K. keyboard is a nonshifted value of 0x0061. When the Alt-GR key is
held down in conjunction with the pressing of key C1, however, the value on the same
keyboard often produces an á, which is a Unicode 0x00E1.

10 October 2005 Version 0.92

 Introduction

DBCS
Double Byte Character Set.

dead key
Typically an accent key that does not advance the cursor and is used to create special
characters similar to ÄäĂăÊêŰűŨũ. This function is provided only on certain keyboard
layouts.

font
A graphical representation corresponding to a character set, in this case Unicode. The
following are the same Latin letter in three fonts using the same size (14):

A

A

A
font glyph

The individual elements of a font corresponding to single characters are called font glyphs or
simply glyphs. The first character in each of the above three lines is a glyph for the letter "A"
in three different fonts.

form
A description of a page or pages which describe fields for user input. See e.g. [HTML]
Chapter 10.

glyph
The individual elements of a font corresponding to single characters. May also be called font
glyphs. Also see font glyph above.

HII
Human Interface Infrastructure.

HTML
Hypertext Markup Language. A particular implementation of SGML focused on hypertext
applications. HTML is a fairly simple language that enables the description of pages
(generally Internet pages) that include links to other pages and other data types (such as
graphics). When applied to a larger world, HTML has many shortcomings, including
localization (q.v.) and formatting issues. The HTML form concept is of particular interest to
this application.

IFR
Internal Form Representation. Used to represent forms in EFI so that it can be interpreted as
is or expanded easily into XHTML.

IME
Input Method Editor. A program or subprogram that is used to map keystrokes to logographic
characters. For example, IMEs are used (possibly with user intervention) to map the Kana
(Hirigana or Katakana) characters on Japanese keyboards to Kanji.

Version 0.92 October 2005 11

Human Interface Infrastructure Specification

internationalization
In this context, is the process of making a system usable across languages and cultures by
using universally understood symbols. Internationalization is difficult due to the differences
in cultures and the difficulty of creating obvious symbols; for example, why does a red
octagon mean "Stop"?

keyboard layout
The physical representation of a user’s keyboard. The usage of this is in conjunction to a
structure that equates the physical key(s) and the associated action it represents. For instance,
key C1 is equated to the letter a and its Unicode value in the typical U.K. keyboard is a
nonshifted value of 0x0061.

localization
The process of focusing a system in so that it works using the symbols of a language/culture.
The following design is influenced in major part by the requirements of localization.

logographic
A character set that uses characters to represent words or parts of words rather than syllables
or sounds. Kanji is logographic but Kana characters are not.

NV
Nonvolatile.

scan code
A value representing the location of a key on a keyboard. Scan codes may also encode make
(key press) and break (key release) and auto-repeat information.

SGML
Standard Generalized Markup Language. A markup language for defining markup languages.

shifted Unicode
Represents the Unicode value of a key when the shift modifier key is being held down. For
instance, key C1 is equated to the letter a and its Unicode value in the typical U.K. keyboard
is a nonshifted value of 0x0061. When the shift key is held down in conjunction with the
pressing of key C1, however, the value on the same keyboard often produces an A, which is a
Unicode 0x0041.

SKU
Stock keeping unit.

string
A null-terminated ordered list of 16-bit Unicode characters.

UGA
Universal Graphics Adapter.

VFR
Visual Forms Representation.

12 October 2005 Version 0.92

 Introduction

WUU
Walk up and use. A user interface in which the goal is to be instantly usable without a
learning curve or other documentation.

XHTML
Extensible HTML. XHTML "will obey all of the grammar rules of XML (properly nested
elements, quoted attributes, and so on), while conforming to the vocabulary of HTML (the
elements and attributes that are available for use ant their relationships to one another)."
[PXML, pg., 153]. Although not completely defined, XHTML is basically the intersection of
XML and HTML and does support forms.

XML
Extensible Markup Language. A subset of SGML. Addresses many of the problems with
HTML but does not currently (1.0) support forms in any specified way.

References
This section lists user-interface-related information that may be useful to you or that is referenced
in this specification. See the master references in the Framework Interoperability and Component
Specifications help system for additional references.

User Interface
• [PUI] Programming the User Interface: Principles and Examples, Judith R. Brown, Steve

Cunningham, John Wiley & Sons, 1989, ISBN: 0-471-63843-9.
• [Tufte83] The Visual Display of Quantitative Information, Edward R. Tufte, Graphics Press,

1983.
• [Tufte90] Envisioning Information, Edward R. Tufte, Graphics Press, 1990.
• [Tufte97] Visual Explanations, Edward R. Tufte, Graphics Press, 1997.

Localization
• [DBCS] Japanese Language DBCS (Double Byte Character Set): MS-DOS Version, Sizuoka

Information Industry, AX Conference, 1991.
• [DIS] Developing International Software For Windows 95* and Windows NT*, Nadine Kano,

Microsoft Press, 1995, ISBN: 1-55615-840-8.

Markup Languages
• [HTML] HTML: The Definitive Guide, 2nd Edition, Chuck Musciano and Bill Kennedy,

O’Reilly and Associates, Inc., 1997, ISBN: 1-56592-235-2.
• [PXML] Professional XML, Didier Martin, Mark Birbeck, et. al., Wrox Press, April, 2000,

ISBN: 1-861003-11-0.
• [XMLP] XML: A Primer, Simon St. Laurent, MIS:Press, 1998, ISBN:1-5582-8592-X.
• [JavaScript] JavaScript: The Definitive Guide, 3rd Edition, David Flanagan, O’Reilly and

Associates, Inc., 1998, ISBN: 1-56592-392-8.

Version 0.92 October 2005 13

Human Interface Infrastructure Specification

Other References
• [SVGA] Super VGA Graphics Programming Secrets, Steve Rimmer, Windcrest / McGraw-

Hill, 1993, ISBN: 0-8306-4428-8.
• The Annotated Alice: Alice’s Adventures in Wonderland and Through the Looking Glass, Lewis

Carroll, Martin Gardner, Meridian, 1960.
• [ISO 9995] ISO Standard 9995, Keyboard layouts for text and office systems,

http://www.iso.ch/iso/en/ISOOnline.frontpage*.

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
data structure.

In C structure definitions, the construct [...] indicates a variable length array, rather than a
pointer to a variable length array. The number of elements can be discerned from other elements in
the array. For example:
 UINT16 NumberOfNarrowGlyphs;
 UINT16 NumberOfWideGlyphs;
 NARROW_FONT NarrowGlyphs[...];
 WIDE_FONT WideGlyphs[...]

The number of elements in NarrowGlyphs is defined by NumberOfNarrowGlyphs.

14 October 2005 Version 0.92

 Introduction

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Version 0.92 October 2005 15

Human Interface Infrastructure Specification

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a Bold
Monospace typeface that is underlined and in blue indicate an active
hyperlink to the code definition for that function or type definition. Click
on the word to follow the hyperlink. Note that these links are not active
in the PDF of the specification. Also, these inactive links in the PDF may
instead have a Bold Monospace appearance that is underlined but in
dark red. Again, these links are not active in the PDF of the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

16 October 2005 Version 0.92

 Introduction

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

Version 0.92 October 2005 17

http://www.intel.com/technology/framework/spec.htm

Human Interface Infrastructure Specification

18 October 2005 Version 0.92

2
Design Discussion

Design Rationale

Introduction
This section explains the design decisions that are incorporated into the interfaces defined in Code
Definitions.

String Management

String Management
The standard representation for string characters in the Framework environment is Unicode 16
(UTF-16). At first glance that statement would seem to be enough discussion on string and font
representation. Unicode is a well-defined standard, so it would seem to be a simple job to display
the characters. It is not, however, for a number of reasons:
• First, if the Framework were to require that all of Unicode’s 65,535 characters (zero is used as a

terminator) to be carried, it would occupy around 2.5 MB (at 16x19 font noncompressed).
• Second, Unicode characters are usually presented in variable pitch fonts. If we simply decided

that all characters were the same width, a "1" character and a complex logographic glyph would
take the same width. This size would make it very hard to read the narrow characters and limit
the number of narrow characters (Latin characters, for example) to about half of what normally
fits on a row of text.

• Third, we need to avoid duplicating forms (internally) simply because we need to carry more
than one language. Forms can require a fair amount of storage themselves. Further, consistency
among forms for different languages should reduce errors.

Limiting Glyphs in Firmware Volumes
Strings in the Framework environment can be presented in differing environments with very
different limitations. The most constrained environment is in the DXE and BDS spaces prior to
discovery of a boot device with a system partition. The main limitation in this environment is
storage space. If unexpected strings could be displayed before a system partition was available, the
Framework would have to store glyphs for all characters in a Unicode font. Presumably, the system
partition will have all glyphs available.
The benefit that a relatively closed environment such as DXE or BDS provides is that, with some
careful user interface design, the number of unexpected characters that the system could be called
on to display can be limited to a manageable number. By knowing what strings we are going to
display, we can limit the number of glyphs we are required to carry.

Version 0.92 October 2005 19

Human Interface Infrastructure Specification

It is also clear that, with careful design, we can support a system where a limited number of strings
are displayed before a system partition is available, while still enabling the input and display of
large numbers of characters/glyphs using a full font file stored on the system partition. In such a
situation, the designer must be careful to ensure that enough information can be displayed and that
the configuration can be changed using only the information found in firmware volumes (FVs) to
obtain access to a satisfactory system partition.

Unicode
Unicode (as defined by UTF-16) has some interesting issues.
Unicode does not distinguish between characters of various widths, which is a reasonable concept if
one has enough storage space to do font scaling but is a mess for the preboot environment. The
solution here is to limit fonts to two widths and one height.
Unicode defines a private use area of 6500 characters that may be defined for local uses. Suggested
uses include Egyptian Hieroglyphics; see Developing International Software For Windows 95* and
Windows NT* for more information. Use of this area is prohibited for the Framework because a
centralized font database that is accumulated from the various drivers (a valid implementation)
would end up with collisions in the private use area and these characters generally could not be
displayed in an XML browser.
UTF-16 defines surrogate areas (see page 56 in Professional XML) that allow for expanded
character representations of the 16-bit Unicode. These character representations are very similar to
Double Byte Character Set (DBCS)—2048 Unicode values split into two groups (D000–DBFF and
DC00–DFFF). They are defined to have 16 additional bits of value to make up the character, for a
total of about one million extra characters. Surrogate characters are not legal XML and are not
supported in the Framework.
Unicode uses the concept of a nonspacing character. These glyphs are used to add accents, and so
on, to other characters by what amounts to logically OR’ing the glyph over the previous glyph.
There does not appear to be any predictable range in the Unicode encoding to determine
nonspacing characters, yet these characters appear in many languages. Further, these characters
enable spelling of several languages including many African languages and Vietnamese.

20 October 2005 Version 0.92

 Design Discussion

Localization Issues
Localization is the process by which the interface is adapted to a particular language. The table
below discusses issues with localization and provides possible solutions.

Table 2-1. Localization Issues
Issue Example Solution Comment

Directional
display

Right to left printing for Hebrew. Printing direction is a
function of the language.

The display engine may
or may not support all
display techniques. If a
language supports a
display mechanism that
the display engine does
not, the language that
uses the font must be
selected.

Punctuation Punctuation is directional. A
comma in a right-to-left
language is different from a
comma in a left-to-right
language.

Character choice is the
choice of the author or
translator.

Line breakage Rules vary from language to
language.

Little or no formatting is
performed by the
Framework preboot GUI.

The runtime display is up
to the runtime browser
and is not defined here.

Date and time Most Europeans would write
July 4, 1776, as 4/7/1776 while
the United States would write it
7/4/1776 and others would write
1776/7/4. The separator
characters between the parts of
both date and time vary as well.

Generally left to the
creator of the user
interface.

Numbers 12,345.67 in one language is
presented as 12.345,67 in
another.

Print only integers and
do not insert separator
characters.

This solution is
becoming accepted
around the world as
more people use
computers.

Version 0.92 October 2005 21

Human Interface Infrastructure Specification

User Input
To limit the number of required glyphs, we must also limit the amount and type of user input.
We can generally expect user input to come from the following two main types of devices:
• Keyboards
• Mouse-like pointing devices
Input from other devices, such as limited keys on a front panel, can be handled in two manners:
• Treat the limited keys as special-purpose devices with completely unique interfaces.
• Programmatically make the limited keys mimic a keyboard or mouse-like pointing device.
Pointing devices require no localization. They are universally understood by the subset of the world
population we are addressing. For example, if someone does not know how to use a mouse or other
pointing device, it is probably not a good idea to allow that person to change a system’s
configuration.
Keyboards, on the other hand, are localized at the keycaps but not at the electronics. In other words,
a French keyboard and a German keyboard might have very different keys but there is no way for
the software inside the keyboard, let alone the software in the system at the other end of the wire, to
know which set of keycaps are installed.
The general solution proposed here is to use the keys that are common between keyboards and to
ignore the language-specific keys. Keys that are available on USB keyboards in preboot mode
include the following:
• Function keys (F1 – F12)
• Number keys (0-9)
• "Upside down T" cursor keys (the arrows, home, end, page up, page down)
• Numeric keypad keys
• The Enter, Space, Tab, and Esc keys
• Modifier keys (shifts, alts, controls, Windows*)
• Number lock
The scan codes for these keys do not vary from language to language. These keys are the standard
keys used for browser navigation although most end-users are unaware of this fact. Help for form-
entry-specific keys must be provided to enable a useful keys-only interface. The one case where
other, language-specific keys may be used is to enter passwords. Because passwords are never
displayed, there is no requirement to translate scan code to Unicode (keyboard localization) or scan
code to font.
Additional data can be provided to enable a richer set of input characters. This input is necessary to
support features such as arbitrary text input and passwords.

22 October 2005 Version 0.92

 Design Discussion

HTML and IFR
The Framework forms, or Internal Form Representation (IFR), are data structures that are used to
describe models of menus of input. The data structures define a language that is used to describe the
allowed user input.
IFR is loosely based on HTML and its more recent equivalent, XHTML. IFR differs from HTML in
several important ways, as listed in the table below.

Table 2-2. Differences between HTML and IFR
HTML IFR

Text is interspersed with meta-commands. Supports text as a separate command. This support
makes IFR easier to localize because IFR refers to
strings by token to use the rest of the localization
support.

Meta-commands are textual (“<input type=radio…”). Commands are binary.

Supports a rich set of commands. Set of commands is mainly a subset.

For most semantic checking and visibility control,
requires the designer to resort to a scripting language
such as Java* or JavaScript*.

Uses internal commands for the specialized semantic
checking that it supports.

One of the design goals of IFR is that it be fairly easily translated into HTML.

(Note: The entire section “Results Routing” was deleted in the 0.91 version.)

Version 0.92 October 2005 23

Human Interface Infrastructure Specification

Human Interface Overview

Human Interface Introduction
The figure below depicts the model that is used inside the Framework to manage human interface
components.

Driver
1

Driver
2

Driver
3

Configurable
Drivers

Remote
driver

XML
translator Setup

Presentation
Drivers

Other
“NV”

Other
protocol

Form Callback Protocol

Form Browser ProtocolHII Protocols

NV Storage

Local Database

Results-name=value

Packa
ge List

Figure 2-1. Managing Human Interface Components

(Note: The figure above changed in the 0.91 version.)
Human interface data is divided into the following:
• Input
• Fonts
• Strings
• Forms
Each of these is represented by a variable length data structure known as a package or simply a
pack. Each package starts with a header, which is described in Package Header.
The definition of package-specific protocols is left for later in this section, after the packs that make
up a package are introduced. Each of the various packs supports the separate registration of the
pack type. The pack also has a package registration mechanism that allows for bulk registration.
See Code Definitions for the definitions of all human interface–related code that is referenced in
this chapter.

24 October 2005 Version 0.92

 Design Discussion

Package Header
The package header starts the variable-length data structure that contains each of the human
interface data components. The package header is defined in Package Header in Code Definitions.

Package Manipulation
Package lists are expected to be separate sections that are stored in the same files as driver
executables, although this implementation is not required.
Package lists are submitted to the EFI Human Interface Infrastructure (HII) Protocol to be stored in
a database. Different packages inside the list are handled differently. Font packages are integrated
into existing font data, expanding the available font characters. String and form information is
handled by assigning a handle to the "subdatabase." These handles are then used to refer to the
strings by the drivers themselves, as well as other drivers that make use of the database information.

Packages Definition
The packages that are passed to the HII database are self describing and their definition is intended
to be extensible so that future types of packages can be added seamlessly. Type
EFI_HII_PACKAGES is defined in Packages Definition in Code Definitions.

Human Interface Infrastructure (HII) Protocol
The Human Interface Infrastructure Protocol (EFI_HII_PROTOCOL) manages the structures in
the HII database. A number of functions are defined under EFI_HII_PROTOCOL to manipulate
the data in the HII database. Type EFI_HII_PROTOCOL is defined in Human Interface
Infrastructure (HII) Protocol in Code Definitions.

Version 0.92 October 2005 25

Human Interface Infrastructure Specification

Font Package

Introduction
This section describes the general format for the storage of fonts. A font package consists of a
header and two types of glyph structures—standard-width (narrow) glyphs and wide glyphs.

Glyph Sizes
There are a number of factors to consider when choosing a standard glyph size:
• The glyphs must be readable by a large percent of the population in a standard screen format.

Currently this format is expected to be 800x600 pixels.
• The glyphs should not be too squat or elongated.
• The maximum glyph width must be large enough to accommodate logographic characters. This

width is around 15 or 16 pixels in either dimension.
• The glyphs must not be so large that they use a large amount of space in the firmware device.
• It would be nice if one of the dimensions were a multiple of 8 so that the characters would fit in

the byte-wide storage of the target architecture.
Given these factors, the preferred dimensions are 8x19 for narrow glyphs and 16x19 for wide
glyphs. These dimensions yield about 31 lines of 100 narrow characters on an 800x600 screen.
The representation is designed to be extensible to other formats as needed in the future.

Glyph Representation
There are two sizes of glyphs. There is one structure (EFI_NARROW_GLYPH,
EFI_WIDE_GLYPH) for each glyph size. See Glyph Representation in Code Definitions for the
definitions of these two structures.

Strings

Introduction
A string package defines a list of strings in a particular language or related set of languages.
Numerous string packages may exist in a single package to implement support for multiple
language sets.
A string is generally a C-style Unicode string, although it may contain special EFI-specific
formatting characters as well.
A string is referred to by a STRING_TOKEN, which is a constant usually assigned during the build
process. A STRING_TOKEN is contained in a variable of type STRING_REF. The difference in
the two makes it simpler to determine if an element is referring to a string or a container for a
reference to a string, which makes implementing the build tools easier.

26 October 2005 Version 0.92

 Design Discussion

Internal String Representation
This section examines the internal storage format of strings and indicates how this format is used
for the functions that enable programs to extract strings and parts of strings once a string package
has been handed off to be managed. It uses the following text (from Alice in Wonderland) in its
examples:
Twinkle, twinkle, little bat!
How I wonder what you’re at!
Up above the world you fly,
Like a tea-tray in the sky.

Internal storage would look like:
Twinkle,<cr>twinkle,<cr>little<cr>bat!<cr><lf>How<cr>I<cr>...

where <cr> indicates carriage return and <lf> indicates line feed. English text can be broken at
any space. Text in other languages may or may not be broken at spaces. Assume that English had a
rule that spaces before words starting with w are nonbreaking. The representation would then be:
... <cr>bat!<cr>How<cr>I<sp>wonder<sp>what<cr>you’re<cr>...

The partial string interface treats nonspacing, separated words as single words.
As noted above, some languages support narrow or wide characters and have commonly used
stylistic guidelines for how narrow and wide glyphs are intermixed. In particular, most languages
have adopted the rule that characters should be the same width. For example, an 1 would typically
be a narrow character but would be printed as a wide character if the characters surrounding it were
wide. Unicode does not have the concept of narrow or wide characters, so it is generally left up to
sophisticated operating system (OS)–present drivers to determine the applicability of the width of
characters. Due to the limited size available to many of the target environments, the EFI
environment cannot rely on such a rich heuristic mechanism. Instead, it supports the use of special
<narrow> and <wide> characters (defined later in Code Definitions) that indicate the preference for
character widths. In essence they define the search pattern—if in the default <narrow> mode, the
narrow characters are searched first; if in <wide> mode, the wide characters are searched first.
Consider the case of a firmware-based, 80x25-line, character-oriented presentation driver that has
split the screen into three roughly equal columns of 26 characters each. The first column is for
prompts, the second is for the currently selected option, and the third column is for help text.
Assume the top and bottom two lines are used for other purposes. This setup means that the help
text can occupy 26x21 lines. The parameters to the extract functions would then indicate a
StartWordIndex of 0 (first word), a NumberOfLines of 21, and a LineWidth of 26. The
GetLine() function fills each line with as many space-separated, nonsplitting "words" as can be
fit on each line before moving to the next line, adding spaces between each. "Words" that cannot fit
on a line alone are split so that the line width will align most closely to the maximum line width but
not expand over.
GetString() has options to extract the raw string (as described above) or with spaces in the
normal <cr> locations and with having special overrides removed.
In the case of translating the text to HTML, it is assumed that the browser can handle its own line
breaks. In this case, the StartWordIndex would be 0, the NumberOfLines would be 0 (all
lines), and the LineWidth would be 0 (infinite), thus generating lines as long as the text allows.

Version 0.92 October 2005 27

Human Interface Infrastructure Specification

Form Packages

Goals
During the boot of a Framework-based system, the following types of data might be displayed and,
hence, must be supported by the user interface:
• Graphical displays—in particular, logos that are displayed during boot to provide a pleasant

end-user experience and advertising.
• Text, such as a copyright, on a power-on screen.
• A query and response dialog during boot. These queries usually take the form, "This error was

found. Press a key to continue." It is typical to switch to a text screen from the logo screen to
display such information.

• Setup, which provides several interface types itself:
⎯ Columnar data, such as

 "Processor Speed 2.4 GHz"
and
 "Memory Size 512 MB"

⎯ Subtitles, such as "Ports," "Power Management," and so on
⎯ Questions, including the following:

• A prompt, such as "Parallel port address"
• Question-specific help text
• Some mechanism for actual input, including the following:

– "One-of" selection (like a radio button): The most common input mechanism,
where the user must select one item from a menu of options.

– Check box: The user can select or clear an option individually. It is commonly
used to enable or disable a mode. When grouped, check boxes support multiple
option sets where more than one option can be selected simultaneously.

– Decimal number within a range.
– Password.
– Generalized character strings ("text boxes"). Passwords are, in fact, generally

treated as a subset of strings in HTML.
This list does not actually define user-interface issues. For example, help text is generally necessary
whether it is displayed along with the question or only in response to a keystroke. Keys help (the
functions associated with individual keys) are not defined because they are user-interface specific.
It is important to define the boundary between what is provided internally and what is a part of a
user interface. For example, are radio buttons required with "one-of" choices, or are drop-down
combo boxes also legal? Are the number of choices limited for a "one-of" question? A developer
might want a "one-of" button to input the day of the month. Thirty-one radio buttons is excessive
but a drop-down combo box with a slider (as used in Font Selection in Microsoft Word*) is not.
The effort becomes more complex if one attempts to handle interrelated questions. It is common for
one question to be meaningful only if a particular option is selected on a different question. Forms
languages such as HTML are not rich enough to express this relation and, as such, do not provide
sufficient hints for the browser to "gray-out" the secondary question if a different option is chosen

28 October 2005 Version 0.92

 Design Discussion

in the primary question. Typical HTML Web forms are primitive enough that this issue rarely
arises. Unfortunately, the questions in Setup tend to reflect the underlying interrelationship of the
hardware and, as such, tend to create interrelated questions.
IFR supports mechanisms to describe the default values for questions. As in HTML, it is up to the
presentation engine ("browser") to provide an interface to allow these values to be set.
Different browser environments have different facilities and mechanisms for causing the form to be
submitted. A mechanism to perform this task is required by each IFR browser but left up to the
browser for implementation.
The syntax of the output in XHTML is a sequence of UNICODE name=value pairs separated by
the "&" character. IFR supports a subset of this easily parsed standard mechanism to encode its
results as well. The mechanism encodes identifier, offset, and width information in the name part.
The value part is typically decimal integers, except for fonts and strings.

Forms and Form Sets
An IFR is used to represent forms in the Framework. This representation is designed so that it can
be interpreted as is or expanded easily into XHTML.
In most markup languages, a form is submitted to a server for processing when the user completes
it. In many of the "use" cases that IFR targets, the equivalent of the server is not available. For this
reason, the forms package can contain one or more forms.

Semantics and Tag Structures

Form Packages and Scoping
The form is the basic encapsulation of configuration data. A form package consists of one or more
forms. The form package provides scoping for identifiers in the forms, including <name-id> and
string tokens in particular. The intent is for the driver or drivers creating a form set to be
cooperative and to avoid the definition of these identifiers from being duplicated unexpectedly.
Different form packages are in essence invisible to each other. For example, one form set cannot go
to another form set.
The first form in the form set is known as the parent form. All other forms are child forms. When
interpreting forms, it is up to the interpreter to create a "main page" through which all parent forms
from all form sets are accessible. Child forms are accessed using hypertext references (using the
"go-to" operation defined in Code Definitions) from the parent page or other child pages. The
interpreter is responsible for creating references from the parent page back to the main page and for
retaining a "back" list of previously visited pages. Other exits from child pages must be through
explicit IFR hypertext references.
Note that it is legal for a form package to contain forms that cannot be reached from the parent
form. These forms may be used in more dynamic cases by drivers to take advantage of the user
interface capabilities that are already useful for configuration in the system.

Version 0.92 October 2005 29

Human Interface Infrastructure Specification

Forms
Forms must be position independent because they can be copied from place to place. Further,
position independence of the parts of the forms (operations) enables insertion of new data between
precompiled form text.

Device Descriptions
A device description operation allows a form or forms to be associated with its corresponding
firmware. The format of the contents of <dev-desc-data> are defined in the Intel® Platform
Innovation Framework for EFI Device Description Specification.

Titles, Subtitles, and Text: <subtitle>, <text>
Each form must have a title. Subtitles can be placed throughout the forms to provide visual
separation of the elements. Text may be inserted as well.
The exact use of the title, subtitle, and text elements is defined by individual presentation drivers
(the "browsers" for the language) as is the presentation to the user. It is suggested that subtitle be
translated into HTML <h3>.

 NOTE
Unlike HTML, text has its own opcode (tag). The Text Tag exists in IFR (but not in HTML) to
facilitate localization of text for different languages.

Questions

Questions
The intent of a question, from a driver’s perspective, is to associate an ID with a value.
Experience has shown that very few types of questions are required to obtain the information that is
necessary to configure a system. The parameters for question operations follow a standard form.
The first byte is the opcode. This byte is followed by an ID that serves as an internal mechanism to
refer to the question and as a part of the results generation. String tokens to provide a prompt (a
short description of the question) and context-sensitive help text are then provided. Note that there
is no way to provide "keys" help as that is the responsibility of the presentation driver.

30 October 2005 Version 0.92

 Design Discussion

The following subsections describe the different types of question tags. The different types of
question tags are as follows:
• One-of
• Checkbox: <checkbox>
• Numeric: <numeric>
• Password: <password>
• Hidden: <hidden>
• Ordering: <list>
• Hypertext: <goto>
See Internal Form Representation (IFR) Language Syntax Definition in Code Definitions for
definitions if these tags.

One-Of
HTML has several one-of types of tags, including <input type=radio...> and <select...>.
The most commonly used type is equivalent to an HTML radio button where the user is asked to
pick one item from a series of items. In IFR, this model is known as a one-of selection. Flags that
are associated with each option are split between standard definitions and user definitions. The two
standard definitions are "default" and "current selection."

Checkbox: <checkbox>
The HTML tag for the checkbox type is <input type=checkbox...>.
The checkbox type is used in two ways. The first is as an equivalent to an "on/off" radio button.
The second is as a series of checkboxes to present the equivalent of a radio button except that more
than one item may be checked at a time.

Numeric: <numeric>
The numeric type has no exact analogy in HTML. The closest type is <input type=text...>.
Numeric questions allow for the input of bounded positive (or 0) decimal numbers. The minimum
and maximum values are specified, as well as a step value. The step value is used to allow the
browser to do more complete validation in cases where legal input values are not monotonically
increasing. For example, consider a case where only odd values were required (between 1 and 15,
for example). The minimum value would be 1, maximum of 15, and the step would be 2. A number
n is valid if:
 (minimum <= n && n<= maximum)

Version 0.92 October 2005 31

Human Interface Infrastructure Specification

Password: <password>
Password questions allow for the input of passwords. Many browsers (mainly remote and OS-
present) will not be secure enough for passwords. It is up to the presentation driver to edit out
password operations in these cases. The encoding mechanisms are TBD.

Hidden: <hidden>
Hidden questions are questions that have no options and are the equivalent of constants. The
browser must hand the ID and value back as with a normal question. The hidden construct is from
HTML and allows the generating driver to send a message to the driver responsible for processing
the output of the browser.

Ordering: <list>
HTML has no analogous <list> tag.
This input type enables ordered input from a list of choices. The construct is intended to support
unique lists where a choice may appear in the list only once (e.g. a list of boot devices), or lists
where a choice may appear several times. The syntax is designed to enable a number of different
visual representations.
The question format consists of the following:
• A header
• A list of choices
• A list of containers
Each container has a reference to a choice.

Header
The header contains the usual header information—ID, prompt, and help text. The ID does not end
up being output. The flags that are defined include the following:
• Unique: Each choice may be used at most once.
• NoNull: All containers must be filled with a selection.
• A "null choice" value rounds out the header. This value is legal input for a container if the

NoNull flag is off.

List of Choices
Each choice consists of a string reference and a value. The string reference is used to describe the
choice and the value is the value to put in the container if the choice is selected. A null string ends
the choice list.

32 October 2005 Version 0.92

 Design Discussion

List of Containers
Each container consists of the following:
• String reference: Describes the container (usually like "third boot option")
• Id-offset-width: Defines a resulting name that corresponds to the order
• Default value: The initial value for the choice
The presentation driver should not evaluate uniqueness while the user is still changing the
configuration of a particular question.

Examples
Following is an example of a text display (character oriented):
Names for Kings (0 = None)
1. Harold
2. Andrew
3. Mark
4. Alfred
5. George
6. Ethelred
7. Wilhelm

First Name: [6]
Second Name: [2]
Third Name: [3]
Fourth Name: []

This text display might be represented with the following syntax (with syntactic sugar and with
actual strings substituted for string references to improve readability):

Version 0.92 October 2005 33

Human Interface Infrastructure Specification

List id, "Names for Kings", "Help", 0, Unique
choices
 “Harold”, 1
 “Andrew”, 2
 “Mark”, 3
 “Alfred”, 4
 “George”, 5
 “Ethelred”, 6
 “Wilhelm”, 7
containers
 id1, “First Name:”, 1
 id2, “Second Name:”, 0
 id3, “Third Name:”, 0
 id4, “Fourth Name:”, 0
EndList

Given the above example, the results would be ...&id1=6&id2=2&id3=3&id4=0&...

Hypertext: <goto>
The HTML tag for the go-to type is <a href...>.
The go-to command implements the ability to refer to a form from another form. The parameter is a
form identifier, meaning that the go-to may only reference another form and not a place inside the
form. In particular, the go-to reference may not be a label. If nothing else, this design eliminates
confusion with jumping into the middle of nesting constructs inside IFR forms.

Image
The HTML tag for the image type is <image align=left src=...>.
This type inserts an image into the form. If the form cannot display graphics, it may substitute the
<text-only-string-ref> tag instead. Text is not wrapped around the image.

Background
The HTML tag for the image type is : <body background=...>.
As in HTML, the background is tiled across the full screen. Text scrolls over the background.

34 October 2005 Version 0.92

 Design Discussion

Visibility Control: <grayout>, <suppress>
There is no HTML analogy for visibility control.
HTML does not support the ability to control whether a particular part of a form should be made
visible to the user or "grayed out" (printed in a muted tone or made invisible).
Visibility control is implemented via the grayout construct. This construct is block structured and
analogous to an "if" statement in C. The hide construct has an opcode and a Boolean expression.
These are followed by a series of other operators and finally a termination opcode. If the Boolean
expression is true, the encompassed operations should be grayed out. If it is false, they should be
made visible.
grayoutif serport == 0
 oneof id=serport2 prompt=sp2str help=sp2helpstr
 ...

The suppress operation is similar to the hide construct except that the enclosed items must not be
displayed.
Neither suppress nor grayout affect the output of the results.

Boolean Expressions
The Boolean expressions (involving only true and false) are presented internally in Reverse Polish
Notation (RPN [postfix]) form. The Boolean operators are limited to "and," "or," and "not." The
following three primitives are used to query the current state of the configuration:
• ID/Value compare: The current configuration ("value" in HTML) of the question

corresponding to the ID is compared to the value operand. The primitive results in TRUE if they
are the same and FALSE otherwise. In the case of a "many-of" instance, if the value is selected
(even if other values are also selected), the primitive returns TRUE. (By "returns," we mean
"evaluates to" or, from the common implementation method, "pushes on the stack.")

• ID/List compare: The current value of the question corresponding to the ID is compared to a
list of values. If the value is in the list, TRUE is returned. If not, FALSE is returned. This
operation is valid only on "one-of" and numeric questions. The list itself consists of a UINT16
count followed by that many UINT16 values.

• ID/ID compare: The current values of the questions corresponding to the two IDs are
compared. If the questions are of different type, FALSE is returned. This value actually is not
really valid, but it is a clean way to recover. If the values are identical, TRUE is returned.
Otherwise FALSE is returned. In the case of a "many-of" instance, all values must correspond.
Those values selected in one must be selected in the other and those not selected in one must
also be not selected in the other.

Version 0.92 October 2005 35

Human Interface Infrastructure Specification

Using Grayed-Out Parts of a Form
There are two main reasons that an area might be grayed out:
• The driver might support a subset of the options available on a particular system.
• The value of one question has a role in determining if another question should be grayed out.
In the first reason, the driver might sense which subset a particular system has and need to display
only those options. This action can be accomplished by editing the form dynamically or by simply
modifying a hidden question value and using a hide operation to do an ID/value comparison on the
hidden question.
The second reason, when the value of one question has a role in determining if another question
should be grayed out, is more familiar to the user. This issues is common in OS-present
applications as well. Unfortunately, HTML punts on grayed-out control, relying on JavaScript* or a
similar tool for assistance. Consider two "one-of" questions. The first asks if the onboard USB
should be enabled or disabled. The second asks if the onboard USB should be searched for boot
devices at power up. If the onboard USB is disabled, the second question does not make sense. This
case could be resolved using the provided primitives (assuming some syntactic sugar), as shown in
the following example:
 OneOf USB_EN_DIS EnDisString, EnDisHelpString
 EnabledString, 1, Default+Selected
 DisabledString, 0, 0
 EndOneOf
 GrayOutIf USB_EN_DIS == 1
 OneOf id=USB_FIND_BOOT prompt=
 FindBootString help=FindBootHelpString
 EnabledString, 1, Default+Selected
 DisabledString, 0, 0
 EndOneOf
 EndGrayout

Consistency Checking
As well as controlling visibility, questions have other effects on each other. Consider three numeric
questions: year, month, day. The range for month is 1 to 12 and the range for day is 1 to 31. The
problem is that June 31 is not valid, nor is February 29, 2003, although February 29, 2004, is
acceptable.
IFR addresses such issues with consistency expressions. Consistency expressions are Boolean
expressions with associated strings. If the expression becomes TRUE, it indicates that an
inconsistency has occurred. The associated string is a useful example of a pop-up indicating the
issue.
Using the date as an example (and again with syntactic sugar):
Numeric id=YEAR prompt=YearString help=YearHelpString start=2000
\
 end=2039 step=1 default=2001
Numeric id=MONTH prompt=MonthString help=MonthHelpString start=1
end=12 \

36 October 2005 Version 0.92

 Design Discussion

 Step=1 default=1
Numeric id=DAY prompt=DayString help=DayHelpString start=1 end=31
\
 Step=1 default=1
Inconsistent If=(DAY == 31 && MONTH == [2, 4, 6, 9, 11])
text=BadDayString
Inconsistent If=(DAY == 30 && MONTH == 2) text=Feb30String
Inconsistent If=(DAY == 29 && MONTH == 2 && \
 !YEAR == [2004, 2008, 2012, 2016, 2020, 2024, 2028,
2032, 2036]),
 text=LeapYearString

The year ranges from 2000 to 2039, the month from 1 to 12, and the day from 1 to 31. Some
months have only 30 days and February (MONTH == 2) has only 28 or 29. The Var/List operation
(syntactically cleansed here using the example "MONTH == [2, 4,...") is particularly useful
here.

Dynamic Data

Labels
Most of the contents of forms can be created at build time. Some, however, cannot be defined
statically. For example, the list of boot devices cannot be known ahead of time.
The mechanism that is defined for inserting new form operations into an existing form is to use the
label operation. The driver must create IFR operations on the fly. A function allows this dynamic
data to be inserted into the driver’s IFR before a given label.

Advanced Operations (Optional)

Advanced Operations (Optional)
The operations described thus far define the minimum level of IFR to be supported on all compliant
systems. The following operations are optional. Implementations of IFR browsers that do not
support these operations should ignore them (skip over them using the length field).

String Input
<string-input> ::= <string-op> <question-header> <min-length> <max-length>

String input is optional as it is difficult to support localized general-purpose keyboard input. Strings
up to <byte-width> (255 characters) are supported so <min-length> and <max-length>
are bytes.
No inconsistency checking operations are supported on strings.

Version 0.92 October 2005 37

Human Interface Infrastructure Specification

Keyboard Layout

Keyboard Mapping
The keyboard mapping that is defined in EFI is loosely based on ISO 9995. The naming mechanism
is based on the figure below. The keys that are highlighted in brown are the keys that almost all
keyboard layouts use for customizations. However, customization does not necessarily mean that
all the keys are different. In fact, most of the keys are likely to be the same. When modifying the
mapping, one can normally reference the keys in brown as the likely candidates for which to create
modifications.

Figure 2-2. Keyboard Layout

Instead of referencing keys in hardware-specific ways such as scan codes, the Framework defines
an EFI_KEY enumeration that allows for a simple way to reference this hardware abstraction. Type
EFI_KEY is defined in Code Definitions in EFI_HII_PROTOCOL.GetKeyboardLayout().
It also provides a way to update the keyboard layout with a great deal of flexibility. Any of the keys
can be mapped to any Unicode value or control code value.
When defining the values for a particular key, there are six elements that are pertinent to the key:
• Key name: The EFI_KEY enumeration defines the names of the above keys.
• Unicode value: Defines the Unicode value (if any) of the named key.
• Shifted Unicode value: Defines the Unicode value (if any) of the named key while the shift

modifier key is being pressed
• Alt-GR Unicode value: Defines the Unicode value (if any) of the named key while the Alt-GR

modifier key (if any) is being pressed.
• Shifted Alt-GR Unicode value: Defines the Unicode value (if any) of the named key while the

Shift and Alt-GR modifier key (if any) is being pressed.
• Modifier key value: Defines the nonprintable special function that this key has assigned to it.
Under normal circumstances, a key that has any Unicode definitions generally has a modifier key
value of EFI_NULL_MODIFIER. This value means the key has no special function other than the
printing of a character. An exception to the rule is if any of the Unicode values have a value of
0xFFFF. Although rarely used, this value is the one case in which a key might have both a printable
character and an active control key value.

38 October 2005 Version 0.92

 Design Discussion

An example of this exception would be the numeric keypad’s insert key. The definition for this key
on a standard US keyboard is as follows:
Key = EfiKeyZero
Unicode = 0x0030 (basically a ‘0’)
ShiftedUnicode = 0xFFFF (the exception to the rule)
AltGrUnicode = 0x0000
ShiftedAltGrUnicode = 0x0000
Modifier = EFI_INSERT_MODIFIER

This key is one of the few keys that, under normal circumstances, prints something out but also has
a special function. These special functions are generally limited to the numeric keypad; however,
this general limitation does not prevent someone from having the flexibility of defining these types
of variations.

Modifier Keys
Modifier keys are defined to allow for special functionality that is not necessarily accomplished by
a printable character. Many of these modifier keys are flags to toggle certain state bits on and off
inside of a keyboard driver. An example is EFI_CAPS_LOCK_MODIFIER. This state being active
could alter what the typing of a particular key produces. Other control keys, such as
EFI_LEFT_ARROW_MODIFIER and EFI_END_MODIFIER, affect the position of the cursor.
One modifier key is likely unfamiliar to most people who exclusively use US keyboards, and that
key is the EFI_ALT_GR_MODIFIER key. This key’s primary purpose is to activate a secondary
type of shift modifier that exposes additional printable characters on certain keys. In some keyboard
layouts, this key does not exist and is normally the EFI_RIGHT_ALT_MODIFIER key. None of
the other modifier key functions should be a mystery to someone familiar with the usage of a
standard computer keyboard.
An example of a few descriptor entries would be as follows:
Layout = {
 EfiKeyLCtrl,0,0,0,0,EFI_LEFT_CONTROL_MODIFIER, //(Left control key)
 EfiKeyA0,0,0,0,0,EFI_NULL_MODIFIER, //(Not defined
 // windows key)
 EfiKeySpaceBar,0x0020,0x0020,0x0020,0x0020,EFI_NULL_MODIFIER
 //(Space Bar)
}

See "Related Definitions" in EFI_HII_PROTOCOL.GetKeyboardLayout() in Code
Definitions for the defined modifier values.

Version 0.92 October 2005 39

Human Interface Infrastructure Specification

Dead Keys
Dead keys are a concept that provides the ability to OR together an accent key and another printable
character. Dead keys would be defined as a special type of modifier character. They are typically
accent keys that do not advance the cursor and in essence are a type of modifier key in that they
maintain some level of state.
The way a person uses a dead key is that the dead key that maybe has the function of overlaying an
umlaut (two dots) onto whatever the next character might be. The user presses the umlaut dead key
and follows it with a capital A, which yields an "Ä."
An example of a few descriptor entries would be as follows:
//
// If it’s a dead key, we need to pass a list of physical key
// names, each with a unicode, shifted, altgr, shiftedaltgr
// value. Each key name will have a Modifier value of
// EFI_DEAD_KEY_MODIFIER for the first entry, and then the list of
// EFI_DEAD_KEY_DEPENDENCY_MODIFIER physical key descriptions.
// This eventually will lead to the next normal non-dead-key
// definition.
//
// This requires defining an additional Modifier value of
// EFI_DEAD_KEY_DEPENDENCY_MODIFIER to signify EFI_DEAD_KEY_MODIFIER
// children definitions.
//
// The keyboard driver (consumer of the layouts) will know that
// any key definitions with the EFI_DEAD_KEY_DEPENDENCY_MODIFIER
// modifier do not redefine the value of the specified EFI_KEY.
// They are simply used as a special case augmentation to the
// original EFI_DEAD_KEY_MODIFIER.
//
// It is an error condition to define a EFI_DEAD_KEY_MODIFIER
// without having all the EFI_DEAD_KEY_DEPENDENCY_MODIFIER
// keys defined serially.
//
Layout = {
EfiKeyE0, 0, 0, 0, 0, EFI_DEAD_KEY_MODIFIER,
EfiKeyC1, 0x00E2, 0x00C2, 0, 0, EFI_DEAD_KEY_DEPENDENCY_MODIFIER,
EfiKeyD3, 0x00EA, 0x00CA, 0, 0, EFI_DEAD_KEY_DEPENDENCY_MODIFIER,
EfiKeyD8, 0x00EC, 0x00CC, 0, 0, EFI_DEAD_KEY_DEPENDENCY_MODIFIER,
EfiKeyD9, 0x00F4, 0x00D4, 0, 0, EFI_DEAD_KEY_DEPENDENCY_MODIFIER,
EfiKeyD7, 0x00FB, 0x00CB, 0, 0, EFI_DEAD_KEY_DEPENDENCY_MODIFIER,
}

In the above example, a key located at E0 is designated as a dead key. Using a common German
keyboard layout as the example, a circumflex accent "^" is defined as a dead key at the E0 location.
The valid keys that can be pressed after the dead key and that will produce valid printable
characters are the A, E, I, O, and U characters. These characters are located at C1, D3, D8, D9, and
D,7 respectively.

40 October 2005 Version 0.92

 Design Discussion

The results of the Layout definition provided above would allow for the production of the
following characters: âÂêÊîÎôÔûÛ.

Keyboard Layout Switching
The need for switching from one keyboard layout to another is a very common implementation. A
typical example would be for a user who needed to type in a language that did not have certain keys
exposed (for example, the typical Hebrew layout has no Latin characters). For these types of
configurations, it would be common for the system to be aware of two completely different
keyboard layouts and allow a hot key to switch between the default and the alternate layout.
The way this configuration would work in our given implementation would be that the firmware
has some built-in keyboard layout. A driver installs the Hebrew layout. The user needs to switch
modes and hits a hot key that forces the keyboard driver to switch from the Hebrew layout to the
firmware’s default layout. If the user hits the hot key again, the user mode switches again and the
keyboard driver is now pointing to the Hebrew layout.
An example of a few descriptor entries would be as follows:
Layout = {
EfiKeyLCtrl, 0, 0, 0, 0, EFI_LAYOUT_SWITCH_MODIFIER,
EfiKeyLShift, 0, 0, 0, 0, EFI_LAYOUT_SWITCH_DEPENDENCY_MODIFIER
}

See "Related Definitions" in EFI_HII_PROTOCOL.GetKeyboardLayout() in Code
Definitions for definitions of these values.

Dynamic Processing of NV/IFR Data

Form Callback Protocol
The Form Callback Protocol provides an interface to hardware-specific drivers that control access
to nonsystem nonvolatile storage (NVS) and support callbacks from the browser or Human
Interface Infrastructure (HII). Type EFI_FORM_CALLBACK_PROTOCOL is defined in Dynamic
Processing of NV/IFR Data in Code Definitions.

Browser Interface

Form Browser Protocol
The Form Browser Protocol is the interface to call for drivers to leverage the EFI configuration
driver interface. Type EFI_FORM_BROWSER_PROTOCOL is defined in Browser Interface in Code
Definitions.

Version 0.92 October 2005 41

Human Interface Infrastructure Specification

Runtime Representations

Using IFR at Runtime
How should a presentation driver use the semantics provided by the IFR and its subordinates? The
only real answer is, "as well as it can." The intent of the design of IFR in particular was to provide a
rich enough language to address the requirements of the pre-OS space while enabling a large
number of types of presentation drivers to address different configuration mechanisms.
The following are examples of configuration mechanisms:
• Standard system setup
• Remote setup over a serial connection to e.g. VT-100 terminal emulation
• Remote configuration over a modem to a technical support center (via shared voice data)
• Remote setup over a network card
• OS-present setup
• Automatic system configuration during board-level manufacturing
• Automatic system configuration during system integration

These alternative mechanisms vary widely in such areas as the following:
• The bandwidth of the communication media between the user and the system. A remote system

cannot necessarily handle the bandwidth of data that a game machine with a graphics
accelerator can.

• The time delay between when the IFR was created and when the user sees it. If the IFR is
turned into HTML, it may be hours or days between the time the forms package was created
and the time it is used.

• The capabilities for display and input of the communication media (VT-100 has limited
graphics capabilities).

• The limited semantics of the representation into which IFR is translated. IFR was designed to
be easily translated into (X)HTML but, as noted above, a simple translation (one that does not
include JavaScript* generation, for example) would not be able to perform consistency checks
and gray-out options.

Limitations of Presentation Mechanisms
Both developers of forms and developers of presentation drivers must understand the limitations
that the existing presentation mechanisms impose in order to create forms that are useful in a wide
variety of settings.
The driver writer, for example, can use help text to insulate the customer against confusion when
inconsistency checking is dropped by an HTML presentation driver.

42 October 2005 Version 0.92

3
Code Definitions

Introduction
This section contains the basic definitions of the HII-related components described in Design
Discussion. The following protocols, functions, and/or data types are defined in this section.

Packages: • EFI_HII_PACK_HEADER
• EFI_HII_PACKAGES
• EFI_HII_PROTOCOL and its associated package-related

functions

Font package: • EFI_NARROW_GLYPH
• EFI_WIDE_GLYPH
• EFI_HII_FONT_PACK
• EFI_HII_PROTOCOL and its associated font-related functions

Strings: • EFI_STRING
• EFI_HII_STRING_PACK
• EFI_HII_PROTOCOL and its associated string-related functions

Form packages: • EFI_IFR_OP_HEADER and the IFR opcode tags
• EFI_HII_PROTOCOL and its associated forms-related functions

Dynamic
processing of
NV/IFR data:

• EFI_FORM_CALLBACK_PROTOCOL

Browser
interface:

• EFI_FORM_BROWSER_PROTOCOL

Version 0.92 October 2005 43

Human Interface Infrastructure Specification

Packages

Package Header

EFI_HII_PACK_HEADER

Summary
The header found at the start of each package.

Prototype
typedef struct {
 UINT32 Length;
 UINT16 Type;
} EFI_HII_PACK_HEADER;

Parameters
Length

The size of the package in bytes.
Type

See Related Definitions below.

Description
Each package starts with a header, as defined above, that indicates the size and type of the package.
When added to a pointer pointing to the start of the header, Length points at the next package.
When concatenated together and terminated with an EFI_HII_PACK_HEADER with a Length
of zero, the package lists form a localization package list.

Related Definitions
//**
// Defined Type values
//**
#define EFI_HII_FONT 1
#define EFI_HII_STRING 2
#define EFI_HII_IFR 3
#define EFI_HII_KEYBOARD 4
#define EFI_HII_HANDLE_PACK 5
#define EFI_HII_VARIABLE 6
#define EFI_HII_DEVICE_PATH 7

44 October 2005 Version 0.92

 Code Definitions

Packages Definition

EFI_HII_PACKAGES

Summary
Definition of the packages structure that will be used to pass contents into the HII database. There
are a variable number of packages that can be defined in the EFI_HII_PACKAGES structure.
Each package will have a header that will identify the type of package that is being sent to the
database.

Prototype
typedef struct {
 UINT32 NumberOfPackages;
 EFI_GUID *GuidId;
 EFI_HII_HANDLE_PACK *HandlePack;
} EFI_HII_PACKAGES;

Parameters
NumberOfPackages

The number of packages being defined in EFI_HII_PACKAGES.
GuidId

The GUID to be used to identify this set of packages that are being exported to the
HII database. Type EFI_GUID is defined in InstallProtocolInterface()
in the EFI 1.10 Specification.

HandlePack

The package that is intended to enable the passing in of pertinent driver model data
so that the package contents can be associated with other system data and also
provides a simple means by which a callback handle can be passed into the database.
Type EFI_HII_HANDLE_PACK is defined in "Related Definitions" below.

Description
Because the packages that are defined in the above definition are the only required definitions, each
optional entry is defined in its own section. See Related Definitions below.

Version 0.92 October 2005 45

Human Interface Infrastructure Specification

Related Definitions
//**
// EFI_HII_HANDLE_PACK
//**
typedef struct {
 EFI_HII_PACK_HEADER Header; // Must be filled in
 EFI_HANDLE ImageHandle; // Must be filled in
 EFI_HANDLE DeviceHandle; // Optional
 EFI_HANDLE ControllerHandle; // Optional
 EFI_HANDLE CallbackHandle; // Optional
} EFI_HII_HANDLE_PACK;

Header

The structure that defines the type of package being described, as well as the length
of the overall package. Type EFI_HII_PACK_HEADER is defined in Package
Header.

ImageHandle

The image handle of the driver to which the package is referring. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

DeviceHandle

The handle of the device that is being described by this package.
ControllerHandle

The handle of the parent of the device that is being described by this package.
CallbackHandle

The handle that was registered to receive EFI_FORM_CALLBACK_PROTOCOL calls
from other drivers. A callback would commonly occur from a browser to provide
user-input data back to the driver that registered the callback handle.

46 October 2005 Version 0.92

 Code Definitions

Human Interface Infrastructure (HII) Protocol

EFI_HII_PROTOCOL

Summary
The HII Protocol manages the HII database, which is a repository for data having to do with fonts,
strings, forms, keyboards, and other future human interface items.

GUID
// {CD361957-AFBE-425E-A358-5F5889CFFE7B}
#define EFI_HII_PROTOCOL_GUID \
 { 0xcd361957, 0xafbe, 0x425e, 0xa3, 0x58, 0x5f, 0x58, 0x89,

0xcf, 0xfe, 0x7b }

Protocol Interface Structure
typedef struct _EFI_HII_PROTOCOL {
 EFI_HII_NEW_PACK NewPack;
 EFI_HII_REMOVE_PACK RemovePack;
 EFI_HII_FIND_HANDLES FindHandles;
 EFI_HII_EXPORT ExportDatabase;

 EFI_HII_TEST_STRING TestString;
 EFI_HII_GET_GLYPH GetGlyph;
 EFI_HII_GLYPH_TO_BLT GlyphToBlt;

 EFI_HII_NEW_STRING NewString;
 EFI_HII_GET_PRI_LANGUAGES GetPrimaryLanguages;
 EFI_HII_GET_SEC_LANGUAGES GetSecondaryLanguages;
 EFI_HII_GET_STRING GetString;
 EFI_HII_GET_LINE GetLine;
 EFI_HII_GET_FORMS GetForms;
 EFI_HII_GET_DEFAULT_IMAGE GetDefaultImage;
 EFI_HII_UPDATE_FORM UpdateForm;

 EFI_HII_GET_KEYBOARD_LAYOUT GetKeyboardLayout;
} EFI_HII_PROTOCOL;

Parameters
NewPack

Extracts the various packs from a package list. See the NewPack() function
description.

RemovePack

Removes a package from the HII database. See the RemovePack() function
description.

Version 0.92 October 2005 47

Human Interface Infrastructure Specification

FindHandles

Determines the handles that are currently active in the database. See the
FindHandles() function description.

ExportDatabase

Export the entire contents of the database to a buffer. See the ExportDatabase()
function description.

TestString

Tests if all of the characters in a string have corresponding font characters. See the
TestString() function description.

GetGlyph

Translates a Unicode character into the corresponding font glyph. See the
GetGlyph() function description.

GlyphToBlt

Converts a glyph value into a format that is ready for a UGA BLT command. See the
GlyphToBlt() function description.

NewString

Allows a new string to be added to an already existing string package. See the
NewString() function description.

GetPrimaryLanguages

Allows a program to determine the primary languages that are supported on a given
handle. See the GetPrimaryLanguages() function description.

GetSecondaryLanguages

Allows a program to determine which secondary languages are supported on a given
handle for a given primary language. See the GetSecondaryLanguages()
function description.

GetString

Extracts a string from a package that is already registered with the EFI HII database.
See the GetString() function description.

GetLine

Allows a program to extract a part of a string of not more than a given width. See the
GetLine() function description.

GetForms

Allows a program to extract a form or form package that has been previously
registered. See the GetForms() function description.

GetDefaultImage

Allows a program to extract the nonvolatile image that represents the default storage
image. See the GetDefaultImage() function description.

48 October 2005 Version 0.92

 Code Definitions

UpdateForm

Allows a program to update a previously registered form. See the UpdateForm()
function description.

GetKeyboardLayout

Allows a program to extract the current keyboard layout. See the
GetKeyboardLayout() function description.

Description
The HII Protocol is used as a repository of content that is both provided by built-in firmware
content as well as option ROMs.

(Note: The “Related Definitions” subsection was deleted for the 0.91 version. The definitions from
this section were moved to other API definitions.)

Version 0.92 October 2005 49

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.NewPack()

Summary
Registers the various packs that are passed in via the Packages parameter.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_NEW_PACK) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_PACKAGES *Packages,
 OUT EFI_HII_HANDLE *Handle
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Packages

A pointer to an EFI_HII_PACKAGES package instance. Type
EFI_HII_PACKAGES is defined in Packages Definition.

Handle

A pointer to the EFI_HII_HANDLE instance. Type EFI_HII_HANDLE is defined
in "Related Definitions" below.

Description
With the exception of font and keyboard data, this function adds the contents of the package list to
the database and returns a handle back to the data. Font and keyboard data is kept in a common
pool and will have a NULL handle associated with them. In the case where Packages contains
both pooled data and database data, a valid handle will be returned upon the addition of the
appropriate data into the database.

Related Definitions
//**
// EFI_HII_HANDLE
//**
typedef UINT16 EFI_HII_HANDLE;

50 October 2005 Version 0.92

 Code Definitions

//**
// EFI_HII_KEYBOARD_PACK
//**
typedef struct {
 EFI_HII_PACK_HEADER Header;
 EFI_KEY_DESCRIPTOR *Descriptor;
 UINT8 DescriptorCount;
} EFI_HII_KEYBOARD_PACK;

Header

The header contains a Length and Type field. In the case of a keyboard package,
the type will be EFI_HII_KEYBOARD and the length will be the total size of the
keyboard package. Type EFI_HII_KEYBOARD is defined in
EFI_HII_PACK_HEADER, which is defined in Package Header.

Descriptor

A pointer to a buffer containing an array of EFI_KEY_DESCRIPTOR entries. Each
entry will reflect the definition of a specific physical key. Type
EFI_KEY_DESCRIPTOR is defined in
EFI_HII_PROTOCOL.GetKeyboardLayout().

DescriptorCount

The number of Descriptor entries being described.

Status Codes Returned
EFI_SUCCESS Data was extracted from Packages, the database was updated

with the data, and Handle returned successfully.

EFI_INVALID_PARAMETER The content of Packages was invalid.

Version 0.92 October 2005 51

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.RemovePack()

Summary
Removes a package from the HII database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_REMOVE_PACK) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

The handle that was registered to the data that is requested for removal. Type
EFI_HII_HANDLE is defined in EFI_HII_PROTOCOL.NewPack() in the
Packages section.

Description
This function removes the string and/or form data that is associated with a handle from the HII
database. This function has no effect on keyboard or font data that may have been registered with
the NewPack() function.

Status Codes Returned
EFI_SUCCESS The data associated with the Handle was removed from the HII

database.

EFI_INVALID_PARAMETER The Handle was not valid.

52 October 2005 Version 0.92

 Code Definitions

EFI_HII_PROTOCOL.FindHandles()

Summary
Determines the handles that are currently active in the database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_FIND_HANDLES) (
 IN EFI_HII_PROTOCOL *This,
 IN OUT UINT16 *HandleBufferLength,
 OUT EFI_HII_HANDLE *Handle
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
HandleBufferLength

On input, a pointer to the length of the handle buffer. On output, the length of the
handle buffer that is required for the handles found.

Handle

An array of EFI_HII_HANDLE instances returned. Type EFI_HII_HANDLE is
defined in EFI_HII_PROTOCOL.NewPack() in the Packages section.

Description
This function determines the handles that are currently active in the database. For example, a
program wishing to create a Setup-like configuration utility would use this call to determine the
handles that are available. It would then use calls defined in the forms section below to extract
forms and then interpret them.

Status Codes Returned
EFI_SUCCESS Handle was updated successfully.

EFI_BUFFER_TOO_SMALL The HandleBufferLength parameter indicates that
Handle is too small to support the number of handles.
HandleBufferLength is updated with a value that will
enable the data to fit.

Version 0.92 October 2005 53

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.ExportDatabase()

Summary
Exports the contents of the database into a buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_EXPORT) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

An EFI_HII_HANDLE that corresponds to the desired handle to export. If the value
is 0, the entire database will be exported. In either case, the data will be exported in a
format described by the structure definition of EFI_HII_EXPORT_TABLE. Type
EFI_HII_HANDLE is defined in EFI_HII_PROTOCOL.NewPack() in the
Packages section.

BufferSize

On input, a pointer to the length of the buffer. On output, the length of the buffer that
is required for the export data.

Buffer

A pointer to a buffer that will contain the results of the export function.

Description
This function will retrieve the contents of the HII database and export it in a well-defined format.
This format encompasses a means by which the data is well described and provides for seamless
integration of additional export data as content evolves.

54 October 2005 Version 0.92

 Code Definitions

Related Definitions
//**
// EFI_HII_EXPORT_TABLE
//**
typedef struct {
 UINT32 NumberOfHiiDataTables;
 EFI_GUID Revision;
//EFI_HII_DATA_TABLE HiiDataTable[];
} EFI_HII_EXPORT_TABLE

NumberOfHiiDataTables

Number of EFI_HII_DATA_TABLE entries defined in the
EFI_HII_EXPORT_TABLE structure. Type EFI_HII_DATA_TABLE is defined
below.

Revision

Defines the revision of the EFI_HII_DATA_TABLE structure. All future revisions
will be backward compatible to the current revision. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

HiiDataTable

Variable count of EFI_HII_DATA_TABLE entries. The amount in the table
corresponds to the value in NumberOfHiiDataTables.

//**
// EFI_HII_DATA_TABLE
//**
typedef struct {
 EFI_HII_HANDLE HiiHandle;
 EFI_GUID PackageGuid;
 UINT32 DataTableSize;
 UINT32 IfrDataOffset;
 UINT32 StringDataOffset;
 UINT32 VariableDataOffset;
 UINT32 DevicePathOffset;
 UINT32 NumberOfVariableData;
 UINT32 NumberOfLanguages;
//EFI_HII_DEVICE_PATH_PACK DevicePath[];
//EFI_HII_VARIABLE_PACK VariableData[];
//EFI_HII_IFR_PACK IfrData;
//EFI_HII_STRING_PACK StringData[];
} EFI_HII_DATA_TABLE;

Version 0.92 October 2005 55

Human Interface Infrastructure Specification

HiiHandle

Unique value that correlates to the original HII handle. Type EFI_HII_HANDLE is
defined in EFI_HII_PROTOCOL.NewPack() in the Packages section.

PackageGuid

If an IFR pack exists in a data table that does not contain strings, then the strings for
that IFR pack are located in another data table that contains a string pack and has a
matching HiiDataTable.PackageGuid. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DataTableSize

Size of the EFI_HII_DATA_TABLE in bytes.
IfrDataOffset

Byte offset from the start of this structure to the IFR data. If the offset value is 0, then
no IFR data is enclosed.

StringDataOffset

Byte offset from the start of this structure to the string data. If the offset value is 0,
then no string data is enclosed.

VariableDataOffset

Byte offset from the start of this structure to the variable data. If the offset value is 0,
then no variable data is enclosed.

DevicePathOffset

Byte offset from the start of this structure to the device path data. If the offset value is
0, then no DevicePath data is enclosed.

NumberOfVariableData

Number of VariableData[] elements in the array.
NumberOfLanguages

The number of language string packages.
DevicePath

Describes a logical path to a device from a known starting point. Type
EFI_DEVICE_PATH_PACK is defined below.

VariableData

Contents of the variable information for this entry—GUID/name/data. Type
EFI_HII_VARIABLE_PACK is defined below.

IfrData

Contents of the IFR data for this entry. Type EFI_HII_IFR_PACK is defined
below.

56 October 2005 Version 0.92

 Code Definitions

StringData

Contents of the string data. There may be multiple instances of the
EFI_HII_STRING_PACK structure, defining multiple languages. Type
EFI_HII_STRING_PACK is defined in String Package Structure.

//**
// EFI_HII_DEVICE_PATH_PACK
//**
typedef struct {
 EFI_HII_PACK_HEADER Header;
} EFI_HII_DEVICE_PATH_PACK;

Header

The header contains a Length and Type field. In the case of a device path package,
the type will be EFI_HII_DEVICE_PATH and the length will be the total size of
the device path package. Immediately following the
EFI_HII_DEVICE_PATH_PACK structure will be a series of device path entries.
Type EFI_HII_DEVICE_PATH is defined in EFI_HII_PACK_HEADER.

//**
// EFI_HII_VARIABLE_PACK
//**
typedef struct {
 EFI_HII_PACK_HEADER Header;
 EFI_GUID VariableGuid;
 UINT32 VariableNameLength;
 UINT16 VariableId;
//CHAR16 VariableName[];
} EFI_HII_VARIABLE_PACK;

(Note: The VariableDataLength field was deleted from this data structure for the
0.91 version.)

Header

The header contains a Length and Type field. In the case of a variable package, the
type will be EFI_HII_VARIABLE and the length will be the total size of the
variable package. Type EFI_HII_VARIABLE is defined in
EFI_HII_PACK_HEADER.

VariableGuid

GUID of the EFI variable. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Version 0.92 October 2005 57

Human Interface Infrastructure Specification

VariableNameLength

Length in bytes of the EFI variable.
VariableId

The unique value for this variable, which will be later referenced by other IFR
content to determine which variable is actively being referenced.

VariableName

The name of the variable, which will have a maximum size of 40 Unicode characters.
Data starts after the VariableName parameter.

//**
// EFI_HII_IFR_PACK
//**
typedef struct {
 EFI_HII_PACK_HEADER Header;
} EFI_HII_IFR_PACK;

Header

The header contains a Length and Type field. In the case of an IFR package, the
type will be EFI_HII_IFR and the length will be the total size of the IFR package.
Type EFI_HII_IFR is defined in "Related Definitions" in
EFI_HII_PACK_HEADER. Immediately following the EFI_HII_IFR_PACK
structure will be a series of IFR opcodes. The first opcode definition that should be
encountered is an EFI_IFR_FORM_SET_OP. The last opcode definition should be
EFI_IFR_END_FORM_SET_OP.

(Note: The EFI_IFR_CONTENTS and EFI_STRING_CONTENTS data structures were deleted
for the 0.91 version.)

Status Codes Returned
EFI_SUCCESS The buffer was successfully filled with BufferSize amount of

data.

EFI_BUFFER_TOO_SMALL The value in BufferSize was too small to contain the export
data.

58 October 2005 Version 0.92

 Code Definitions

Font Package

Glyph Representation

EFI_NARROW_GLYPH

Summary
The EFI_NARROW_GLYPH has a preferred dimension (w x h) of 8 x 19 pixels.

Prototype
typedef struct {
 CHAR16 UnicodeWeight;
 UINT8 Attributes;
 UINT8 GlyphCol1[19];
} EFI_NARROW_GLYPH;

Parameters
UnicodeWeight

The Unicode representation of the glyph. The term weight is the technical term for a
character value.

Attributes

The data element containing the glyph definitions; see Related Definitions below.
GlyphCol1

The column major glyph representation of the character. Bits with values of one
indicate that the corresponding pixel is to be on when normally displayed; those with
zero are off.

Description
Glyphs are represented by two structures, one each for the two sizes of glyphs. The narrow glyph
(EFI_NARROW_GLYPH) is the normal glyph used for text display.

Related Definitions
// Contents of EFI_NARROW_GLYPH.Attributes
#define EFI_GLYPH_NON_SPACING 0x01
#define EFI_GLYPH_WIDE 0x02

Following is a description of the fields in the above definition:

EFI_GLYPH_NON_SPACING This symbol is to be printed "on top of" (OR’d with) the previous glyph
before display.

EFI_GLYPH_WIDE This symbol uses 16x19 formats rather than 8x19.

Version 0.92 October 2005 59

Human Interface Infrastructure Specification

EFI_WIDE_GLYPH

Summary
The EFI_WIDE_GLYPH has a preferred dimension (w x h) of 16 x 19 pixels, which is large
enough to accommodate logographic characters.

Prototype
typedef struct {
 CHAR16 UnicodeWeight;
 UINT8 Attributes;
 UINT8 GlyphCol1[GLYPH_HEIGHT];
 UINT8 GlyphCol2[GLYPH_HEIGHT];
 UINT8 Pad[3];
} EFI_WIDE_GLYPH;

Parameters
UnicodeWeight

The Unicode representation of the glyph. The term weight is the technical term for a
character value.

Attributes

The data element containing the glyph definitions; see Related Definitions in
EFI_NARROW_GLYPH for attribute values.

GlyphCol2 and GlyphCol2

The column major glyph representation of the character. Bits with values of one
indicate that the corresponding pixel is to be on when normally displayed; those with
zero are off.

Pad

Ensures that sizeof(EFI_WIDE_GLYPH) is twice the
sizeof(EFI_NARROW_GLYPH). The contents of Pad must be zero.

Description
Glyphs are represented via the two structures, one each for the two sizes of glyphs. The wide glyph
(EFI_WIDE_GLYPH) is large enough to display logographic characters.

60 October 2005 Version 0.92

 Code Definitions

EFI_HII_FONT_PACK

Summary
A font list consists of a font header followed by a series of glyph structures. Note that fonts are not
language specific.

Prototype
typedef struct {
 EFI_HII_PACK_HEADER Header;
 UINT16 NumberOfNarrowGlyphs;
 UINT16 NumberOfWideGlyphs;
 //EFI_NARROW_GLYPH NarrowGlyphs[];
 //EFI_WIDE_GLYPH WideGlyphs[];
} EFI_HII_FONT_PACK;

Header.Type = EFI_HII_FONT;

Parameters
Header

The header contains a Length and Type field. In the
case of a font package, the type will be EFI_HII_FONT and the length will be the
total size of the font package including the size of the narrow and wide glyphs. Type
EFI_HII_PACK_HEADER is defined in Package Header.

NumberOfNarrowGlyphs

The number of NarrowGlyphs that are included in the font package.
NumberOfWideGlyphs

The number of WideGlyphs that are included in the font package.
NarrowGlyphs

An array of EFI_NARROW_GLYPH entries. The number of entries is specified by
NumberOfNarrowGlyphs. Type EFI_NARROW_GLYPH is defined in Glyph
Representation.

WideGlyphs

An array of EFI_WIDE_GLYPH entries. The number of entries is specified by
NumberOfWideGlyphs. To calculate the offset of WideGlyphs, use the offset
of NarrowGlyphs and add the size of EFI_NARROW_GLYPH multiplied by the
NumberOfNarrowGlyphs. Type EFI_WIDE_GLYPH is defined in Glyph
Representation.

Version 0.92 October 2005 61

Human Interface Infrastructure Specification

Description
The fonts must be presented in Unicode sort order. That is, the primary sort key is the
UnicodeWeight and the secondary sort key is the SurrogateWeight.
It is up to developers who manage fonts to choose efficient mechanisms for accessing fonts. The
contiguous presentation can easily be used because narrow and wide glyphs are not intermixed, so a
binary search is possible (hence the requirement that the glyphs be sorted by weight).

62 October 2005 Version 0.92

 Code Definitions

HII Protocol Font-Related Entries

HII Protocol Font-Related Entries
The functions described in this section are a part of the larger EFI_HII_PROTOCOL. This section
describes the font-related entries.

EFI_HII_PROTOCOL (Font-Related Entries)

Summary
A common font database is maintained via the EFI HII protocol. The font-related entries in the
protocol allow new font glyphs to be added to the database and the database to be queried.

Protocol Interface Structure
typedef struct _EFI_HII_PROTOCOL {
 EFI_HII_NEW_PACK NewPack;
 EFI_HII_TEST_STRING TestString;
 EFI_HII_GET_GLYPH GetGlyph;
 EFI_HII_GLYPH_TO_BLT GlyphToBlt;
 ...
} EFI_HII_PROTOCOL;

Parameters
NewPack

Adds new glyphs to the database. See the NewPack() function description.
TestString

Checks to see if all of the Unicode characters to actualize a string are available. See
the TestString() function description.

GetGlyph

Translates a Unicode character into the corresponding font glyph. See the
GetGlyph() function description.

GlyphToBlt

Translates a glyph into the format required for input to the Universal Graphics
Adapter (UGA) Block Transfer (BLT) routines. See the GlyphToBlt() function
description.

Description
The EFI_HII_PROTOCOL is also used as a central repository for all fonts within the
environment. Glyphs may be added to the database. Two extraction mechanisms are provided, with
the following differences:
• In one, a buffer is simply filled and formatting is performed externally to the mechanism.
• In the second, a buffer is filled and expanded with data.
The buffer is filled differently depending on language directionality.

Version 0.92 October 2005 63

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.NewPack() (Font-Related Entries)

Summary
With the exception of font and keyboard data, this function adds the contents of the package list to
the database and returns a handle back to the data. Font and keyboard data is kept in a common
pool and will have a NULL handle associated with them. In the case where a Package contains
both pooled data and database data, a valid handle will be returned upon the addition of the
appropriate data into the database.
See EFI_HII_PROTOCOL.NewPack() in the Packages section for the function definition.

(Note: The “Prototype,” “Parameters,” and “Status Codes Returned” subsections were deleted for
the 0.91 version.)

64 October 2005 Version 0.92

 Code Definitions

EFI_HII_PROTOCOL.TestString()

Summary
Tests if all of the characters in a string have corresponding font characters.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_TEST_STRING) (
 IN EFI_HII_PROTOCOL *This,
 IN CHAR16 *StringToTest,
 IN OUT UINT32 *FirstMissing,
 OUT UINT32 *GlyphBufferSize
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
StringToTest

A pointer to a Unicode string.
FirstMissing

A pointer to an index into the string. On input, the index of the first character in the
StringToTest to examine. On exit, the index of the first character encountered
for which a glyph is unavailable. If all glyphs in the string are available, the index is
the index of the terminator of the string.

GlyphBufferSize

A pointer to a value. On output, if the function returns EFI_SUCCESS, it contains
the amount of memory that is required to store the string’s glyph equivalent.

Description
This function may be called repeatedly to determine subsequent missing characters. Note that the
index pointed to by FirstMissing must be incremented between calls. Line separator characters
are ignored.

Status Codes Returned
EFI_SUCCESS All glyphs are available. Note that an empty string always returns

this value.

EFI_NOT_FOUND A glyph was not found for a character.

Version 0.92 October 2005 65

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.GetGlyph()

Summary
Translates a Unicode character into the corresponding font glyph.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_GLYPH) (
 IN EFI_HII_PROTOCOL *This,
 IN CHAR16 *Source,
 IN OUT UINT16 *Index,
 OUT UINT8 **GlyphBuffer,
 OUT UINT16 *BitWidth,
 IN OUT UINT32 *InternalStatus
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Source

A pointer to a Unicode string.
Index

On input, the offset into the string from which to fetch the character. On successful
completion, the index is updated to the first character past the character(s) making up
the just extracted glyph.

GlyphBuffer

Pointer to an array where the glyphs corresponding to the characters in the source
may be stored. GlyphBuffer is assumed to be wide enough to accept a wide glyph
character.

BitWidth

If EFI_SUCCESS was returned, the UINT16 pointed to by this value is filled with
the length of the glyph in pixels. It is unchanged if the call was unsuccessful.

InternalStatus

To save the time required to read the string from the beginning on each glyph
extraction (for example, to ensure that the narrow versus wide glyph mode is correct),
this value is updated each time the function is called with the status that is local to the
call. The cell pointed to by this parameter must be initialized to zero prior to invoking
the call the first time for any string.

66 October 2005 Version 0.92

 Code Definitions

Description
This function translates a Unicode character into the corresponding font glyph. The data returned is
the format required for input to the Universal Graphics Adapter (UGA) Block Transfer (BLT)
routines.

Status Codes Returned
EFI_SUCCESS It worked.

EFI_NOT_FOUND A glyph for a character was not found.

Version 0.92 October 2005 67

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.GlyphToBlt()

Summary
Translates a glyph into the format required for input to the Universal Graphics Adapter (UGA)
Block Transfer (BLT) routines.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GLYPH_TO_BLT) (
 IN EFI_HII_PROTOCOL *This,
 IN UINT8 *GlyphBuffer,
 IN EFI_UGA_PIXEL Foreground,
 IN EFI_UGA_PIXEL Background,
 IN UINTN Count,
 IN UINTN Width,
 IN UINTN Height,
 IN OUT EFI_UGA_PIXEL *BltBuffer
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
GlyphBuffer

A pointer to the buffer that contains glyph data.
Foreground

The foreground setting requested to be used for the generated BltBuffer data.
Type EFI_UGA_PIXEL is defined in "Related Definitions" below.

Background

The background setting requested to be used for the generated BltBuffer data.
Count

The entry in the BltBuffer upon which to act.
Width

The width in bits of the glyph being converted.
Height

The height in bits of the glyph being converted
BltBuffer

A pointer to the buffer that contains the data that is ready to be used by the UGA
BLT routines.

68 October 2005 Version 0.92

 Code Definitions

Description
This function translates a glyph into the format required for input to the UGA BLT routines.

Related Definitions
//**
// EFI_UGA_PIXEL
//**
typedef struct {
 UINT8 Blue;
 UINT8 Green;
 UINT8 Red;
 UINT8 Reserved;
} EFI_UGA_PIXEL

Status Codes Returned
EFI_SUCCESS It worked.

EFI_NOT_FOUND A glyph for a character was not found.

Version 0.92 October 2005 69

Human Interface Infrastructure Specification

Strings

String

EFI_STRING

Summary
A string is a zero-terminated array of Unicode characters.

Prototype
typedef CHAR16 * EFI_STRING;

Description
A string is the basis of localization.

70 October 2005 Version 0.92

 Code Definitions

String Package Structure

EFI_HII_STRING_PACK

Summary
A string package is used to localize strings to a particular language. The package is associated with
a particular driver or set of drivers. Tools are used to associate tokens with string references in
forms and in programs. These tokens are language agnostic. When paired directly or indirectly with
a language pack, the string token resolves into an actual Unicode string. When passing this package
as a component of the EFI_HII_PACKAGES structure, multiple EFI_HII_STRING_PACK
entries are allowed.

Prototype
typedef struct {
 EFI_HII_PACK_HEADER Header;
 RELOFST LanguageNameString;
 RELOFST PrintableLanguageName;
 UINT32 NumStringPointers;
 UINT32 Attributes;
 //RELOFST StringPointers[];
 //EFI_STRING Strings[];
 } EFI_HII_STRING_PACK;

Parameters
Header

The header contains a Length and Type field. In the case of a font package, the
type will be EFI_HII_STRING and the length will be the total size of the string
package, including the size of the strings. Type EFI_HII_PACK_HEADER is
defined in Package Header.

LanguageNameString

The string containing one or more ISO 639-2 three-character designator(s) of the
language or languages whose translations are contained in this language pack. The
first designator indicates the primary language while the others are secondary
languages. Type RELOFST is defined in "Related Definitions" below.

PrintableLanguageName

Contains the offset into this structure of a printable name of the language for use
when prompting the user. The language printed is to be the primary language.

NumStringPointers

The number of Strings and StringPointers contained within the string
package.

Attributes

Indicates the direction the language is to be printed. See Related Definitions below.

Version 0.92 October 2005 71

Human Interface Infrastructure Specification

StringPointers

An array of strings that is indexed using string indexes that are UINT16 tokens
resolved to the various strings in the package. Each array entry is an offset from the
beginning of the string package and points to the start of a Unicode string. The
number of StringPointers in the array is defined by NumStringPointers.

Strings

The NULL-terminated Unicode strings themselves. Type EFI_STRING is defined in
String.

Description
The key element of this structure is the StringPointer array. This array provides the level of
abstraction between the language-independent string token and the translation of that string in a
particular language. The string tokens are used as indexes (0, 1, ...) and not as offsets.
The actual organization of the EFI_HII_STRING_PACK structure may not be apparent from the
structure definition. In fact, it consists of a fairly small header, an n entry array of string offsets, and
n strings. Note that the only meaning associated to the strings is through the string offsets using the
STRING_TOKEN values.
A string reference (STRING_REF) is a UINT16 value defining a string to be manipulated. The
string handle does not define a particular representation. Only the union of a string handle and a
language name targets a particular representation (either Unicode or pixels).

Related Definitions
//**
// RELOFST
//**
#define RELOFST UINT32

(Note: The STRING_REF type definition was moved to EFI_HII_PROTOCOL.NewString()
for the 0.91 version.)

//**
// contents of EFI_HII_STRING_PACK.Attributes
//**
#define LANG_RIGHT_TO_LEFT 0x00000001

Following are descriptions of the fields in the above definitions.

RELOFST A 32-bit offset relative to the start of the encompassing string pack

structure, thus providing position independence for the entire structure.

LANG_RIGHT_TO_LEFT If on, the language is intended to be printed right to left. The default
(off) is to print left to right.

72 October 2005 Version 0.92

 Code Definitions

HII Protocol String Functions

EFI_HII_PROTOCOL (String Functions)

Summary
The HII Protocol maintains a database of strings. Strings are referred to by a triple consisting of a
handle that is unique to the string pack, a STRING_REF, and a language.

Protocol Interface Structure
typedef struct _EFI_HII_PROTOCOL {
 ...
 EFI_HII_NEW_PACK NewPack;
 EFI_HII_NEW_STRING NewString;
 EFI_HII_GET_PRI_LANGUAGES GetPrimaryLanguages;
 EFI_HII_GET_SEC_LANGUAGES GetSecondaryLanguages;
 EFI_HII_GET_STRING GetString;
 EFI_HII_GET_LINE GetLine;
 ...
} EFI_HII_PROTOCOL;

Parameters
NewPack

Adds a new language pack to the database. See the NewPack() function
description.

NewString

Adds a new string to an existing string pack in the database. See the NewString()
function description.

GetPrimaryLanguages

Determines the primary languages supported by this package. See the
GetPrimaryLanguages() function description.

GetSecondaryLanguages

Determines the secondary languages supported by a primary language in this
package. See the GetSecondaryLanguages() function description.

GetString

Extracts a string from the string database. See the GetString() function
description.

GetLine

Extracts enough of a string to fill a defined width. See the GetLine() function
description.

Version 0.92 October 2005 73

Human Interface Infrastructure Specification

Description
A common database is provided for the management of strings. Unlike fonts, strings are specific to
specific applications or drivers. The string database performs two basic functions:
• Provides generalized extraction routines for managing and using string packs.
• Provides mechanisms for strings to be registered by one driver (via NewPack(), for example)

and accessed by other drivers (particularly when used in conjunction with forms).

74 October 2005 Version 0.92

 Code Definitions

EFI_HII_PROTOCOL.NewPack() (String-Related Entries)

Summary
With the exception of font and keyboard data, this function adds the contents of the package list to
the database and returns a handle back to the data. Font and keyboard data is kept in a common
pool and will have a NULL handle associated with them. In the case where a Package contains
both pooled data and database data, a valid handle will be returned upon the addition of the
appropriate data into the database.
See EFI_HII_PROTOCOL.NewPack() in the Packages section for the function definition.

(Note: The “Prototype,” “Parameters,” and “Status Codes Returned” subsections were deleted for
the 0.91 version.)

Version 0.92 October 2005 75

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.NewString()

Summary
Allows a new string to be added to an already existing string package.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_NEW_STRING) (
 IN EFI_HII_PROTOCOL *This,
 IN CHAR16 *Language,
 IN EFI_HII_HANDLE Handle,
 IN OUT STRING_REF *Reference,
 IN CHAR16 *NewString
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Language

Pointer to a NULL-terminated string containing a single ISO 639-2 language
identifier, indicating the language in which the string is translated. A string consisting
of all spaces indicates that the string is applicable to all languages.

Handle

The handle of the language pack to which the string is to be added. Type
EFI_HII_HANDLE is defined in EFI_HII_PROTOCOL.NewPack() in the
Packages section.

Reference

The identifier of the string to be added. If the reference value is zero, then the string
will be assigned a new identifier on that handle for the language specified. Otherwise,
the string will be updated with the NewString Value. Type STRING_REF is
defined in "Related Definitions" below.

NewString

The string to be added.

Description
This routine adds a new string to a string package already submitted using NewPack(). This
string effectively overwrites existing strings.

76 October 2005 Version 0.92

 Code Definitions

Related Definitions
//**
// STRING_REF
//**
#define STRING_REF UINT16

Following is a description of the field in the above definition.

STRING_REF A variable that can contain a STRING_TOKEN. When used

in programs, string tokens are fundamentally constants.

Status Codes Returned
EFI_SUCCESS The string was effectively registered.

EFI_INVALID_PARAMETER The Handle was unknown.

Version 0.92 October 2005 77

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.GetPrimaryLanguages()

Summary
Allows a program to determine the primary languages that are supported on a given handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_PRI_LANGUAGES) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 OUT EFI_STRING *LanguageString
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

The handle on which the strings reside. Type EFI_HII_HANDLE is defined in
EFI_HII_PROTOCOL.NewPack() in the Packages section.

LanguageString

A string allocated by GetPrimaryLanguages() that contains a list of all
primary languages registered on the handle. The routine will not return the three-
spaces language identifier used in other functions to indicate non-language-specific
strings.

Description
This routine is intended to be used by drivers to query the interface database for supported
languages. This routine returns a string of concatenated 3-byte language identifiers, one per string
package associated with the handle.

Status Codes Returned
EFI_SUCCESS LanguageString was correctly returned.

EFI_INVALID_PARAMETER The Handle was unknown.

78 October 2005 Version 0.92

 Code Definitions

EFI_HII_PROTOCOL.GetSecondaryLanguages()

Summary
Allows a program to determine which secondary languages are supported on a given handle for a
given primary language.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_SEC_LANGUAGES) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN CHAR16 *PrimaryLanguage,
 OUT EFI_STRING *LanguageString
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

The handle on which the strings reside. Type EFI_HII_HANDLE is defined in
EFI_HII_PROTOCOL.NewPack() in the Packages section.

PrimaryLanguage

Pointer to a NULL-terminated string containing a single ISO 639-2 language
identifier, indicating the primary language.

LanguageString

A string allocated by GetSecondaryLanguages() containing a list of all
secondary languages registered on the handle. The routine will not return the three-
spaces language identifier used in other functions to indicate non-language-specific
strings, nor will it return the primary language. This function succeeds but returns a
NULL LanguageString if there are no secondary languages associated with the
input Handle and PrimaryLanguage pair. Type EFI_STRING is defined in
String.

Version 0.92 October 2005 79

Human Interface Infrastructure Specification

Description
Each string package has associated with it a single primary language and zero or more secondary
languages. This routine returns the secondary languages associated with a string package. The
string package is identified by the package list handle and the (currently three-character ISO 639-2
primary language identifier.

Status Codes Returned
EFI_SUCCESS LanguageString was correctly returned.

EFI_INVALID_PARAMETER The Handle was unknown.

80 October 2005 Version 0.92

 Code Definitions

EFI_HII_PROTOCOL.GetString()

Summary
Extracts a string from a package already registered with the EFI HII database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_STRING) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN STRING_REF Token,
 IN BOOLEAN Raw,
 IN CHAR16 *LanguageString,
 IN OUT UINTN *BufferLength,
 OUT EFI_STRING *StringBuffer
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

The handle on which the string resides. Type EFI_HII_HANDLE is defined in
EFI_HII_PROTOCOL.NewPack() in the Packages section.

Token

The string token assigned to the string. Type STRING_REF is defined in
EFI_HII_PROTOCOL.NewString().

Raw

If TRUE, the string is returned unedited in the internal storage format described
above. If false, the string returned is edited by replacing <cr> with <space> and by
removing special characters such as the <wide> prefix.

LanguageString

Pointer to a NULL-terminated string containing a single ISO 639-2 language
identifier, indicating the language to print. If the LanguageString is empty (starts
with a NULL), the default system language will be used to determine the language.

BufferLength

Length of the StringBuffer. If the status reports that the buffer width is too
small, this parameter is filled with the length of the buffer needed.

StringBuffer

The buffer designed to receive the characters in the string. Type EFI_STRING is
defined in String.

Version 0.92 October 2005 81

Human Interface Infrastructure Specification

Description
This routine extracts a string from the package database. The string may be extracted in internal or
external formats. If Token is 0, then the entire string package referenced by Handle will be
extracted.

Status Codes Returned
EFI_SUCCESS StringBuffer is filled with a NULL-terminated string.

EFI_INVALID_PARAMETER The handle or string token is unknown.

EFI_BUFFER_TOO_SMALL The buffer provided was not large enough to allow the entire
string to be stored.

82 October 2005 Version 0.92

 Code Definitions

EFI_HII_PROTOCOL.GetLine()

Summary
Allows a program to extract a part of a string of not more than a given width.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_LINE) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN STRING_REF Token,
 IN OUT UINT16 *Index,
 IN UINT16 LineWidth,
 IN CHAR16 *LanguageString,
 IN OUT UINT16 *BufferLength,
 OUT EFI_STRING *StringBuffer
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

The handle on which the string resides. Type EFI_HII_HANDLE is defined in
EFI_HII_PROTOCOL.NewPack() in the Packages section.

Token

The string token assigned to the string. Type STRING_REF is defined in
EFI_HII_PROTOCOL.NewString().

Index

On input, the offset into the string where the line is to start. On output, the index is
updated to point to beyond the last character returned in the call. The interface is
designed so that repeated calls will fill the buffer with subsequent parameters.

LineWidth

The maximum width of the line in units of narrow glyphs. Specific line breaks (as in
the case of two carriage returns) are still honored resulting in separate lines. The
buffer is padded to the length in narrow spaces.

LanguageString

Pointer to a NULL-terminated string containing a single ISO 639-2 language
identifier, indicating the language to print. If the LanguageString is empty (starts
with a NULL) the default system language will be used to determine the language.

Version 0.92 October 2005 83

Human Interface Infrastructure Specification

BufferLength

Pointer to the length of the StringBuffer. If the status reports that the buffer
width is too small, this parameter is filled with the length of the buffer needed.

StringBuffer

The buffer designed to receive the characters in the string. Type EFI_STRING is
defined in String.

Description
This function is used to extract parts of a string so that those parts of strings fit inside a column of a
defined width. With repeated calls, this design allows a calling program to extract "lines" of text
that fit inside columns. The effort of measuring the fit of strings inside columns is localized to this
call. This functionality is commonly used in menuing applications.

Status Codes Returned
EFI_SUCCESS StringBuffer filled with characters that will fit on the line.

EFI_NOT_FOUND The font glyph for at least one of the characters in the string is
not in the font database.

EFI_BUFFER_TOO_SMALL The buffer provided was not large enough to allow the entire
string to be stored. Note that the BufferWidth may need to
be larger than the LineWidth due to, for example,
nonspacing characters.

84 October 2005 Version 0.92

 Code Definitions

Form Packages

Form Language Syntax
The language described here is the "machine language" of the form set. Syntactic sugar to hide the
complexities of the language (for example, use of infix rather than postfix notation for the
expressions) is beyond the scope of this document.

Meta-Syntax
The description of the syntax uses Backus-Naur Form (BNF) with the following extensions:
• [to]* indicates zero or more repetitions of the contents.
• [to]+ indicates one or more repetitions of the contents.
• [to]n...m (n and m are integers) indicates n through m repetitions.
• [to]n... (n is an integer) indicates at least n repetitions (so [x]+ is equivalent to

[x]1...).
• [to] indicates that the contents are optional.

Version 0.92 October 2005 85

Human Interface Infrastructure Specification

Internal Form Representation (IFR) Language Syntax Definition

EFI_IFR_OP_HEADER

Summary
Defines the form tag header.

Prototype
typedef struct _EFI_IFR_OP_HEADER {
 UINT8 OpCode;
 UINT8 Length;
} EFI_IFR_OP_HEADER;

Parameters
OpCode

Defines which type of operation is being described by this header. See Related
Definitions below for the defined IFR opcodes, which are then defined in the
following sections.

Length

Defines the number of bytes in the tag, including the opcode.

Description
Forms are represented in a binary format roughly similar to processor instructions. Each IFR
instruction is interchangeably called a tag or an operation. Tag is preferred because the
functionality is analogous to tags in higher-level markup languages.
Each tag starts with an opcode followed by a UINT8 constant and then a UINT8 length. The length
defines the number of bytes in the tag, including the opcode. The length is used so that new
opcodes can be added. An IFR browser is responsible for skipping over tags that it does not
understand.
Question tags are those that allow user input that is visible in the results when a browser processes
a form. Question tags use a triple containing the following information to describe the tag:
• An ID assigned to the question that is unique inside the form package.
• An offset into some sort of NVRAM storage (in bytes).
• A storage width (in bytes).
Although not required, it is expected that a tool will assign these values. Note that the utility of the
offset and width values, in particular, varies with how the results are to be processed.

86 October 2005 Version 0.92

 Code Definitions

Related Definitions
//
// IFR Opcodes
//
#define EFI_IFR_FORM_OP 0x01
#define EFI_IFR_SUBTITLE_OP 0x02
#define EFI_IFR_TEXT_OP 0x03
#define EFI_IFR_GRAPHIC_OP 0x04
#define EFI_IFR_ONE_OF_OP 0x05
#define EFI_IFR_CHECKBOX_OP 0x06
#define EFI_IFR_NUMERIC_OP 0x07
#define EFI_IFR_PASSWORD_OP 0x08
#define EFI_IFR_ONE_OF_OPTION_OP 0x09 // ONEOF OPTION field
#define EFI_IFR_SUPPRESS_IF_OP 0x0A
#define EFI_IFR_END_FORM_OP 0x0B
#define EFI_IFR_HIDDEN_OP 0x0C
#define EFI_IFR_END_FORM_SET_OP 0x0D
#define EFI_IFR_FORM_SET_OP 0x0E
#define EFI_IFR_REF_OP 0x0F
#define EFI_IFR_END_ONE_OF_OP 0x10
#define EFI_IFR_END_OP EFI_IFR_END_ONE_OF_OP
#define EFI_IFR_INCONSISTENT_IF_OP 0x11
#define EFI_IFR_EQ_ID_VAL_OP 0x12
#define EFI_IFR_EQ_ID_ID_OP 0x13
#define EFI_IFR_EQ_ID_LIST_OP 0x14
#define EFI_IFR_AND_OP 0x15
#define EFI_IFR_OR_OP 0x16
#define EFI_IFR_NOT_OP 0x17
#define EFI_IFR_END_IF_OP 0x18 // for endif of
 // inconsistentif,
 // suppressif, grayoutif
#define EFI_IFR_GRAYOUT_IF_OP 0x19
#define EFI_IFR_DATE_OP 0x1A
#define EFI_IFR_TIME_OP 0x1B
#define EFI_IFR_STRING_OP 0x1C
#define EFI_IFR_LABEL_OP 0x1D
#define EFI_IFR_SAVE_DEFAULTS_OP 0x1E
#define EFI_IFR_RESTORE_DEFAULTS_OP 0x1F
#define EFI_IFR_BANNER_OP 0x20
#define EFI_IFR_INVENTORY_OP 0x21
#define EFI_IFR_EQ_VAR_VAL_OP 0x22
#define EFI_IFR_ORDERED_LIST_OP 0x23
#define EFI_IFR_VARSTORE_OP 0x24
#define EFI_IFR_VARSTORE_SELECT_OP 0x25
#define EFI_IFR_VARSTORE_SELECT_PAIR_OP 0x26
#define EFI_IFR_LAST_OPCODE EFI_IFR_VARSTORE_SELECT_PAIR_OP
#define EFI_IFR_OEM_OP 0xFE
#define EFI_IFR_NV_ACCESS_COMMAND 0xFF

Version 0.92 October 2005 87

Human Interface Infrastructure Specification

EFI_IFR_FORM_SET

Summary
The form package is a collection of forms that are intended to describe the pages that will be
displayed to the user.

Prototype
<form-set> ::= <form-set-header> [<form>]* <end-form-set-op>
<form-set-header> ::= <form-set-op> <length> <guid> <title> <help>
 <class> <subclass>
<end-form-set-op> ::= UINT8-constant <length>

typedef struct {
 EFI_IFR_OP_HEADER Header;
 EFI_GUID Guid;
 STRING_REF FormSetTitle;
 STRING_REF Help;
 EFI_PHYSICAL_ADDRESS CallbackHandle;
 UINT16 Class;
 UINT16 SubClass;
 UINT16 NvDataSize;
} EFI_IFR_FORM_SET;

typedef struct {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_END_FORM_SET;

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. The values of Header for each structure are as follows:

• For EFI_IFR_FORM_SET, Header.OpCode =
EFI_IFR_FORM_SET_OP.

• For EFI_IFR_END_FORM_SET, Header.OpCode =
EFI_IFR_END_FORM_SET_OP.

Guid

The unique GUID value associated with this particular form set. Type EFI_GUID is
defined in InstallProtocolInterface() in the EFI 1.10 Specification.

FormSetTitle

The string token reference to the title of this particular form set. Type STRING_REF
is defined in EFI_HII_PROTOCOL.NewString().

Help

The string token reference to the help of this particular form set.

88 October 2005 Version 0.92

 Code Definitions

CallbackHandle

The address of the routine which will be called if a particular opcode requires a
callback. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in
the EFI 1.10 Specification.

Class

The class definition for this particular form set.
SubClass

The subclass definition for this particular form set.
NvDataSize

The size of the primary nonvolatile data as determined by the Visual Forms
Representation (VFR) compiler.

Description
The form package consists of a header, a set of forms, and an end-of-form operation.

Version 0.92 October 2005 89

Human Interface Infrastructure Specification

EFI_IFR_FORM

Summary
Defines the form tag.

Prototype
<form> ::= <form header> <form-body> <end-form>
<form-body> ::= [<form-stmt>]*

typedef struct {
 EFI_IFR_OP_HEADER Header;
 UINT16 FormId;
 STRING_REF FormTitle;
} EFI_IFR_FORM;

typedef struct {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_END_FORM;

<form-stmt> ::= <subtitle> | <text> | <one-of> | <many-of> |
<numeric> | <password> | <consistency> | <list> | <grayout> |
<hidden> | <label> | <ref> | <suppress> |

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. The values of Header for each structure are as follows:

• For EFI_IFR_FORM, Header.OpCode = EFI_IFR_FORM_OP.

• For EFI_IFR_END_FORM, Header.OpCode =
EFI_IFR_END_FORM_OP.

FormId

The unique identification for this particular form.
FormTitle

The string token reference to the title of this particular form. Type STRING_REF is
defined in EFI_HII_PROTOCOL.NewString().

Description
A form is the encapsulation of what amounts to a browser page. The header defines a FormId,
which is referenced by the form package, among others. It also defines a FormTitle, which is a
string to be used as the title for the form.

90 October 2005 Version 0.92

 Code Definitions

EFI_IFR_SUBTITLE

Summary
Defines the subtitle tag.

Prototype
typedef struct {
 EFI_IFR_OP_HEADER Header;
 STRING_REF SubTitle;
} EFI_IFR_SUBTITLE;

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_SUBTITLE_OP.

SubTitle

The string token reference to a subtitle opcode. Type STRING_REF is defined in
EFI_HII_PROTOCOL.NewString().

Description
Subtitle strings are intended to be used by authors to separate sections of questions into semantic
groups.

Version 0.92 October 2005 91

Human Interface Infrastructure Specification

EFI_IFR_TEXT

Summary
Defines the text tag.

Prototype
typedef struct {
 EFI_IFR_OP_HEADER Header;
 STRING_REF Help;
 STRING_REF Text;
 STRING_REF TextTwo;
 UINT8 Flags;
 UINT16 Key;
} EFI_IFR_TEXT;

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_TEXT_OP.

Help

The string token reference to the help string for this opcode. Type STRING_REF is
defined in EFI_HII_PROTOCOL.NewString().

Text

The string token reference to the primary string for this opcode.
TextTwo

The string token reference to the secondary string for this opcode.
Flags

This parameter is included solely for dynamic support.
Key

The value to be passed to the caller to identify this particular opcode.

Description
Unlike HTML, text is simply another tag. This tag type enables IFR to be more easily localized.

92 October 2005 Version 0.92

 Code Definitions

EFI_IFR_ONE_OF

Summary
Defines the one-of tag.

Prototype
<one-of> ::= <one-of-tag> [<one-of-body-tags>]2... <one-of-end-tag>

typedef struct {
 EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT8 Width;
 STRING_REF Prompt;
 STRING_REF Help;
} EFI_IFR_ONE_OF;

typedef struct {
 EFI_IFR_OP_HEADER Header;
 STRING_REF Option;
 UINT16 Value;
 UINT8 Flags;
 UINT16 Key;
} EFI_IFR_ONE_OF_OPTION;

typedef struct {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_END_ONE_OF;

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. The values of Header for each structure are as follows:

• For EFI_IFR_ONE_OF, Header.OpCode = EFI_IFR_ONE_OF_OP.

• For EFI_IFR_ONE_OF_OPTION, Header.OpCode =
EFI_IFR_ONE_OF_OPTION_OP.

• For EFI_IFR_END_ONE_OF, Header.OpCode =
EFI_IFR_END_ONE_OF_OP.

QuestionId

The unique value that identifies the particular question being defined by the opcode.
This value will correspond to the starting offset in nonvolatile RAM (NVRAM) from
which the settings for this question are being read and written to.

Width

Identifies the size of NVRAM.

Version 0.92 October 2005 93

Human Interface Infrastructure Specification

Prompt

The string token reference to the prompt string for this particular opcode. Type
STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

Help

The string token reference to the help string for this particular opcode.
Option

The string token reference to the option description string for this particular opcode.
Value

The value associated with the EFI_IFR_ONE_OF_OPTION that was chosen. This
value is what is used to determine which option is currently active.

Flags

A bit-mask that determines which unique settings are active for this opcode. See
Related Definitions below.

Key

A unique value that the browser passes back to a consumer by the browser if the
EFI_IFR_FLAG_INTERACTIVE flag is set and a user selects this opcode. Type
EFI_IFR_FLAG_INTERACTIVE is defined in Related Definitions below.

Description
The one-of tag is a nested question type. It consists of a one-of header operation, several one-of-
body operations, and an end tag.

Related Definitions
//**
// Flags values
//**
#define EFI_IFR_FLAG_DEFAULT 0x01
#define EFI_IFR_FLAG_MANUFACTURING 0x02
#define EFI_IFR_FLAG_INTERACTIVE 0x04
#define EFI_IFR_FLAG_NV_ACCESS 0x08
#define EFI_IFR_FLAG_RESET_REQUIRED 0x10
#define EFI_IFR_FLAG_LATE_CHECK 0x20

Following is a description of the fields in the above definitions.

EFI_IFR_FLAG_DEFAULT Designates if a particular choice (often used in one-of opcodes) is

the default setting

EFI_IFR_FLAG_MANUFACTURING Designates if a particular choice (often used in one-of opcodes) is
supposed to be designated as a manufacturing default setting.

EFI_IFR_FLAG_INTERACTIVE Designates if a particular opcode is to be treated as something that
will initiate a callback to a registered driver.

94 October 2005 Version 0.92

 Code Definitions

EFI_IFR_FLAG_NV_ACCESS Designates if a particular choice requires access to the browser’s
internal NVRAM mapping. This flag is used exclusively in conjunction
with EFI_IFR_FLAG_INTERACTIVE and allows for the agent
that got called by the browser to potentially modify the contents of
the browser’s mapping data.

EFI_IFR_FLAG_RESET_REQUIRED If a particular choice is modified, designates that a return flag will be
activated upon exiting of the browser, which indicates that the
changes that the user requested require a reset to enact.

EFI_IFR_FLAG_LATE_CHECK If a particular choice is modified, designates that any resulting
Boolean operations that might check the validity of the user’s
modification will not actually be enacted until the user switches
pages or attempts to save the changes.

Version 0.92 October 2005 95

Human Interface Infrastructure Specification

EFI_IFR_CHECKBOX

Summary
Defines the checkbox tag.

Prototype
typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT8 Width;
 STRING_REF Prompt;
 STRING_REF Help;
 UINT8 Flags;
 UINT16 Key;
} EFI_IFR_CHECKBOX;

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_CHECKBOX_OP.

QuestionId

The unique value that identifies the particular question being defined by the opcode.
This value will correspond to the starting offset in NVRAM from which the settings
for this question are being read and written to.

Width

Identifies the size of nonvolatile RAM.
Prompt

The string token reference to the prompt string for this particular opcode. Type
STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

Help

The string token reference to the help string for this particular opcode.
Flags

A bit-mask that determines which unique settings are active for this opcode. See
Related Definitions below for defined flags for this opcode.

Key

A unique value that the browser passes back to a consumer if the
EFI_IFR_FLAG_INTERACTIVE flag is set and a user selects this opcode. Type
EFI_IFR_FLAG_INTERACTIVE is defined in EFI_IFR_ONE_OF.

96 October 2005 Version 0.92

 Code Definitions

Description
The checkbox tag returns zero if the box is not checked and one if it is. The default is stored in bit
position zero of the flag.

Related Definitions
#define EFI_IFR_CHECKBOX_DEFAULT 1

Version 0.92 October 2005 97

Human Interface Infrastructure Specification

EFI_IFR_NUMERIC

Summary
Defines the numeric tag.

Prototype
typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT8 Width;
 STRING_REF Prompt;
 STRING_REF Help;
 UINT8 Flags;
 UINT16 Key;
 UINT16 MinValue;
 UINT16 MaxValue;
 UINT16 Step;
 UINT16 Default;
} EFI_IFR_NUMERIC;

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_NUMERIC_OP.

QuestionId

The unique value that identifies the particular question being defined by the opcode.
This value will correspond to the starting offset in NVRAM from which the settings
for this question are being read and written to.

Width

Identifies the size of nonvolatile RAM.
Prompt

The string token reference to the prompt string for this particular opcode. Type
STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

Help

The string token reference to the help string for this particular opcode.
Flags

A bit-mask that determines which unique settings are active for this opcode.
Key

A unique value which is passed back to a consumer by the browser if the
EFI_IFR_FLAG_INTERACTIVE flag is set and a user selects this opcode. Type
EFI_IFR_FLAG_INTERACTIVE is defined in EFI_IFR_ONE_OF.

98 October 2005 Version 0.92

 Code Definitions

MinValue

The minimum value to be accepted by the browser for this opcode.
MaxValue

The maximum value to be accepted by the browser for this opcode.
Step

Defines the amount to increment or decrement the value each time a user requests a
value change. If the step value is 0, then the input mechanism for the numeric value
is to be free-form and require the user to type in the actual value.

Default

The default value for this opcode.

Description
The parameters allow for expression of a rich variety of numeric inputs that may be validated by
the browser prior to submission. Valid input (n) is:
 MinValue <= n <= MaxValue

The range data may be used to provide better keys help for the user as well as for internal
validation. HTML has no equivalent of a numeric tag, so a string tag is used along with scripting to
provide limit checking.

Version 0.92 October 2005 99

Human Interface Infrastructure Specification

EFI_IFR_PASSWORD

Summary
Defines the password tag.

Prototype
typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT8 Width;
 STRING_REF Prompt;
 STRING_REF Help;
 UINT8 Flags;
 UINT16 Key;
 UINT8 MinSize;
 UINT8 MaxSize;
 UINT16 Encoding;
} EFI_IFR_PASSWORD;

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_PASSWORD_OP.

QuestionId

The unique value that identifies the particular question being defined by the opcode.
This value will correspond to the starting offset in NVRAM from which the settings
for this question are being read and written to.

Width

Identifies the size of nonvolatile RAM.
Prompt

The string token reference to the prompt string for this particular opcode. Type
STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

Help

The string token reference to the help string for this particular opcode.
Flags

A bit-mask that determines which unique settings are active for this opcode.
Key

A unique value that is passed back to a consumer by the browser if the
EFI_IFR_FLAG_INTERACTIVE flag is set and a user selects this opcode. Type
EFI_IFR_FLAG_INTERACTIVE is defined in EFI_IFR_ONE_OF.

100 October 2005 Version 0.92

 Code Definitions

MinSize

The minimum number of characters that can be accepted for this opcode.
MaxSize

The maximum number of characters that can be accepted for this opcode.
Encoding

A value to determine if password encoding is required. If TRUE, then the processing
of the password by the browser will be run through a built-in encoding mechanism.
Otherwise, the data will be processed in its raw form.

Description
This opcode provides the ability to define password capability and its associated storage offsets. In
addition, this opcode provides the ability to have the contents that are being read and written to
either be encoded or not.

Version 0.92 October 2005 101

Human Interface Infrastructure Specification

EFI_IFR_ORDERED_LIST

Summary
Defines the ordered list tag.

Prototype
<ordered-list> ::= <one-of-tag> [<one-of-body-tags>]2... <one-of-end-tag>

typedef struct {
 EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT8 MaxEntries;
 STRING_REF Prompt;
 STRING_REF Help;
} EFI_IFR_ORDERED_LIST;

typedef struct {
 EFI_IFR_OP_HEADER Header;
 STRING_REF Option;
 UINT16 Value;
 UINT8 Flags;
 UINT16 Key;
} EFI_IFR_ONE_OF_OPTION;

typedef struct {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_END_ONE_OF;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. The values of Header for each structure are as follows:

• For EFI_IFR_ORDERED_LIST, Header.OpCode =
EFI_IFR_ORDERED_LIST_OP.

• For EFI_IFR_ONE_OF_OPTION, Header.OpCode =
EFI_IFR_ONE_OF_OPTION_OP.

• For EFI_IFR_END_ONE_OF, Header.OpCode =
EFI_IFR_END_ONE_OF_OP.

QuestionId

The unique value which identifies the particular question being defined by the
opcode. This value will correspond to the starting offset in nonvolatile RAM that the
settings for this question are being read from and written to.

102 October 2005 Version 0.92

 Code Definitions

MaxEntries

The maximum number of entries for which this tag will maintain an order. This value
also identifies the size of the storage associated with this tag’s ordering array.

Prompt

The string token reference to the prompt string for this particular opcode. Type
STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

Help

The string token reference to the help string for this particular opcode. Type
STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

Option

The string token reference to the option description string for this particular opcode.
Type STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

Value

The value associated with the EFI_IFR_ONE_OF_OPTION that was chosen. This
value is what is used to determine which option is currently active. For ordered lists,
the value of 0 is reserved and should not be used.

Flags

A bit-mask that determines which unique settings are active for this opcode.
Key

A unique value that is passed back to a consumer by the browser if the
EFI_IFR_FLAG_INTERACTIVE flag is set and a user selects this opcode. Type
EFI_IFR_FLAG_INTERACTIVE is defined in EFI_IFR_ONE_OF.

Description
The ordered list does not have a direct analogy in HTML. It is intended to be used for cases such as
defining the boot order. This opcode’s use is very similar to the EFI_IFR_ONE_OF opcode where
there are corresponding options contained within this particular opcode. The values of each option
are what is recorded in the nonvolatile variable that is associated with this opcode. For example, if
this opcode has three options associated with it, and the values were 3, 4, and 5, one might expect
the storage destination to look like "345." If the order of these opcodes is changed, the settings
would potentially be something such as "534." One thing to note is that valid values for the options
in ordered lists should never be a 0. The value of 0 is used to determine if a particular "slot" in the
array is empty. Therefore, if in the previous example 3 was followed by a 4 and then followed by a
0, the valid options to be displayed would be 3 and 4 only.

Version 0.92 October 2005 103

Human Interface Infrastructure Specification

EFI_IFR_REF

Summary
Defines the ref tag.

Prototype
<ref> ::= <ref-op> <length> <form-id> <string>
<ref-op> ::= UINT8-constant

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 FormId;
 STRING_REF Prompt;
 STRING_REF Help;
 UINT8 Flags;
 UINT16 Key;
} EFI_IFR_REF;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_REF_OP.

FormId

The unique value that identifies the form to which this opcode is referring.
Prompt

The string token reference to the prompt string for this particular opcode. Type
STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

Help

The string token reference to the help string for this particular opcode.
Flags

A bit-mask that determines which unique settings are active for this opcode.
Key

A unique value which is passed back to a consumer by the browser if the
EFI_IFR_FLAG_INTERACTIVE flag is set and a user selects this opcode. Type
EFI_IFR_FLAG_INTERACTIVE is defined in EFI_IFR_ONE_OF.

Description
The ref tag is the equivalent of an HTML hypertext link. IFR limits links to the start of other forms
whereas HTML supports arbitrary hypertext links.

104 October 2005 Version 0.92

 Code Definitions

EFI_IFR_HIDDEN

Summary
Defines the hidden tag.

Prototype
typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 Value;
 UINT16 Key;
} EFI_IFR_HIDDEN;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_HIDDEN_OP.

Value

A value to associate with this particular opcode. This value is typically used for
revision information and will not affect the user interface.

Key

A unique value that can be used to identify a particular hidden opcode and determine
its Value. This uniqueness is essential when multiple hidden opcodes exist each
with a different intention.

Description
Hidden input allows for communication of revision data between the creator of the tags and the
consumer, for example. The user generally should not see hidden tags. Hidden tags can be used
inside IFR along with the <grayout> and <suppress> tags to control display of optional data.

Version 0.92 October 2005 105

Human Interface Infrastructure Specification

EFI_IFR_GRAY_OUT

Summary
Defines the grayout tag.

Prototype
<grayout> ::= <grayout-op> <length> <RPN expression>

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
} EFI_IFR_GRAY_OUT;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_GRAYOUTIF_OP.

Description
The <grayout> tag causes the following tag to be displayed in a special display form that is used
for inaccessible options if the Boolean expression evaluates to TRUE. Developers writing IFR
should realize that different browsers will support this option to varying degrees. In particular,
HTML has no similar construct so it may not support this facility.

106 October 2005 Version 0.92

 Code Definitions

EFI_IFR_SUPPRESS

Summary
Defines the suppress numeric tag.

Prototype
<suppress> ::= supress-op <length> <rpn-bool-expr> \
 <form-stmts> end-suppress-op

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT16 Value;
} EFI_IFR_SUPRESS;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_SUPPRESS_IF_OP.

QuestionId

The unique value that identifies the particular question being defined by the opcode.
This value will correspond to the starting offset in NVRAM for which the settings for
this question are being read and written to.

Value

The value against which the contents of the QuestionId will be compared.

Description
The suppress tag causes the following tag to be hidden from the user if the Boolean expression
evaluates to TRUE. As with <grayout>, the quality of support may vary from browser to
browser. HTML itself does not have a mechanism to provide this functionality.

Version 0.92 October 2005 107

Human Interface Infrastructure Specification

EFI_IFR_INCONSISTENT

Summary
Defines the inconsistency tag.

Prototype
<inconsistency> ::= inconsistency-op <length> <Popup> <rpn-bool-expr>

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 STRING_REF Popup;
} EFI_IFR_INCONSISTENT;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode =
EFI_IFR_INCONSISTENT_IF_OP.

Popup

The string token reference to the string that will be used for the consistency check
message. Type STRING_REF is defined in
EFI_HII_PROTOCOL.NewString().

Description
This tag uses a Boolean expression to allow the IFR creator to check options in a richer manner
than provided by the question tags themselves. For example, this tag might be used to validate that
two options are not using the same address or that the numbers that were entered align to some
pattern (such as leap years and February in a date input field). The tag provides a string to be used
in a "pop-up" display to alert the user to the issue. Inconsistency tags might be evaluated when the
user traverses from tag to tag or only upon submission. The user should not be allowed to submit
the results of a form inconsistency.

108 October 2005 Version 0.92

 Code Definitions

EFI_IFR_LABEL

Summary
Defines the label tag.

Prototype
typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 EFI_FORM_LABEL LabelId;
} EFI_IFR_LABEL;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_LABEL_OP.

Label

A unique value that does not affect the user interface but provides a location to which
IFR can be added or removed via the EFI_HII_PROTOCOL.UpdateForm()
function. Type EFI_FORM_LABEL is defined in
EFI_HII_PROTOCOL.UpdateForm().

Description
This tag is used to provide a base for possible runtime additions to the form. The label must be
unique to the form package in which it resides.

Version 0.92 October 2005 109

Human Interface Infrastructure Specification

EFI_IFR_VARSTORE

Summary
Defines the variable store tag.

Prototype
typedef struct {
 EFI_IFR_OP_HEADER Header;
 EFI_GUID Guid;
 UINT16 VarId;
 UINT16 Size;
 //UINT8 Name[];
} EFI_IFR_VARSTORE;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_VARSTORE_OP.

Guid

The variable’s GUID definition. This field comprises one half of the variable name,
with the other half being the human-readable aspect of the name, which is
represented by the string immediately following the Size field. Type EFI_GUID is
defined in InstallProtocolInterface() in the EFI 1.10 Specification.

VarId

The variable storage ID. This field is the value that is used to uniquely identify this
EFI_IFR_VARSTORE definition instance from others. Opcodes such as
EFI_IFR_VARSTORE_SELECT, which is the variable store selection opcode, will
refer to this field to designate which is the active variable that is being used.

Size

The size of the variable storage repository.
Name

This field is actually not defined in the structure but is included here to illustrate the
content of the encoding for this opcode. Because this field is variable in length, the
string is a NULL-terminated string and the overall size will be reflected in the
opcode’s Header field. Additionally, there is an expectation that this field will not
exceed 40 characters in length.

Description
This tag is used to provide a definition of a variable that can be used for purposes of establishing
custom nonvolatile storage destinations. These opcodes will generally be used once in a given form
set and will apply globally across the form set.

110 October 2005 Version 0.92

 Code Definitions

EFI_IFR_VARSTORE_SELECT

Summary
Defines the variable store select tag.

Prototype
typedef struct {
 EFI_IFR_OP_HEADER Header;
 UINT16 VarId;
} EFI_IFR_VARSTORE_SELECT;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode =
EFI_IFR_VARSTORE_SELECT_OP.

VarId

The variable storage ID. This field is the value that is used to uniquely identify the
EFI_IFR_VARSTORE definition instance that opcodes are to use until a time such
as another variable storage select opcode appearing.

Description
This tag is used to define what the active variable storage definition is to use for the opcodes that
follow this tag. All opcodes that refer to configuration settings that are stored in variables will be
affected by this tag. To avoid having each and every opcode be burdened with a field that specifies
which variable storage the opcode uses, this tag is intended as a means by which the IFR compiler
can set the "active" variable storage to use for a given opcode. When the context of an opcode’s
storage must change, this tag will again be embedded with the appropriate VarId information for
the opcodes that follow.

Version 0.92 October 2005 111

Human Interface Infrastructure Specification

EFI_IFR_VARSTORE_SELECT_PAIR

Summary
Defines the variable store select pair tag.

Prototype
typedef struct {
 EFI_IFR_OP_HEADER Header;
 UINT16 VarId;
 UINT16 SecondaryVarId;
} EFI_IFR_VARSTORE_SELECT_PAIR;

Parameters
Header

The byte sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode =
EFI_IFR_VARSTORE_SELECT_PAIR_OP.

VarId

The variable storage ID. This field is the value that is used to uniquely identify the
EFI_IFR_VARSTORE definition instance that is to be used by opcodes until such a
time as another variable storage select opcode appears.

SecondaryVarId

The variable storage ID. This field is the value that is used to uniquely identify the
EFI_IFR_VARSTORE definition instance that is to be used by opcodes until such a
time as another variable storage select opcode appears.

Description
This tag is used primarily in the case where a Boolean expression needs to be interpreted where the
value of two opcode settings need to be compared and each of the opcodes reside in a different
variable storage. This opcode does not affect the "active" variable setting and will only apply to the
following opcode, which is a Boolean expression that compares the settings of two different
variable IDs.

112 October 2005 Version 0.92

 Code Definitions

Boolean Expressions

Summary
Defines Boolean expressions.

Prototype
<rpn-bool-expr> ::= <bool-expr> <rpn-expr-end-op>
 <rpn-expr-end-op> ::= UINT8-constant
 <bool-expr> ::= <bool-primitive> |
 <bool-expr> <not-op> |
 <bool-expr> <bool-expr> <and-op> |
 <bool-expr> <bool-expr> <or-op>
 <not-op>, <and-op>, <or-op> ::= UINT8-constant
<bool-primitive> ::= <id-val> | <id-val-list> | <id-id>
<id-val> ::= <id-val-op> <name-id> <value>
<id-val-list> ::= <id-val-list-op> <name-id> <value-list-length>
<value-list> ::= <length> [<value>]n..n
<id-id> ::= <id-id-op> <name-id> <name-id> <id-val-op>, \
 <id-val-list-op>, \
 <id-id-op> ::= UINT8-constant
<length> ::= UINT-8-value

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT16 Value;
} EFI_IFR_EQ_ID_VAL;

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT16 ListLength;
 UINT16 ValueList[1];
} EFI_IFR_EQ_ID_LIST;

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId1;
 UINT16 QuestionId2;
} EFI_IFR_EQ_ID_ID;

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
} EFI_IFR_AND;

Version 0.92 October 2005 113

Human Interface Infrastructure Specification

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
} EFI_IFR_OR;

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
} EFI_IFR_NOT;

typedef struct {
 struct _EFI_IFR_OP_HEADER Header;
} EFI_IFR_END_EXPR;

Parameters
Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. The values of Header for each structure are as follows:

• For EFI_IFR_EQ_ID_VAL, Header.OpCode =
EFI_IFR_EQ_ID_VAL_OP.

• For EFI_IFR_EQ_ID_LIST, Header.OpCode =
EFI_IFR_EQ_ID_LIST_OP.

• For EFI_IFR_EQ_ID_ID, Header.OpCode =
EFI_IFR_EQ_ID_ID_OP.

• For EFI_IFR_AND, Header.OpCode = EFI_IFR_AND_OP.

• For EFI_IFR_OR, Header.OpCode = EFI_IFR_OR_OP.

• For EFI_IFR_NOT, Header.OpCode = EFI_IFR_NOT_OP.

• For EFI_IFR_END_EXPR, Header.OpCode = EFI_IFR_END_IF_OP.
QuestionId

The unique value that identifies the particular question being referenced by the
opcode.

QuestionId2

The unique value that identifies the particular question being referenced by the
opcode.

Value

The value to which the question being referenced will be compared.
ListLength

The length of the list of values against which to be compared.
ValueList

The list of values against which a particular question will be compared.

114 October 2005 Version 0.92

 Code Definitions

Description
A Boolean expression is a postfix (Reverse Polish Notation) equation that evaluates to true or false.
The terminal entries allow for assertions that two questions contain the same data values, that a
question’s value equals a constant, and that a question’s value is in a list of constant values. Higher-
level operations are AND, OR, and NOT.
The value of <length> is the number of bytes from and including the opcode to the end of the
operation. The "end of the operation" is defined to be the byte preceding an operation with its
opcode and length field.

Version 0.92 October 2005 115

Human Interface Infrastructure Specification

HII Protocol Forms Entries

EFI_HII_PROTOCOL (Forms Entries)

Summary
The EFI HII protocol maintains a database of forms. Forms packages are referred to by a handle
while forms are referred to by a handle and the form ID.

Protocol Interface Structure
typedef struct _EFI_HII_PROTOCOL {
 ...
 EFI_HII_NEW_PACK NewPack;
 EFI_HII_GET_FORMS GetForms;
 EFI_HII_GET_DEFAULT_IMAGE GetDefaultImage;
 EFI_HII_UPDATE_FORM UpdateForm;
 ...
} EFI_HII_PROTOCOL;

Parameters
NewPack

Adds a new pack to the database. See the NewPack() function description.
GetForms

Extracts one or more forms from the database. See the GetForms() function
description.

GetDefaultImage

Allows a program to extract the nonvolatile image that represents the default storage
image. See the GetDefaultImage() function description.

UpdateForm

Adds new elements to the form. See the UpdateForm() function description.

Description
The forms functions allow for the addition of forms to the HII database, for extraction of those
forms, and for update.

(Note: The “Related Definitions” subsection was deleted for the 0.91 version. The definitions from
this section were moved to other API definitions.)

116 October 2005 Version 0.92

 Code Definitions

EFI_HII_PROTOCOL.NewPack() (Form-Related Entries)

Summary
This function is the common method for submitting new packages to the HII Protocol for addition
to the database. For forms, the form package is registered with the protocol.
No additional status returns are defined due to forms.
See EFI_HII_PROTOCOL.NewPack() in the Packages section for the function definition.

Version 0.92 October 2005 117

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.GetForms()

Summary
Allows a program to extract a form or form package that has previously been registered with the
HII database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_FORMS) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN EFI_FORM_ID FormId,
 IN OUT UINTN *BufferLength,
 OUT UINT8 *Buffer
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

Handle on which the form resides. Type EFI_HII_HANDLE is defined in
EFI_HII_PROTOCOL.NewPack() in the Packages section.

FormId

The ID of the form to return. If the ID is zero, the entire form package is returned.
Type EFI_FORM_ID is defined in "Related Definitions" below.

BufferLength

On input, the length of the Buffer. On output, the length of the returned buffer, if
the length was sufficient and, if it was not, the length that is required to fit the
requested form(s).

Buffer

The buffer designed to receive the form(s).

Description
This function is used to extract a form or forms. If the FormId is passed in with a value of zero, the
entire form package referenced by Handle will be extracted.

118 October 2005 Version 0.92

 Code Definitions

Related Definitions
//***
// EFI_FORM_ID
//***
typedef UINT16 EFI_FORM_ID;

Status Codes Returned
EFI_SUCCESS Buffer filled with the requested forms. BufferLength

was updated.

EFI_INVALID_PARAMETER The handle is unknown.

EFI_NOT_FOUND A form on the requested handle cannot be found with the
requested FormId.

EFI_BUFFER_TOO_SMALL The buffer provided was not large enough to allow the form to be
stored.

Version 0.92 October 2005 119

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.GetDefaultImage()

Summary
Extracts the defaults that are associated with a given handle in the HII database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_DEFAULT_IMAGE) (
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN UINTN DefaultMask,
 OUT EFI_HII_VARIABLE_PACK_LIST **VariablePackList
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

The HII handle from which will have default data retrieved. Type
EFI_HII_HANDLE is defined in EFI_HII_PROTOCOL.NewPack() in the
Packages section.

DefaultMask

The mask used to specify some type of default override when extracting the default
image data.

VariablePackList

A indirect pointer to the first entry of a link list with type
EFI_HII_VARIABLE_PACK_LIST. The memory buffer is allocated by this
interface function and its size is equal to the total size of all nodes of the link list plus
the total size of all variable found in Handle. The caller is responsible to free up this
memory region.

Description
This function creates a packed link list of type EFI_HII_VARIABLE_PACK_LIST that contains
all the discernable defaults of variables (either the default one or the others defined by the
EFI_IFR_VARSTORE IFR tag or varstore VFR tag) for the opcodes that are defined in this
Handle’s domain of data. You can additionally provide an override DefaultMask so that
alternate "manufacturing" default settings might be extracted instead of what might otherwise be
defined within the opcodes..

120 October 2005 Version 0.92

 Code Definitions

 Related Definitions
//**
// EFI_HII_VARIABLE_PACK_LIST
//**
typedef struct _EFI_HII_VARIABLE_PACK_LIST {
 struct _EFI_HII_VARIABLE_PACK_LIST *NextVariablePack;
 EFI_HII_VARIABLE_PACK *VariablePack;
 //EFI_HII_VARIABLE_PACK Content
} EFI_HII_VARIABLE_PACK_LIST;

NextVariablePack

A pointer points to the next data structure of type
EFI_HII_VARIABLE_PACK_LIST in the packed link list.

VariablePack

A pointer points to the content of the variable entry defined by GUID/name/data. For
the implementation of EFI_HII_PROTOCOL.GetDefaultImage(), this
content follows right after this pointer in the memory space. The data buffer pointed
to by Type EFI_HII_VARIABLE_PACK is defined in
EFI_HII_PROTOCOL.ExportDatabase().

Status Codes Returned
EFI_SUCCESS The VariablePackList was populated with the appropriate

default setting data.

EFI_NOT_FOUND The IFR does not have any explicit or default map(s).

EFI_INVALID_PARAMETER The HII database entry associated with Handle contain invalid
data, i.e., either the data buffer of the HII database entry is NULL or
the size of IFR for the HII database is zero.

Version 0.92 October 2005 121

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.UpdateForm()

Summary
Allows the caller to update a form or form package that has previously been registered with the EFI
HII database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_UPDATE_FORM) {
 IN EFI_HII_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN EFI_FORM_LABEL Label,
 IN BOOLEAN AddData,
 IN EFI_HII_UPDATE_DATA *Data
};

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
Handle

Handle of the package where the form to be updated resides. Type
EFI_HII_HANDLE is defined in EFI_HII_PROTOCOL.NewPack() in the
Packages section.

Label

The label inside the form package where the update is to take place. Type
EFI_FORM_LABEL is defined in "Related Definitions" below.

AddData

If TRUE, adding data at a given Label; otherwise, if FALSE, removing data at a
given Label. If FALSE, it will not allow the removal of the end of a form.

Data

The buffer containing the new tags to insert after the Label. Type
EFI_HII_UPDATE_DATA is defined in "Related Definitions" below.

Description
This function allows a program to update a form at runtime. The form must have been built
expecting the update, because a label tag is required. The tags in Buffer are inserted into the form
just after the label tag.

122 October 2005 Version 0.92

 Code Definitions

Related Definitions
//**
// EFI_FORM_LABEL
//**
typedef UINT16 EFI_FORM_LABEL;

//***
// EFI_HII_UPDATE_DATA
//***
typedef struct {
 BOOLEAN FormSetUpdate;
 EFI_PHYSICAL_ADDRESS FormCallbackHandle;
 BOOLEAN FormUpdate;
 UINT16 FormValue;
 STRING_REF FormTitle;
 UINT16 DataCount;
 UINT8 *Data;
} EFI_HII_UPDATE_DATA;

FormSetUpdate

If TRUE, indicates that the FormCallbackHandle value will be used to update
the contents of the CallBackHandle entry in the form set.

FormCallbackHandle

This parameter is valid only when FormSetUpdate is TRUE. The value in this
parameter will be used to update the contents of the CallbackHandle entry in the
form set. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in
the EFI 1.10 Specification.

FormUpdate

If TRUE, indicates that the FormTitle contents will be used to update the
FormValue’s title.

FormValue

Specifies which form is to be updated if the FormUpdate value is TRUE.
FormTitle

This parameter is valid only when the FormUpdate parameter is TRUE. The value
in this parameter will be used to update the contents of the form title. Type
STRING_REF is defined in EFI_HII_PROTOCOL.NewString().

DataCount

The number of Data entries in this structure.
Data

An array of 1+ opcodes, specified by DataCount.

Version 0.92 October 2005 123

Human Interface Infrastructure Specification

Status Codes Returned
EFI_SUCCESS The form was updated with the new tags.

EFI_INVALID_PARAMETER The buffer for the buffer length does not contain an integral
number of tags.

EFI_NOT_FOUND The Handle, Label, or FormId was not found.

124 October 2005 Version 0.92

 Code Definitions

Keyboard Layout

HII Protocol Keyboard Entries

EFI_HII_PROTOCOL (Keyboard Functions)

Summary
The HII Protocol also provides a keyboard function that allows the existing keyboard layout to be
extracted.

Protocol Interface Structure
typedef struct _EFI_HII_PROTOCOL {
 ...
 EFI_HII_GET_KEYBOARD_LAYOUT GetKeyboardLayout;
 ...
} EFI_HII_PROTOCOL;

Parameters
GetKeyboardLayout

Allows a program to extract the current keyboard layout. See the
GetKeyboardLayout() function description.

Description
The purpose of this function is to provide a routine that can extract the existing keyboard layout
definitions.

Version 0.92 October 2005 125

Human Interface Infrastructure Specification

EFI_HII_PROTOCOL.GetKeyboardLayout()

Summary
Retrieves the current keyboard layout.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_KEYBOARD_LAYOUT) (
 IN EFI_HII_PROTOCOL *This,
 OUT UINT16 *DescriptorCount,
 OUT EFI_KEY_DESCRIPTOR *Descriptor
);

Parameters
This

A pointer to the EFI_HII_PROTOCOL instance.
DescriptorCount

A pointer to the number of Descriptor entries being described in the keyboard
layout being retrieved.

Descriptor

A pointer to a buffer containing an array of EFI_KEY_DESCRIPTOR entries. Each
entry will reflect the definition of a specific physical key. Type
EFI_KEY_DESCRIPTOR is defined in "Related Definitions" below.

Description
This routine retrieves the current keyboard layout. The layout is a physical description of the keys
on a keyboard and the character(s) that are associated with a particular set of key strokes.

Related Definitions
//***
// EFI_KEY_DESCRIPTOR
//***
typedef struct {
 EFI_KEY Key;
 CHAR16 Unicode;
 CHAR16 ShiftedUnicode;
 CHAR16 AltGrUnicode;
 CHAR16 ShiftedAltGrUnicode;
 UINT16 Modifier;
} EFI_KEY_DESCRIPTOR;

126 October 2005 Version 0.92

 Code Definitions

Key

Used to describe a physical key on a keyboard. Type EFI_KEY is defined below.
Unicode

Unicode value for the Key.
ShiftedUnicode

Unicode value for the key with the shift key being held down.
AltGrUnicode

Unicode value for the key with the Alt-GR being held down.
ShiftedAltGrUnicode

Unicode value for the key with the Alt-GR and shift keys being held down.
Modifier

Modifier keys are defined to allow for special functionality that is not necessarily
accomplished by a printable character. Many of these modifier keys are flags to
toggle certain state bits on and off inside of a keyboard driver. Values for
Modifier are defined below.

//***
// EFI_KEY
//***
typedef enum {
 EfiKeyLCtrl, EfiKeyA0, EfiKeyLAlt, EfiKeySpaceBar,
 EfiKeyA2, EfiKeyA3, EfiKeyA4, EfiKeyRCtrl, EfiKeyLeftArrow,
 EfiKeyDownArrow, EfiKeyRightArrow, EfiKeyZero,
 EfiKeyPeriod, EfiKeyEnter, EfiKeyLShift, EfiKeyB0,
 EfiKeyB1, EfiKeyB2, EfiKeyB3, EfiKeyB4, EfiKeyB5, EfiKeyB6,
 EfiKeyB7, EfiKeyB8, EfiKeyB9, EfiKeyB10, EfiKeyRshift,
 EfiKeyUpArrow, EfiKeyOne, EfiKeyTwo, EfiKeyThree,
 EfiKeyCapsLock, EfiKeyC1, EfiKeyC2, EfiKeyC3, EfiKeyC4,
 EfiKeyC5, EfiKeyC6, EfiKeyC7, EfiKeyC8, EfiKeyC9,
 EfiKeyC10, EfiKeyC11, EfiKeyC12, EfiKeyFour, EfiKeyFive,
 EfiKeySix, EfiKeyPlus, EfiKeyTab, EfiKeyD1, EfiKeyD2,
 EfiKeyD3, EfiKeyD4, EfiKeyD5, EfiKeyD6, EfiKeyD7, EfiKeyD8,
 EfiKeyD9, EfiKeyD10, EfiKeyD11, EfiKeyD12, EfiKeyD13,
 EfiKeyDel, EfiKeyEnd, EfiKeyPgDn, EfiKeySeven, EfiKeyEight,
 EfiKeyNine, EfiKeyE0, EfiKeyE1, EfiKeyE2, EfiKeyE3,
 EfiKeyE4, EfiKeyE5, EfiKeyE6, EfiKeyE7, EfiKeyE8, EfiKeyE9,
 EfiKeyE10, EfiKeyE11, EfiKeyE12, EfiKeyBackSpace,
 EfiKeyIns, EfiKeyHome, EfiKeyPgUp, EfiKeyNLck, EfiKeySlash,
 EfiKeyAsterisk, EfiKeyMinus, EfiKeyEsc, EfiKeyF1, EfiKeyF2,
 EfiKeyF3, EfiKeyF4, EfiKeyF5, EfiKeyF6, EfiKeyF7, EfiKeyF8,

Version 0.92 October 2005 127

Human Interface Infrastructure Specification

 EfiKeyF9, EfiKeyF10, EfiKeyF11, EfiKeyF12, EfiKeyPrint,
 EfiKeySLck, EfiKeyPause
} EFI_KEY;

See the figure below for which key corresponds to the values in the enumeration above. For
example, EfiKeyLCtrl corresponds to the left control key in the lower-left corner of the
keyboard, EfiKeyFour corresponds to the 4 key on the numeric keypad, and EfiKeySLck
corresponds to the Scroll Lock key in the upper-right corner of the keyboard.

Figure 3-1. Keyboard Layout

//***
// Modifier values
//***
#define EFI_NULL_MODIFIER 0x0000
#define EFI_LEFT_CONTROL_MODIFIER 0x0001
#define EFI_RIGHT_CONTROL_MODIFIER 0x0002
#define EFI_LEFT_ALT_MODIFIER 0x0003
#define EFI_RIGHT_ALT_MODIFIER 0x0004
#define EFI_ALT_GR_MODIFIER 0x0005
#define EFI_INSERT_MODIFIER 0x0006
#define EFI_DELETE_MODIFIER 0x0007
#define EFI_PAGE_DOWN_MODIFIER 0x0008
#define EFI_PAGE_UP_MODIFIER 0x0009
#define EFI_HOME_MODIFIER 0x000A
#define EFI_END_MODIFIER 0x000B
#define EFI_LEFT_SHIFT_MODIFIER 0x000C
#define EFI_RIGHT_SHIFT_MODIFIER 0x000D
#define EFI_CAPS_LOCK_MODIFIER 0x000E
#define EFI_NUM_LOCK _MODIFIER 0x000F
#define EFI_LEFT_ARROW_MODIFIER 0x0010
#define EFI_RIGHT_ARROW_MODIFIER 0x0011
#define EFI_DOWN_ARROW_MODIFIER 0x0012
#define EFI_UP_ARROW_MODIFIER 0X0013
#define EFI_DEAD_KEY_MODIFIER 0x0014
#define EFI_DEAD_KEY_DEPENDENCY_MODIFIER 0x0015
#define EFI_FUNCTION_KEY_ONE_MODIFIER 0x0016
#define EFI_FUNCTION_KEY_TWO_MODIFIER 0x0017
#define EFI_FUNCTION_KEY_THREE_MODIFIER 0x0018

128 October 2005 Version 0.92

 Code Definitions

#define EFI_FUNCTION_KEY_FOUR_MODIFIER 0x0019
#define EFI_FUNCTION_KEY_FIVE_MODIFIER 0x001A
#define EFI_FUNCTION_KEY_SIX_MODIFIER 0x001B
#define EFI_FUNCTION_KEY_SEVEN_MODIFIER 0x001C
#define EFI_FUNCTION_KEY_EIGHT_MODIFIER 0x001D
#define EFI_FUNCTION_KEY_NINE_MODIFIER 0x001E
#define EFI_FUNCTION_KEY_TEN_MODIFIER 0x001F
#define EFI_FUNCTION_KEY_ELEVEN_MODIFIER 0x0020
#define EFI_FUNCTION_KEY_TWELVE_MODIFIER 0x0021
//
// Keys that have multiple control functions based on modifier
// settings are handled in the keyboard driver implementation.
// For instance PRINT_KEY might have a modifier held down and
// is still a nonprinting character, but might have an alternate
// control function like SYSREQUEST
//
#define EFI_PRINT_MODIFIER 0x0022
#define EFI_SYS_REQUEST_MODIFIER 0x0023
#define EFI_SCROLL_LOCK_MODIFIER 0x0024
#define EFI_PAUSE_MODIFIER 0x0025
#define EFI_BREAK_MODIFIER 0x0026
//
// Keyboard layout switching modifiers
//
// This assumes that the driver implementation will not
// assign a key definition if one of the following modifier
// values is presented.
//
#define EFI_LAYOUT_SWITCH_MODIFIER 0x0027
#define EFI_LAYOUT_SWITCH_DEPENDENCY_MODIFIER 0x0028

Status Codes Returned
EFI_SUCCESS The keyboard layout was retrieved successfully.

Version 0.92 October 2005 129

Human Interface Infrastructure Specification

Dynamic Processing of NV/IFR Data

Form Callback Protocol

EFI_FORM_CALLBACK_PROTOCOL

Summary
The EFI_FORM_CALLBACK_PROTOCOL is the defined interface for access to custom NVS
devices as well as communication of user selections in a more interactive environment. This
protocol should be published by hardware-specific drivers that want to export access to custom
hardware storage or publish IFR that has a requirement to call back the original driver.

GUID
#define EFI_FORM_CALLBACK_PROTOCOL_GUID \
 { 0xf3e4543d, 0xcf35, 0x6cef, 0x35, 0xc4, 0x4f, 0xe6, \
 0x34, 0x4d, 0xfc, 0x54 }

Protocol Interface Structure
typedef struct _EFI_FORM_CALLBACK_PROTOCOL {
 EFI_NV_READ NvRead;
 EFI_NV_WRITE NvWrite;
 EFI_FORM_CALLBACK Callback;
} EFI_FORM_CALLBACK_PROTOCOL;

Parameters
NvRead

The read operation to access the NV data serviced by a hardware-specific driver. See
the NvRead() function description.

NvWrite

The write operation to access the NV data serviced by a hardware-specific driver. See
the NvWrite() function description.

Callback

The function that is called from the configuration browser to communicate key value
pairs. See the Callback() function description.

Description
This interface is provided by hardware-specific drivers that control access to nonsystem NVS and
support callbacks from the browser or HII.

(Note: The “Related Definitions” subsection was deleted for the 0.91 version. The definitions from
this section were moved to other API definitions.)

130 October 2005 Version 0.92

 Code Definitions

EFI_FORM_CALLBACK_PROTOCOL.NvRead()

Summary
Returns the value of a variable.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_NV_READ) (
 IN EFI_FORM_CALLBACK_PROTOCOL *This,
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 OUT UINT32 *Attributes OPTIONAL,
 IN OUT UINTN *DataSize,
 OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_FORM_CALLBACK_PROTOCOL instance.
VariableName

A NULL-terminated Unicode string that is the name of the vendor’s variable.
VendorGuid

A unique identifier for the vendor. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Attributes

If not NULL, a pointer to the memory location to return the attribute's bit-mask for the
variable. See GetVariable() in the EFI 1.10 Specification for the attribute values
and SetVariable() in the EFI 1.10 Specification for more information on the
meanings of these values.

DataSize

The size in bytes of the Buffer. A size of zero causes the variable to be deleted.
Buffer

The buffer to return the contents of the variable.

Description
Each vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid.. When a variable is set, its Attributes are supplied to indicate how the
data variable should be stored and maintained by the system. Any attempts to access a variable that
does not have the attribute set for runtime access will yield the EFI_NOT_FOUND error.

Version 0.92 October 2005 131

Human Interface Infrastructure Specification

(Note: The “Related Definitions” subsection was deleted for the 0.91 version.)

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has
been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

132 October 2005 Version 0.92

 Code Definitions

EFI_FORM_CALLBACK_PROTOCOL.NvWrite()

Summary
Sets the value of a variable.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_NV_WRITE) (
 IN EFI_FORM_CALLBACK_PROTOCOL *This,
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 IN UINT32 *Attributes,
 IN UINTN DataSize,
 IN VOID *Buffer,
 OUT BOOLEAN *ResetRequired
);

Parameters
This

A pointer to the EFI_FORM_CALLBACK_PROTOCOL instance.
VariableName

A NULL-terminated Unicode string that is the name of the vendor’s variable. Each
VariableName is unique for each VendorGuid.

VendorGuid

A unique identifier for the vendor. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Attributes

Attributes bit-mask to set for the variable. See
EFI_FORM_CALLBACK_PROTOCOL.NvRead().

DataSize

The size in bytes of the Buffer. A size of zero causes the variable to be deleted.
Buffer

The buffer containing the contents of the variable.
ResetRequired

Returns a value from the driver that abstracts this information and will enable a
system to know if a system reset is required to achieve the configuration changes
being enabled through this function.

Version 0.92 October 2005 133

Human Interface Infrastructure Specification

Description
Variables are stored by the firmware and may maintain their values across power cycles. Each
vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid.

Status Codes Returned
EFI_SUCCESS The firmware has successfully stored the variable and its data as

defined by the Attributes.

EFI_INVALID_PARAMETER An invalid combination of Attributes bits was supplied, or
the DataSize exceeds the maximum allowed.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

134 October 2005 Version 0.92

 Code Definitions

EFI_FORM_CALLBACK_PROTOCOL.CallBack()

Summary
This function is called to provide results data to the driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FORM_CALLBACK) (
 IN EFI_FORM_CALLBACK_PROTOCOL *This,
 IN UINT16 KeyValue,
 IN EFI_IFR_DATA_ARRAY *Data,
 OUT EFI_HII_CALLBACK_PACKET **Packet
);

Parameters
This

A pointer to the EFI_FORM_CALLBACK_PROTOCOL instance.
KeyValue

A unique value which is sent to the original exporting driver so that it can identify the
type of data to expect. The format of the data tends to vary based on the opcode that
generated the callback.

Data

A pointer to the data being sent to the original exporting driver. Type
EFI_IFR_DATA_ARRAY is defined in "Related Definitions" below.

Packet

A pointer to a packet of information which a driver passes back to the browser. Type
EFI_HII_CALLBACK_PACKET is defined in "Related Definitions" below.

Description
This function is called to provide results data to the driver. This data consists of a unique key that is
used to identify which data is either being passed back or being asked for.

Version 0.92 October 2005 135

Human Interface Infrastructure Specification

Related Definitions
The Data format will be based on the opcode type that the KeyValue references. The table below
lists the value passed in the Data pointer for each opcode type.

Table 3-1. Value Passed in the Data Pointer
If the
opcode is...

The following is being passed in
the Data pointer...

Comment

OneOf UINT16 Value

Text NULL There is no user initiated data to be sent other than the
KeyValue. There should be a reasonable
expectation that a response to this callback will be that
a message gets posted with a particular key value and
string. This posting would be done in the
EFI_FORM_BROWSER_PROTOCOL.

String CHAR16 *String

Numeric UINT16 Value

//***
// EFI_IFR_DATA_ARRAY
//***
typedef struct {
 VOID *NvRamMap;
 UINT32 EntryCount;
} EFI_IFR_DATA_ARRAY;

NvRamMap

If the flag of the opcode specified to retrieve a copy of the NVRAM map, this
parameter is a pointer to a buffer copy.

EntryCount

The number of EFI_IFR_DATA_ENTRY entries.
Note that immediately following the EntryCount is an array of
EFI_IFR_DATA_ENTRY structures. The number of iterations is defined by the
EntryCount value. Type EFI_IFR_DATA_ENTRY is defined below.

136 October 2005 Version 0.92

 Code Definitions

//***
// EFI_IFR_DATA_ENTRY
//***
typedef struct {
 UINT8 OpCode;
 UINT8 Length;
 UINT16 Flags;
 VOID *Data;
} EFI_IFR_DATA_ENTRY;

OpCode

The type of opcode. The opcode type is likely string, numeric, or one-of.
Length

Length of the EFI_IFR_DATA_ENTRY packet.
Flags

Flags settings to determine what behavior is desired from the browser after the
callback.

Data

The data in the form based on the opcode type. This parameter is not a pointer to the
data; the data follows immediately.
If the OpCode is a one-of or numeric type, Data is a UINT16 value.
If the OpCode is a string type, Data is a CHAR16[x] type.
If the OpCode is a checkbox type, Data is a UINT8 value.
If the OpCode is an NV access type, Data is an EFI_IFR_NV_DATA structure,
which is defined below.

//***
// EFI_IFR_NV_DATA
//***
typedef struct {
 EFI_IFR_OP_HEADER Header;
 UINT16 QuestionId;
 UINT8 StorageWidth;
//CHAR8 Data[];
} EFI_IFR_NV_DATA;

Header

For this structure, Header.OpCode = EFI_IFR_NV_ACCESS_COMMAND.
Type EFI_IFR_NV_ACCESS_COMMAND is defined in EFI_IFR_OP_HEADER.

Version 0.92 October 2005 137

Human Interface Infrastructure Specification

QuestionId

Offset into the map.
StorageWidth

Width of the value.
Data

The data itself.

//***
// EFI_HII_CALLBACK_PACKET
//***
typedef union {
 EFI_IFR_DATA_ARRAY DataArray;
 EFI_IFR_PACKET DataPacket;
 CHAR16 *String;
} EFI_HII_CALLBACK_PACKET;

DataArray

Refers to an array of entries that describes the current configuration settings as well
as directives that are communicated back to the browser. Type
EFI_IFR_DATA_ARRAY is defined above.

DataPacket

Describes string and IFR content that is being passed back to the browser to display.
This content is used mainly by drivers that need to interact directly with the browser
without using the HII repository as an intermediary. Type EFI_IFR_PACKET is
defined in EFI_FORM_BROWSER_PROTOCOL.SendForm().

String

If a callback will return with an error and the driver wants the browser to display if
returning an error, it fills the string with null-terminated contents.

Status Codes Returned
EFI_SUCCESS The firmware has successfully stored the variable and its data as

defined by the Attributes.

EFI_INVALID_PARAMETER An invalid combination of Attributes bits was supplied, or
the DataSize exceeds the maximum allowed.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

138 October 2005 Version 0.92

 Code Definitions

Browser Interface

Form Browser Protocol

Form Browser Protocol
The EFI_FORM_BROWSER_PROTOCOL is the interface to call for drivers to leverage the EFI
configuration driver interface.

EFI_FORM_BROWSER_PROTOCOL

Summary
The EFI_FORM_BROWSER_PROTOCOL is the interface to the EFI configuration driver. This
interface will allow the caller to direct the configuration driver to use either the HII database or use
the passed-in packet of data.

GUID
#define EFI_FORM_BROWSER_PROTOCOL_GUID \
 { 0xe5a1333e, 0xe1b4, 0x4d55, 0xce, 0xeb, 0x35, 0xc3, \
 0xef, 0x13, 0x34, 0x43 }

Protocol Interface Structure
typedef struct _EFI_FORM_BROWSER_PROTOCOL {
 EFI_SEND_FORM SendForm;
 EFI_CREATE_POP_UP CreatePopUp;
} EFI_FORM_BROWSER_PROTOCOL;

Parameters
SendForm

Provides direction to the configuration driver whether to use the HII database or to
use a passed-in set of data. This functions also establishes a pointer to the calling
driver’s callback interface. See the SendForm() function description.

CreatePopUp

Routine used to abstract a generic dialog interface and return the selected key or
string. See the CreatePopUp() function description.

Description
This protocol is the interface to call for drivers to leverage the EFI configuration driver interface.

(Note: The “Related Definitions” subsection was deleted for the 0.91 version. The definitions from
this section were moved to other API definitions.)

Version 0.92 October 2005 139

Human Interface Infrastructure Specification

EFI_FORM_BROWSER_PROTOCOL.SendForm()

Summary
Provides direction to the configuration driver whether to use the HII database or a passed-in set of
data. This function also establishes a pointer to the calling driver’s callback interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SEND_FORM) (
 IN EFI_FORM_BROWSER_PROTOCOL *This,
 IN BOOLEAN UseDatabase,
 IN EFI_HII_HANDLE *Handle,
 IN UINTN HandleCount,
 IN EFI_IFR_PACKET *Packet, OPTIONAL
 IN EFI_HANDLE CallbackHandle, OPTIONAL
 IN UINT8 *NvMapOverride, OPTIONAL
 IN EFI_SCREEN_DESCRIPTOR *ScreenDimensions, OPTIONAL
 OUT BOOLEAN *ResetRequired OPTIONAL
);

Parameters
This

A pointer to the EFI_FORM_BROWSER_PROTOCOL instance.
UseDatabase

Determines whether the HII database is to be used to gather information. If the value
is FALSE, the configuration driver will get the information provided in the passed-in
Packet parameters.

Handle

A pointer to an array of HII handles to display. This value should correspond to the
value of the HII form package that is required to be displayed. Type
EFI_HII_HANDLE is defined in EFI_HII_PROTOCOL.NewPack() in the
Packages section.

HandleCount

The number of handles in the array specified by Handle.
Packet

A pointer to a set of data containing pointers to IFR and/or string data. This
parameter is used only when the UseDatabase parameter is FALSE and an
application is trying to pass information directly back and forth to the browser. Type
EFI_IFR_PACKET is defined in "Related Definitions" below.

140 October 2005 Version 0.92

 Code Definitions

CallbackHandle

The handle to the driver’s callback interface. This parameter is used only when the
UseDatabase parameter is FALSE and an application wants to register a callback
with the browser. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

NvMapOverride

This buffer is used only when there is no NV variable to define the current settings
and the caller needs to provide to the browser the current settings for the "fake" NV
variable. If used, no saving of an NV variable will be possible. This parameter is also
ignored if Handle is zero.

ScreenDimensions

Allows the browser to be called so that it occupies a portion of the physical screen
instead of dynamically determining the screen dimensions. Type
EFI_SCREEN_DESCRIPTOR is defined in "Related Definitions" below.

ResetRequired

This BOOLEAN value will tell the caller if a reset is required based on the data that
might have been changed. The ResetRequired parameter is primarily applicable
for configuration applications, and is an optional parameter.

Description
This function is the primary interface to the internal forms-based browser. By calling this routine,
one is directing the browser to use a variety of passed-in information or primarily use the HII
database as the source of information.

Related Definitions
//**
// EFI_IFR_PACKET
//**
typedef struct {
 EFI_HII_IFR_PACK *IFRData;
 EFI_HII_STRING_PACK *StringData;
} EFI_IFR_PACKET;

IFRData

A pointer to a self-describing series of forms that should start with an
EFI_IFR_FORM_SET_OP and ends with an EFI_IFR_END_FORM_SET_OP.
This IfrData will be passed to the browser and used to render data to the user.
Type EFI_HII_IFR_PACK is defined in
EFI_HII_PROTOCOL.ExportDatabase().

StringData

A pointer to a string package that defines a set of strings that will be passed into the
browser. Type EFI_HII_STRING_PACK is defined in String Package Structure.

Version 0.92 October 2005 141

Human Interface Infrastructure Specification

//**
// EFI_SCREEN_DESCRIPTOR
//**
typedef struct {
 UINTN LeftColumn;
 UINTN RightColumn;
 UINTN TopRow;
 UINTN BottomRow;
} EFI_SCREEN_DESCRIPTOR;

LeftColumn

Value that designates the text column where the browser window will begin from the
left-hand side of the screen

RightColumn

Value that designates the text column where the browser window will end on the
right-hand side of the screen.

TopRow

Value that designates the text row from the top of the screen where the browser
window will start.

BottomRow

Value that designates the text row from the bottom of the screen where the browser
window will end.

Status Codes Returned
EFI_SUCCESS The function completed successfully

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has
been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

142 October 2005 Version 0.92

 Code Definitions

EFI_FORM_BROWSER_PROTOCOL.CreatePopUp()

Summary
Routine used to abstract a generic dialog interface and return the selected key or string.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREATE_POP_UP) (
 IN UINTN NumberOfLines,
 IN BOOLEAN HotKey,
 IN UINTN MaximumStringSize,
 OUT CHAR16 *StringBuffer,
 OUT EFI_INPUT_KEY KeyValue,
 IN CHAR16 *String,
 ...
);

Parameters
NumberOfLines

The number of lines for the dialog box.
HotKey

Defines whether a single character is parsed (TRUE) and returned in KeyValue or if
a string is returned in StringBuffer. Two special characters are considered when
entering a string—a SCAN_ESC and a CHAR_CARRIAGE_RETURN. SCAN_ESC
terminates string input and returns while CHAR_CARRIAGE_RETURN commits the
entered string.

MaximumStringSize

The maximum size in bytes of a typed-in string. Because each character is a
CHAR16, the minimum string returned is two bytes.

StringBuffer

The passed-in pointer to the buffer that will hold the typed in string if HotKey is
FALSE.

KeyValue

The EFI_INPUT_KEY value returned if HotKey is TRUE. Type
EFI_INPUT_KEY is defined in SIMPLE_INPUT.ReadKeyStroke() in the
EFI 1.10 Specification.

Version 0.92 October 2005 143

Human Interface Infrastructure Specification

String

The pointer to the first string in the list of strings that comprise the dialog box.
...

A series of NumberOfLines text strings that will be used to construct the dialog
box.

Description
This function is intended for use by applications that might have a need for the creation of a simple
dialog box but may not need to complete services of a form-based browser and all the inputs that
are required for the form-based browser such as IFR and localization.

Status Codes Returned
EFI_SUCCESS The dialog was displayed and user interaction was received.

EFI_DEVICE_ERROR The user typed in an ESC character to exit the routine.

EFI_INVALID_PARAMETER One of the parameters was invalid (e.g., (StringBuffer ==
NULL) && (HotKey == FALSE)).

144 October 2005 Version 0.92

4
Conventions for IFR to HTML Translation

Conventions for IFR to HTML Translation
The table below defines suggested translations between IFR and HTML.

Table 4-1. Suggested Translations between IFR and HTML
IFR HTML

String in form operand Both <title> and <h1>

Subtitle <h3>

Text Standard text

One-of Either radio button or drop down

Checkbox Single selection check box

Numeric Text input sized to fit the maximum number of digits in
the number along with JavaScript* or equivalent
validation

Password No recommendation

Go-to <a href...>

Version 0.92 October 2005 145

	1 Introduction
	Overview
	Purpose
	Overview
	Glossary
	References
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Design Discussion
	Design Rationale
	Introduction
	String Management
	String Management
	Limiting Glyphs in Firmware Volumes
	Unicode

	Localization Issues
	 User Input
	 HTML and IFR

	Human Interface Overview
	Human Interface Introduction
	Package Header
	Package Manipulation
	Packages Definition
	Human Interface Infrastructure (HII) Protocol

	 Font Package
	Introduction
	Glyph Sizes
	Glyph Representation

	Strings
	Introduction
	Internal String Representation

	Form Packages
	Goals
	Forms and Form Sets
	Semantics and Tag Structures
	Form Packages and Scoping
	Forms
	Device Descriptions
	Titles, Subtitles, and Text: <subtitle>, <text>
	Questions
	Questions
	One-Of
	Checkbox: <checkbox>
	Numeric: <numeric>
	Password: <password>
	Hidden: <hidden>
	Ordering: <list>
	Hypertext: <goto>

	Image
	Background
	Visibility Control: <grayout>, <suppress>
	Boolean Expressions
	Using Grayed-Out Parts of a Form
	Consistency Checking

	Dynamic Data
	Labels

	Advanced Operations (Optional)
	Advanced Operations (Optional)
	String Input

	Keyboard Layout
	Keyboard Mapping
	Modifier Keys
	 Dead Keys
	Keyboard Layout Switching

	Dynamic Processing of NV/IFR Data
	Form Callback Protocol

	Browser Interface
	Form Browser Protocol

	Runtime Representations
	Using IFR at Runtime
	Limitations of Presentation Mechanisms

	3 Code Definitions
	Introduction
	 Packages
	Package Header
	EFI_HII_PACK_HEADER

	Packages Definition
	EFI_HII_PACKAGES

	 Human Interface Infrastructure (HII) Protocol
	EFI_HII_PROTOCOL
	 EFI_HII_PROTOCOL.NewPack()
	 EFI_HII_PROTOCOL.RemovePack()
	 EFI_HII_PROTOCOL.FindHandles()
	EFI_HII_PROTOCOL.ExportDatabase()

	 Font Package
	Glyph Representation
	EFI_NARROW_GLYPH
	EFI_WIDE_GLYPH
	 EFI_HII_FONT_PACK

	 HII Protocol Font-Related Entries
	HII Protocol Font-Related Entries
	EFI_HII_PROTOCOL (Font-Related Entries)
	EFI_HII_PROTOCOL.NewPack() (Font-Related Entries)
	 EFI_HII_PROTOCOL.TestString()
	EFI_HII_PROTOCOL.GetGlyph()
	 EFI_HII_PROTOCOL.GlyphToBlt()

	 Strings
	String
	EFI_STRING

	 String Package Structure
	EFI_HII_STRING_PACK

	HII Protocol String Functions
	EFI_HII_PROTOCOL (String Functions)
	 EFI_HII_PROTOCOL.NewPack() (String-Related Entries)
	 EFI_HII_PROTOCOL.NewString()
	 EFI_HII_PROTOCOL.GetPrimaryLanguages()
	 EFI_HII_PROTOCOL.GetSecondaryLanguages()
	 EFI_HII_PROTOCOL.GetString()
	 EFI_HII_PROTOCOL.GetLine()

	 Form Packages
	Form Language Syntax
	Meta-Syntax
	 Internal Form Representation (IFR) Language Syntax Definition
	EFI_IFR_OP_HEADER
	 EFI_IFR_FORM_SET
	 EFI_IFR_FORM
	EFI_IFR_SUBTITLE
	 EFI_IFR_TEXT
	 EFI_IFR_ONE_OF
	 EFI_IFR_CHECKBOX
	 EFI_IFR_NUMERIC
	 EFI_IFR_PASSWORD
	 EFI_IFR_ORDERED_LIST
	 EFI_IFR_REF
	EFI_IFR_HIDDEN
	 EFI_IFR_GRAY_OUT
	 EFI_IFR_SUPPRESS
	 EFI_IFR_INCONSISTENT
	 EFI_IFR_LABEL
	 EFI_IFR_VARSTORE
	EFI_IFR_VARSTORE_SELECT
	 EFI_IFR_VARSTORE_SELECT_PAIR
	 Boolean Expressions

	 HII Protocol Forms Entries
	EFI_HII_PROTOCOL (Forms Entries)
	 EFI_HII_PROTOCOL.NewPack() (Form-Related Entries)
	 EFI_HII_PROTOCOL.GetForms()
	 EFI_HII_PROTOCOL.GetDefaultImage()
	 EFI_HII_PROTOCOL.UpdateForm()

	 Keyboard Layout
	HII Protocol Keyboard Entries
	EFI_HII_PROTOCOL (Keyboard Functions)
	 EFI_HII_PROTOCOL.GetKeyboardLayout()

	 Dynamic Processing of NV/IFR Data
	Form Callback Protocol
	EFI_FORM_CALLBACK_PROTOCOL
	EFI_FORM_CALLBACK_PROTOCOL.NvRead()
	 EFI_FORM_CALLBACK_PROTOCOL.NvWrite()
	 EFI_FORM_CALLBACK_PROTOCOL.CallBack()

	 Browser Interface
	Form Browser Protocol
	Form Browser Protocol
	EFI_FORM_BROWSER_PROTOCOL
	EFI_FORM_BROWSER_PROTOCOL.SendForm()
	 EFI_FORM_BROWSER_PROTOCOL.CreatePopUp()

	4 Conventions for IFR to HTML Translation
	Conventions for IFR to HTML Translation

