
  

 

Intel® Platform Innovation Framework 
for EFI  

Firmware File System 
Specification 

 
 
 
 
 
 
 

Version 0.9 
September 16, 2003 



Firmware File System Specification   

ii September 2003 Version 0.9 

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY 
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY 
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.  Except for a limited copyright license 
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual 
property rights is granted herein. 

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information 
in this specification.  Intel does not warrant or represent that such implementation(s) will not infringe such rights. 

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” 
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising 
from future changes to them.  

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design 
products based on this document. 

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United 
States and other countries. 

* Other names and brands may be claimed as the property of others. 

Copyright  2000–2003, Intel Corporation. 

Intel order number xxxxxx-001 

 
 



  

Version 0.9 September 2003 iii 

Revision History 
Revision Revision History Date 

0.9 First public release. 9/16/03 

   

 



Firmware File System Specification   

iv September 2003 Version 0.9 

 
 



  

Version 0.9 September 2003 v 

Contents 

1 Introduction .......................................................................................................7 
Overview ............................................................................................................................... 7 
Target Audience .................................................................................................................... 7 
Conventions Used in This Document .................................................................................... 8 

Data Structure Descriptions .......................................................................................... 8 
Pseudo-Code Conventions ........................................................................................... 8 
Typographic Conventions ............................................................................................. 9 

2 Design Discussion ......................................................................................... 11 
Introduction ......................................................................................................................... 11 
File Format .......................................................................................................................... 11 

Overview .................................................................................................................... 11 
FFS GUID ................................................................................................................... 11 
FFS File Image ........................................................................................................... 12 

FFS File Integrity and State ................................................................................................. 13 
Detecting FFS File Corruption .................................................................................... 13 
File State Transitions .................................................................................................. 14 

Overview  ................................................................................................... 14 
Initial State ................................................................................................... 14 
Creating a File .............................................................................................. 15 
Deleting a File .............................................................................................. 17 
Updating a File ............................................................................................. 17 

FFS-Defined File Types ...................................................................................................... 18 
Overview .................................................................................................................... 18 
Pad Files (File Type 0xF0) .......................................................................................... 19 

Pad File Overview ........................................................................................ 19 
Reclaiming a Pad File’s Free Space ............................................................. 19 
Updating a File Using a Pad File’s Free Space ............................................ 22 
Updating Multiple Files in Lockstep .............................................................. 23 

Volume Top File .................................................................................................................. 23 

3 Code Definitions ............................................................................................. 25 
Introduction ......................................................................................................................... 25 
File Format .......................................................................................................................... 26 
File Format .......................................................................................................................... 26 

EFI_FIRMWARE_FILE_SYSTEM_GUID .................................................................... 26 
EFI_FFS_FILE_HEADER ........................................................................................... 27 
EFI_FFS_FILE_TAIL .................................................................................................. 32 

Pad Files ............................................................................................................................. 33 
EFI_FV_FILETYPE_FFS_PAD ................................................................................... 33 

Volume Top File .................................................................................................................. 34 
EFI_FFS_VOLUME_TOP_FILE_GUID ....................................................................... 34 



Firmware File System Specification   

vi September 2003 Version 0.9 

4 Pseudo Code .................................................................................................. 35 
FFS Initialization .................................................................................................................. 35 
Pre-FFS Initialization Access to Files .................................................................................. 39 

 

Figures 
Figure 2-1.  Typical FFS File Layout .................................................................................... 12 
Figure 2-2.  Creating a File .................................................................................................. 15 
Figure 2-3.  Updating a File ................................................................................................. 17 
Figure 2-4.  Reclaiming a Pad File’s Free Space ................................................................. 20 
Figure 2-5.  Updating a File Using a Pad File’s Free Space ................................................ 22 
Figure 3-1.  Bit Allocation of FFS Attributes ................................................................... 29 

 

Tables 
Table 2-1.  FFS-Defined File Types ..................................................................................... 18 
Table 3-1.  Supported FFS Alignments................................................................................ 30 

 
 
 
 



  

Version 0.9 September 2003 7 

1 
Introduction 

Overview 
This specification defines the core code that is required for an implementation of the Firmware File 
System (FFS) of the Intel® Platform Innovation Framework for EFI (hereafter referred to as the 
“Framework”).  This FFS specification does the following: 
• Describes the basic components of the FFS  
• Defines basic operations that may be performed with the FFS 
• Provides code definitions for FFS-related data types and structures that are architecturally 

required by the Intel® Platform Innovation Framework for EFI Architecture Specification  
• Provides pseudo code that describes methods for initializing the FFS and accessing file prior to 

the FFS being initialized 

Target Audience 
This document is intended for the following readers: 
• Independent hardware vendors (IHVs) and original equipment manufacturers (OEMs) who will 

be implementing firmware components that are stored in firmware volumes 
• BIOS developers, either those who create general-purpose BIOS and other firmware products 

or those who modify these products for use in Intel architecture®–based products 



Firmware File System Specification   

8 September 2003 Version 0.9 

Conventions Used in This Document 
This document uses the typographic and illustrative conventions described below. 

Data Structure Descriptions 
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines.  This 
distinction means that the low-order byte of a multibyte data item in memory is at the lowest 
address, while the high-order byte is at the highest address.  Processors of the Intel® Itanium® 
processor family may be configured for both “little endian” and “big endian” operation.  All 
implementations designed to conform to this specification will use “little endian” operation. 
In some memory layout descriptions, certain fields are marked reserved.  Software must initialize 
such fields to zero and ignore them when read.  On an update operation, software must preserve 
any reserved field.   
The data structures described in this document generally have the following format: 

STRUCTURE NAME: The formal name of the data structure. 

Summary:   A brief description of the data structure. 

Prototype: A “C-style” type declaration for the data structure. 

Parameters:   A brief description of each field in the data structure prototype. 

Description: A description of the functionality provided by the data structure, 
including any limitations and caveats of which the caller should 
be aware. 

Related Definitions: The type declarations and constants that are used only by 
this data structure. 

Pseudo-Code Conventions 
Pseudo code is presented to describe algorithms in a more concise form.  None of the algorithms in 
this document are intended to be compiled directly.  The code is presented at a level corresponding 
to the surrounding text.   
In describing variables, a list is an unordered collection of homogeneous objects.  A queue is an 
ordered list of homogeneous objects.  Unless otherwise noted, the ordering is assumed to be First In 
First Out (FIFO). 
Pseudo code is presented in a C-like format, using C conventions where appropriate.  The coding 
style, particularly the indentation style, is used for readability and does not necessarily comply with 
an implementation of the Extensible Firmware Interface Specification. 



  Introduction 

Version 0.9 September 2003 9 

Typographic Conventions 
This document uses the typographic and illustrative conventions described below: 
Plain text The normal text typeface is used for the vast majority of the descriptive 

text in a specification. 
Plain text (blue) In the online help version of this specification, any plain text that is 

underlined and in blue indicates an active link to the cross-reference. 
Click on the word to follow the hyperlink. Note that these links are not 
active in the PDF of the specification. 

Bold In text, a Bold typeface identifies a processor register name.  In other 
instances, a Bold typeface can be used as a running head within a 
paragraph. 

Italic In text, an Italic typeface can be used as emphasis to introduce a new 
term or to indicate a manual or specification name. 

BOLD Monospace Computer code, example code segments, and all prototype code 
segments use a BOLD Monospace typeface with a dark red color.  
These code listings normally appear in one or more separate paragraphs, 
though words or segments can also be embedded in a normal text 
paragraph.   

Bold Monospace  In the online help version of this specification, words in a 
Bold Monospace typeface that is underlined and in blue indicate an 
active hyperlink to the code definition for that function or type definition. 
 Click on the word to follow the hyperlink. Note that these links are not 
active in the PDF of the specification. Also, these inactive links in the 
PDF may instead have a Bold Monospace appearance that is 
underlined but in dark red. Again, these links are not active in the PDF of 
the specification. 

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder 
names for variable information that must be supplied (i.e., arguments). 

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red 
color but is not bold or italicized indicate pseudo code or example code. 
These code segments typically occur in one or more separate paragraphs. 

See the master Framework glossary in the Framework Interoperability and Component 
Specifications help system for definitions of terms and abbreviations that are used in this document 
or that might be useful in understanding the descriptions presented in this document. 
See the master Framework references in the Interoperability and Component Specifications help 
system for a complete list of the additional documents and specifications that are required or 
suggested for interpreting the information presented in this document. 
The Framework Interoperability and Component Specifications help system is available at the 
following URL: 
http://www.intel.com/technology/framework/spec.htm 

http://www.intel.com/technology/framework/spec.htm�


Firmware File System Specification   

10 September 2003 Version 0.9 

 
 



  

Version 0.9 September 2003 11 

2 
Design Discussion 

Introduction 
The Framework Firmware File System (FFS) is a binary layout of file storage for firmware 
volumes.  It is a flat file system in that there is no provision for any directory hierarchy; rather, files 
all exist in the root directly.  Files are stored, in essence, end to end without any directory entry to 
describe which files are present.  Parsing the contents of a firmware volume to obtain a listing of 
files present requires walking the firmware volume from beginning to end.  This process is 
abstracted from consumers by the Firmware Volume Protocol, which is expected to be produced by 
the FFS driver. 
All files stored with the FFS must follow the Framework image format described in the Intel® 
Platform Innovation Framework for EFI Firmware Volume Specification. 
The file header provides for several levels of integrity checking to help detect file corruption, 
should it occur for some reason.  Authentication (verifying the origin) of the files is not supported 
directly by the FFS, but it is supported by the Framework image format.  
This section explains the following: 
• FFS file format 
• FFS file integrity and state 
• FFS-defined file types 
• Volume Top File (VTF) 
See Code Definitions for the type definitions of any code that is referenced in this section. See the 
Intel® Platform Innovation Framework for EFI Firmware Volume Specification for the definition 
of the Firmware Volume Protocol and the Framework image format. 

File Format 

Overview 
This section describes the binary format of the FFS, including the following:  
• FFS GUID 
• FFS file image 
See Code Definitions: File Format for the corresponding code definitions that are described in this 
section. 

FFS GUID 
The firmware volume header contains a data field for the file system Globally Unique Identifier 
(GUID).  See the Intel® Platform Innovation Framework for EFI Firmware Volume Block 
Specification for more information on the firmware volume header.  For the FFS file system, the 
GUID is defined as EFI_FIRMWARE_FILE_SYSTEM_GUID; see Code Definitions for the GUID 
definition. 



Firmware File System Specification   

12 September 2003 Version 0.9 

FFS File Image 
All FFS files begin with a header that is 8 bytes aligned with respect to the beginning of the 
firmware volume.  FFS files can contain the following parts: 
• Header 
• Data  
• Tail 
It is possible to create a file that has only a header and no data, which means it consumes 24 bytes 
of space.  This type of file is known as a zero-length file. 
If the file contains data, the data immediately follows the header.  The format of the data within a 
file is defined by the Type field in EFI_FFS_FILE_HEADER.   
If indicated in the Attributes field of EFI_FFS_FILE_HEADER, the last two bytes of the file 
are defined to be the tail.  The tail is used for file integrity checking and is optional.  Zero-length 
files (files with only a header but no data area) and pad files do not have a tail. 
See the EFI_FFS_FILE_HEADER and EFI_FFS_FILE_TAIL definitions in Code Definitions: 
File Format for more information. 
The figure below illustrates the layout of a typical FFS file. 

Name

IntegrityCheckTypeAttributes

State Size

Tail (optional)

File data
Follows EFI image format defined in Firmware Volume Specification

31 1516 0

EFI_FFS_FILE_TAIL

File data.

EFI_FFS_FILE_HEADER
 

Figure 2-1.  Typical FFS File Layout 

 



  Design Discussion 

Version 0.9 September 2003 13 

FFS File Integrity and State 

Detecting FFS File Corruption 
File corruption, regardless of the cause, must be detectable so that appropriate file system repair 
steps may be taken.  File corruption can come from several sources but generally falls into three 
categories: 
• General failure 
• Erase failure 
• Write failure 
A general failure is defined to be apparently random corruption of the storage media.  This 
corruption can be caused by storage media design problems or storage media degradation, for 
example.  This type of failure can be as subtle as changing a single bit within the contents of a file.  
With good system design and reliable storage media, general failures should not happen.  Even so, 
the FFS enables detection of this type of failure. 
An erase failure occurs when a block erase of firmware volume media is not completed due to a 
power failure or other system failure.  While the erase operation is not defined, it is expected that 
most implementations of FFS that allow file write and delete operations will also implement a 
mechanism to reclaim deleted files and coalesce free space.  If this operation is not completed 
correctly, the file system can be left in an inconsistent state. 
Similarly, a write failure occurs when a file system write is in progress and is not completed due to 
a power failure or other system failure.  This type of failure can leave the file system in an 
inconsistent state. 
All of these failures are detectable during FFS initialization, and, depending on the nature of the 
failure, many recovery strategies are possible.  Careful sequencing of the State bits during normal 
file transitions is sufficient to enable subsequent detection of write failures.  However, the State 
bits alone are not sufficient to detect all occurrences of general and/or erase failures.  These types of 
failures require additional support, which is enabled with the file header IntegrityCheck field. 
See Pseudo Code: FFS Initialization for sample code that provides a method of FFS initialization 
that can detect FFS file corruption, regardless of the cause. 



Firmware File System Specification   

14 September 2003 Version 0.9 

File State Transitions 

Overview 
There are three basic operations that may be done with the FFS: 
• Creating a file 
• Deleting a file 
• Updating a file 
All state transitions must be done carefully at all times to ensure that a power failure never 
results in a corrupted firmware volume.  This transition is managed using the State field in 
the file header.   
For the purposes of the examples below, positive decode logic is assumed 
(EFI_FVB_ERASE_POLARITY = 0).  In actual use, the EFI_FVB_ERASE_POLARITY in the 
firmware volume header is referenced to determine the truth value of all FFS State bits.  Note 
that Intel® flash memory technologies erase to one.  All State bit transitions must be atomic 
operations.  Further, except when specifically noted, only the most significant State bit that is 
TRUE has meaning.  Lower-order State bits are superceded by higher-order State bits. 
Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER in the 
Intel® Platform Innovation Framework for EFI Firmware Volume Block Specification. 

Initial State 
The initial condition is that of “free space.”  All free space in a firmware volume must be  
initialized such that all bits in the free space contain the value of EFI_FVB_ERASE_POLARITY.  
As such, if the free space is interpreted as an FFS file header, all State bits are FALSE.   
Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER in the 
Intel® Platform Innovation Framework for EFI Firmware Volume Block Specification. 
 
  



  Design Discussion 

Version 0.9 September 2003 15 

Creating a File 
A new file is created by allocating space from the firmware volume immediately beyond the end of 
the preceding file (or the firmware volume header if the file is the first one in the firmware 
volume).  The figure below illustrates the steps to create a new file, which are detailed below the 
figure.  

Change the
EFI_FILE_HEADER_

CONSTRUCTION
bit to TRUE

Change the
EFI_FILE_HEADER_

VALID bit to TRUE

Change the
EFI_FILE_DATA_
VALID bit to TRUE

Complete all fields in
the header

Write the file data

File is
“free

space”

File is
created

 

Figure 2-2.  Creating a File 

As shown in the figure above, the following steps are required to create a new file: 
1. Allocate space in the firmware volume for a new EFI_FFS_FILE_HEADER and complete all 

fields of the header (except for the State field, which is updated independently from the rest 
of the header).  This allocation is done by interpreting the free space as a file header and 
changing the EFI_FILE_HEADER_CONSTRUCTION bit to TRUE.  The transition of this bit 
to the TRUE state must be atomic and fully complete before any additional writes to the 
firmware volume are made.  This transition yields State  = 00000001b, which indicates 
the header construction has begun but has not yet been completed.  This value has the effect of 
“claiming” the FFS header space from the firmware volume free space. 



Firmware File System Specification   

16 September 2003 Version 0.9 

While in this state, the following fields of the FFS header are initialized and written to the 
firmware volume:   
• Name  
• IntegrityCheck.Header  
• Type  
• Attributes  
• Size  
The value of IntegrityCheck.Header is calculated as described in 
EFI_FFS_FILE_HEADER in “Code Definitions.” 

2. Mark the new header as complete and write the file data.  To mark the header as completed, the 
EFI_FILE_HEADER_VALID bit is changed to TRUE.  The transition of this bit to the TRUE 
state must be atomic and fully complete before any additional writes to the firmware volume 
are made.  This transition yields  State  = 00000011b, which indicates the header 
construction is complete but the file data has not yet been written.  This value has the effect of 
“claiming” the full length of the file from the firmware volume free space.  Once the 
EFI_FILE_HEADER_VALID bit is set, no further changes to the following fields may be 
made. 
• Name  
• IntegrityCheck.Header  
• Type  
• Attributes  
• Size  
While in this state, the file data, IntegrityCheck.File, and the file tail are written to the 
firmware volume.  The order in which these are written does not matter.  The calculation of the 
values for IntegrityCheck.File and the file tail are described in 
EFI_FFS_FILE_HEADER and EFI_FFS_FILE_TAIL in “Code Definitions.”  If the 
FFS_ATTRIB_TAIL_PRESENT bit of the Attributes field is clear, the file tail does not 
exist.  If the FFS_ATTRIB_TAIL_PRESENT bit of the Attributes field is set, the value 
of IntegrityCheck.File must be included in the calculation of the tail value. 

3. Mark the data as valid.  To mark the data as valid, the EFI_FILE_DATA_VALID bit is 
changed to TRUE.  The transition of this bit to the TRUE state must be atomic and fully 
complete before any additional writes to the firmware volume are made.  This transition yields  
State  = 00000111b, which indicates the file data is fully written and is valid. 

See Updating Multiple Files in Lockstep for details on creating and updating multiple files. 



  Design Discussion 

Version 0.9 September 2003 17 

Deleting a File 
Any file with EFI_FILE_HEADER_VALID set to TRUE and EFI_FILE_HEADER_INVALID 
and EFI_FILE_DELETED set to FALSE is a candidate for deletion. 
To delete a file, the EFI_FILE_DELETED bit is set to the TRUE state.  The transition of this bit to 
the TRUE state must be atomic and fully complete before any additional writes to the firmware 
volume are made.  This transition yields State = 0001xx11b, which indicates the file is 
marked deleted.  Its header is still valid, however, in as much as its length field is used in locating 
the next file in the firmware volume. 

 NOTE  
The EFI_FILE_HEADER_INVALID bit must be left in the FALSE state. 

Updating a File 
A file update is a special case of file creation where the file being added already exists in the 
firmware volume.  At all times during a file update, only one of the files, either the new one or the 
old one, is valid at any given time.  This validation is possible by using the 
EFI_FILE_MARKED_FOR_UPDATE bit in the old file. 
The figure below illustrates the steps to update a file, which are detailed below the figure. 

File is
created

In the old file, change the
EFI_FILE_MARKED_

FOR_UPDATE bit to TRUE

Create the new file

Delete the old file

Writing the
EFI_FILE_DATA_VALID
bit to TRUE in the new file
invalidates the old file New

file is
created

Old file
is

deleted

See Deleting a File.

See Creating a File.

 

Figure 2-3.  Updating a File 



Firmware File System Specification   

18 September 2003 Version 0.9 

As shown in the figure above, the following steps are required to update a file: 
1. Set the EFI_FILE_MARKED_FOR_UPDATE bit to TRUE in the old file.  The transition of this 

bit to the TRUE state must be atomic and fully complete before any additional writes to the 
firmware volume are made.  This transition yields State = 00001111b, which indicates 
the file is marked for update.  A file in this state remains valid as long as no other file in the 
firmware volume has the same name and a State of 000001xxb.   

2. Create the new file following the steps described in Creating a File.  When the new file becomes 
valid, the old file that was marked for update becomes invalid.  That is to say, a file marked for 
update is valid only as long as there is no file with the same name in the firmware volume that 
has a State of 000001xxb.  In this way, only one of the files, either the new or the old, is 
valid at any given time.  The act of writing the EFI_FILE_DATA_VALID bit in the new file’s 
State field has the additional effect of invalidating the old file. 

3.  Delete the old file following the steps described in Deleting a File. 
See Updating Multiple Files in Lockstep for details on creating and updating multiple files. 

FFS-Defined File Types 

Overview 
The Intel® Platform Innovation Framework for EFI Firmware Volume Specification defines a 
number of file types and associated image formats.  It also reserves file types 0xF0 to 0xFF for 
definition by the file system.  The table below lists the FFS definitions for these file types. The rest 
of this section describes pad files. 

Table 2-1.  FFS-Defined File Types 
Type Name 

0xF0 Pad file.  See the Pad Files 
section. 

0xF1–0xFF Reserved for future use. 

 



  Design Discussion 

Version 0.9 September 2003 19 

Pad Files (File Type 0xF0) 

Pad File Overview 
A pad file gets its name from one of its common uses.  It can be used to pad the location of the file 
that follows it in the storage media.  This padding may be done for a variety of reasons, including 
the following: 
• Fixing the location of a file in a firmware volume 
• Consuming space before a Volume Top File 
• Guaranteeing data alignment for a file with the alignments bits set in the Attributes field 
• Performing file update operations where multiple files within a firmware volume must be 

updated in lockstep 
The normal state of any valid (not deleted or invalidated) file is that both its header and data are 
valid.  This status is indicated using the State bits with State  = 00000111b.  Pad files 
differ from all other types of files in that any pad file in this state must not have any data written 
into the data space.  It is essentially a file filled with free space. 
The FFS_ATTRIB_TAIL_PRESENT bit in the Attributes field must be clear for pad files. 
This restriction is because if the FFS_ATTRIB_TAIL_PRESENT bit were set, it would not be 
possible to reclaim the free space from the pad file (see Reclaiming Pad Free Space).  Because the 
file is free space, an extended check of the file is simply a check for any nonfree data. 

Reclaiming a Pad File’s Free Space 
Because a pad file’s data space is not used, it is desirable to reclaim this free space for use if 
possible.  The free space is reclaimed by using two of the pad file’s State bits. 
Because the data area of a pad file with State  = 00000111b is guaranteed to be unperturbed 
free space, the conventional use of the EFI_FILE_MARKED_FOR_UPDATE bit makes no sense.  
In pad files, the meaning of this bit is overloaded to indicate that the data area is not unperturbed 
free space and that it may have had some data written to it.  This overloading is the key to 
reclaiming the free space contained in a pad file.  The figure below illustrates the steps to reclaim a 
pad file’s free space, which are detailed below the figure. 



Firmware File System Specification   

20 September 2003 Version 0.9 

Pad file
is

created

Set the
EFI_FILE_MARKED_

FOR_UPDATE bit in the
pad file to TRUE

Create a new file in the pad
file’s data area (free space)

Create a new pad file if
the new file does not
completely fill the pad

file’s data area.

New file is
created in
pad file's
data area

Making the header invalid tells
the file system to skip the pad
file’s header and look for the
new file header in what was the
pad file’s data area. Set the EFI_FILE_

HEADER_INVALID
bit in the original
pad file to TRUE

Pad file
is invalid

 

Figure 2-4.  Reclaiming a Pad File’s Free Space 



  Design Discussion 

Version 0.9 September 2003 21 

As shown in the figure above, the following steps are required to reclaim the free space contained 
within a pad file: 
1. Set the EFI_FILE_MARKED_FOR_UPDATE in the pad file to TRUE.  The transition of this bit 

to the TRUE state must be atomic and fully complete before any additional writes to the 
firmware volume are made.  This transition yields State = 00001111b, which indicates 
the pad file’s data area is not guaranteed to be unperturbed free space. 

2. Create a completely new file in the pad file’s data area (free space).  If the new file does not 
have any special alignment requirement, it is created at the lowest address within the pad file.  If 
there is an alignment requirement, it may be necessary to precede the desired file with another 
pad file, all written to the original pad file’s data area.  Regardless, the new file(s) must be 
written completely, including the file header and data.  The State of this file is written such 
that State  = 00000111b.  Because it is really part of the pad file’s data area, it is not yet 
visible as part of the FFS. 

3. If the new file created in step 2 does not completely fill the pad file’s data area, another pad file 
must be created to fill this space.  This file is created in the same manner as in step 2, except the 
beginning of the new pad file’s header follows the data for the file created in step 2. 

4. Set the EFI_FILE_HEADER_INVALID bit in the original pad file to TRUE.  The transition of 
this bit to the TRUE state must be atomic and fully complete before any additional writes to the 
firmware volume are made.  This transition yields State = 00101111b, which indicates the 
pad file’s header is invalid.  Because the pad file’s header is now invalid, the Length field in 
the pad file’s header is also no longer valid.  The effect of making the header invalid is to skip 
only the pad file’s header and look for another file header in what was the pad file’s data area.  
Because the new file’s header exists at this location, it is correctly interpreted as a valid file. 



Firmware File System Specification   

22 September 2003 Version 0.9 

Updating a File Using a Pad File’s Free Space 
Updating a file using a pad file’s free space is very similar to a normal file update, which is 
described in Updating a File in File State Transitions.  The figure below illustrates the steps to 
update a file using a pad file’s free space, which are detailed below the figure. 

Pad file
is

created

Set the
EFI_FILE_MARKED_

FOR_UPDATE bit in the
pad file to TRUE

Create a new file in the pad
file’s data area (free space)

Create a new pad file if
the new file does not
completely fill the pad

file’s data area.

New file is
created in
pad file's
data area

Making the header invalid tells
the file system to skip the pad
file’s header and look for the
new file header in what was the
pad file’s data area.

This action makes the new file
valid and the original pad file
invalid.

Set the
EFI_FILE_MARKED_
FOR_UPDATE bit to

TRUE in the original file
targeted for update

Set the EFI_FILE_
HEADER_INVALID

bit in the original
pad file to TRUE

Delete the old file

See Deleting a File.

Old file
is

deleted
 

Figure 2-5.  Updating a File Using a Pad File’s Free Space 



  Design Discussion 

Version 0.9 September 2003 23 

As shown in the figure above, the following steps are required to update a file using a pad file’s free 
space: 
1. Set the EFI_FILE_MARKED_FOR_UPDATE in the pad file to TRUE.  The transition of this bit 

to the TRUE state must be atomic and fully complete before any additional writes to the 
firmware volume are made.  This transition yields State = 00001111b, which indicates the 
pad file’s data area is not guaranteed to be unperturbed free space. 

2. Create a completely new file in the pad file’s data area (free space) at the lowest address. If the 
new file has special alignment requirements, it must be handled in the same manner as in 
Reclaiming Pad Free Space.  This new file must be written completely, including the file header 
and data.  The State bit of this file is written such that State  = 00000111b.  Because it is 
really part of the pad file’s data area, it is not yet visible as part of the FFS. 

3. If the new file created in step 2 does not completely fill the pad file’s data area, another pad file 
must be created to fill this space.  This file is created in the same manner as in step 2, except the 
beginning of the new pad file’s header follows the data for the file created in step 2. 

4. Set the EFI_FILE_MARKED_FOR_UPDATE bit to TRUE in the original file that is targeted for 
update.  The transition of this bit to the TRUE state must be atomic and fully complete before 
any additional writes to the firmware volume are made.   

5. Set the EFI_FILE_HEADER_INVALID bit in the original pad file to TRUE.  The transition of 
this bit to the TRUE state must be atomic and fully complete before any additional writes to the 
firmware volume are made.  This transition yields State = 00101111b, which indicates the 
pad file’s header is invalid.  Because the pad file’s header is now invalid, the Length field in 
the pad file’s header is also no longer valid.  The effect of making the header invalid is to skip 
only the pad file’s header and look for another file header in what was the pad file’s data area.  
Because the new file’s header exists at this location, it is correctly interpreted as a valid file. 

6. Delete the original file that was targeted for update following the steps described in Deleting a 
File in File State Transitions. 

Updating Multiple Files in Lockstep 
It is possible to update multiple files in a single firmware volume in lockstep using the technique 
described in Updating a File Using a Pad File’s Free Space.  To update multiple files, write 
multiple files to the pad file’s data area in step 2.  Then mark all of the corresponding original files 
in step 5 and delete them in step 6.  A pad file can be created explicitly for this purpose. 

Volume Top File 
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the 
last byte of the firmware volume.  Regardless of the file type, a VTF must have the file name GUID 
of EFI_FFS_VOLUME_TOP_FILE_GUID.  See EFI_FFS_VOLUME_TOP_FILE_GUID in 
“Code Definitions” for the GUID definition. 
FFS driver code must be aware of this GUID and insert a pad file as necessary to guarantee the 
VTF is located correctly at the top of the firmware volume on write and update operations.  File 
length and alignment requirements must be consistent with the top of volume.  Otherwise, a write 
error occurs and the firmware volume is not modified.  



Firmware File System Specification   

24 September 2003 Version 0.9 

 

 
 



  

Version 0.9 September 2003 25 

3 
Code Definitions 

Introduction 
This section provides the code definitions for the following data types and structures for the FFS. 
 Some type definitions are not in their own section and can be found in “Related Definitions” of the 
parent data structure definition. 
• EFI_FIRMWARE_FILE_SYSTEM_GUID  
• EFI_FFS_FILE_HEADER 
• EFI_FFS_INTEGRITY_CHECK 
• EFI_FFS_FILE_ATTRIBUTES 
• EFI_FFS_FILE_STATE 
• EFI_FFS_FILE_TAIL 
• EFI_FV_FILETYPE_FFS_PAD 
• EFI_FFS_VOLUME_TOP_FILE_GUID 

  



Firmware File System Specification   

26 September 2003 Version 0.9 

File Format 

EFI_FIRMWARE_FILE_SYSTEM_GUID 

Summary 
The firmware volume header contains a data field for the file system Globally Unique Identifier 
(GUID).  See the Intel® Platform Innovation Framework for EFI Firmware Volume Block 
Specification for more information on the firmware volume header.  For the FFS file system, the 
GUID is defined below. 

GUID 
// 7A9354D9-0468-444a-81CE-0BF617D890DF 
 
#define EFI_FIRMWARE_FILE_SYSTEM_GUID \ 
{ 0x7A9354D9, 0x0468, 0x444a, 0x81, 0xCE, 0x0B, 0xF6  \ 
  0x17, 0xD8, 0x90, 0xDF  } 

 
   



  Code Definitions 

Version 0.9 September 2003 27 

EFI_FFS_FILE_HEADER 

Summary 
Each file begins with a header that describes the state and contents of the file.  The header is 8 bytes 
aligned with respect to the beginning of the firmware volume. 

Prototype 
typedef struct { 
  EFI_GUID                 Name; 
  EFI_FFS_INTEGRITY_CHECK  IntegrityCheck; 
  EFI_FV_FILETYPE          Type; 
  EFI_FFS_FILE_ATTRIBUTES  Attributes; 
  UINT8                    Size[3]; 
  EFI_FFS_FILE_STATE       State; 
} EFI_FFS_FILE_HEADER; 

Parameters 
Name 

This GUID is the file name.  It is used to uniquely identify the file.  There may be 
only one instance of a file with the file name GUID of Name in any given firmware 
volume. 

IntegrityCheck 

Used to verify the integrity of the file.  Type EFI_FFS_INTEGRITY_CHECK is 
defined in “Related Definitions” below. 

Type 

Identifies the type of file.  Type EFI_FV_FILETYPE  is defined in the Intel® 
Platform Innovation Framework for EFI Firmware Volume Specification.  FFS-
specific file types are defined in EFI_FV_FILETYPE_FFS_PAD. 

Attributes 

Declares various file attribute bits.  Type EFI_FFS_FILE_ATTRIBUTES is 
defined in “Related Definitions” below. 

Size 

The length of the file in bytes, including the FFS header and file tail if it exists.  The 
length of the file data is either (Size – sizeof(EFI_FFS_FILE_HEADER)) 
or  (Size – sizeof(EFI_FFS_FILE_HEADER) – 
sizeof(EFI_FFS_FILE_TAIL)) depending on the existence of the file tail.  
This calculation means a zero-length file has a Size of 24 bytes, which is 
sizeof(EFI_FFS_FILE_HEADER). 
Size is not required to be a multiple of 8 bytes.  Given a file F, the next file header is 
located at the next 8-byte aligned firmware volume offset following the last byte of 
the file F. 



Firmware File System Specification   

28 September 2003 Version 0.9 

State 

Used to track the state of the file throughout the life of the file from creation to 
deletion.  Type EFI_FFS_FILE_STATE is defined in “Related Definitions” 
below.  See FFS File Integrity and State in Design Discussion for an explanation of 
how these bits are used.   

Related Definitions 
//****************************************************** 
// EFI_FFS_INTEGRITY_CHECK 
//****************************************************** 
typedef union { 
  struct { 
    UINT8            Header; 
    UINT8            File; 
  }                  Checksum; 
  UINT16             TailReference; 
} EFI_FFS_INTEGRITY_CHECK; 
 

Header 

The IntegrityCheck.Checksum.Header field is an 8-bit checksum of the 
file header.  The State and IntegrityCheck.Checksum.File fields are 
assumed to be zero and the checksum is calculated such that the entire header sums to 
zero.   The IntegrityCheck.Checksum.Header field is valid anytime the 
EFI_FILE_HEADER_VALID bit is set in the State field.  See FFS File Integrity 
and State for more details. 

File 

If the FFS_ATTRIB_CHECKSUM (see definition below) bit of the Attributes 
field is set to one, the IntegrityCheck.Checksum.File field is an 8-bit 
checksum of the entire file  The State field and the file tail are assumed to be zero 
and the checksum is calculated such that the entire file sums to zero.   
If the FFS_ATTRIB_CHECKSUM bit of the Attributes field is cleared to zero, 
the IntegrityCheck.Checksum.File field must be initialized with a value of 
0x55AA. 
The IntegrityCheck.Checksum.File field is valid any time the 
EFI_FILE_DATA_VALID bit is set in the State field.  See FFS File Integrity and 
State for more details. 

TailReference 

IntegrityCheck.TailReference is the full 16 bits of the 
IntegrityCheck field.  It is used in calculating the value for the file tail if the 
FFS_ATTRIB_TAIL_PRESENT bit in the Attributes field is set.  See 
EFI_FFS_FILE_TAIL for more details.  

 
 



  Code Definitions 

Version 0.9 September 2003 29 

//************************************************************ 
// EFI_FFS_FILE_ATTRIBUTES 
//************************************************************ 
 
typedef UINT8 EFI_FFS_FILE_ATTRIBUTES; 
 
// FFS File Attributes 
#define FFS_ATTRIB_TAIL_PRESENT           0x01 
#define FFS_ATTRIB_RECOVERY               0x02 
#define FFS_ATTRIB_HEADER_EXTENSION       0x04 
#define FFS_ATTRIB_DATA_ALIGNMENT         0x38 
#define FFS_ATTRIB_CHECKSUM               0x40 

 

The figure below depicts the bit allocation of the Attributes field in an FFS file’s header. 

 

Figure 3-1.  Bit Allocation of FFS Attributes 

Following is a description of the fields in the above definition. 
 

FFS_ATTRIB_TAIL_PRESENT Indicates the 16-bit file tail at the end of the file exists.  See 
EFI_FFS_FILE_TAIL for details. 

FFS_ATTRIB_RECOVERY Indicates this file is required to execute a crisis recovery. 

FFS_ATTRIB_HEADER_EXTENSION Reserved for use by future revisions of this specification.  It 
must be set to zero. 



Firmware File System Specification   

30 September 2003 Version 0.9 

FFS_ATTRIB_DATA_ALIGNMENT Indicates that the beginning of the data must be aligned on a 
particular boundary relative to the firmware volume base.  The 
three bits in this field are an enumeration of alignment 
possibilities.  The firmware volume interface allows alignments 
based on powers of two from byte alignment to 64 KB 
alignment.  FFS does not support this full range.  The table 
below maps all FFS supported alignments to 
FFS_ATTRIB_DATA_ALIGNMENT values and firmware 
volume interface alignment values.  No other alignments are 
supported by FFS.  When a file with an alignment requirement is 
created, a pad file may need to be created before it to ensure 
proper data alignment.  See Pad Files (File Type 0xF0) for more 
information regarding pad files. 

FFS_ATTRIB_CHECKSUM Determines the interpretation of 
IntegrityCheck.Checksum.File.  See the 
IntegrityCheck definition above for specific usage. 

 

The table below maps all FFS-supported alignments to FFS_ATTRIB_DATA_ALIGNMENT values 
and firmware volume interface alignment values. 

Table 3-1.  Supported FFS Alignments 
Required Alignment (bytes) Alignment Value in FFS 

Attributes Field 
Alignment Value in Firmware 

Volume Interfaces 

1 0 0 

2 0 1 

4 0 2 

8 0 3 

16 1 4 

128 2 7 

512 3 9 

1 KB 4 10 

4 KB 5 12 

32 KB 6 15 

64 KB 7 16 

 
 



  Code Definitions 

Version 0.9 September 2003 31 

//************************************************************ 
// EFI_FFS_FILE_STATE  
//************************************************************ 
 
typedef UINT8 EFI_FFS_FILE_STATE; 
 
// FFS File State Bits 
#define EFI_FILE_HEADER_CONSTRUCTION      0x01 
#define EFI_FILE_HEADER_VALID             0x02 
#define EFI_FILE_DATA_VALID               0x04 
#define EFI_FILE_MARKED_FOR_UPDATE        0x08 
#define EFI_FILE_DELETED                  0x10 
#define EFI_FILE_HEADER_INVALID           0x20 

 

All other State bits are reserved and must be set to EFI_FVB_ERASE_POLARITY. See FFS 
File Integrity and State for an explanation of how these bits are used. Type 
EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER in the Intel® 
Platform Innovation Framework for EFI Firmware Volume Block Specification. 
 
   



Firmware File System Specification   

32 September 2003 Version 0.9 

EFI_FFS_FILE_TAIL 

Summary 
The tail follows the data and is the last two bytes of the file’s image in the storage media.  The tail 
is used for file integrity checking and is present only when the FFS_ATTRIB_TAIL_PRESENT 
bit in the Attributes field of the file’s header is set.  The file tail is optional and is never 
required.  It must never be present in zero-length files and pad files. 

Prototype 
typedef UINT16    EFI_FFS_FILE_TAIL; 

Description 
If the FFS_ATTRIB_TAIL_PRESENT bit is set, the tail is initialized to the bit-wise NOT of the 
header’s IntegrityCheck.TailReference field. 
 
   
 



  Code Definitions 

Version 0.9 September 2003 33 

Pad Files 

EFI_FV_FILETYPE_FFS_PAD  

Summary 
A pad file is an FFS-defined file type that is used to pad the location of the file that follows it in the 
storage file. 

Prototype 
#define EFI_FV_FILETYPE_FFS_PAD        0xF0 

Description 
A pad file is an FFS-defined file type that is used to pad the location of the file that follows it in the 
storage file. The normal state of any valid (not deleted or invalidated) file is that both its header and 
data are valid.  This status is indicated using the State bits with State  = 00000111b. Pad 
files differ from all other types of files in that any pad file in this state must not have any data 
written into the data space. It is essentially a file filled with free space.  
The FFS_ATTRIB_TAIL_PRESENT bit in the Attributes field must be clear for pad files. 
This restriction is because if the FFS_ATTRIB_TAIL_PRESENT bit were set, it would not be 
possible to reclaim the free space from the pad file (see Reclaiming Pad Free Space).  Because the 
file is free space, an extended check of the file is simply a check for any nonfree data. 
 



Firmware File System Specification   

34 September 2003 Version 0.9 

Volume Top File 

EFI_FFS_VOLUME_TOP_FILE_GUID 

Summary 
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the 
last byte of the firmware volume.  Regardless of the file type, a VTF must have the file name GUID 
of EFI_FFS_VOLUME_TOP_FILE_GUID as defined below.   

GUID 
// {1BA0062E-C779-4582-8566-336AE8F78F09} 
 
#define EFI_FFS_VOLUME_TOP_FILE_GUID \ 
{ 0x1BA0062E, 0xC779, 0x4582, 0x85, 0x66, 0x33, 0x6A, \ 
  0xE8, 0xF7, 0x8F, 0x9 }; 

 



  

Version 0.9 September 2003 35 

4 
Pseudo Code 

FFS Initialization 
The algorithm below describes a method of FFS initialization that ensures FFS file corruption can 
be detected regardless of the cause. 
The State byte of each file must be correctly managed to ensure the integrity of the file system is 
not compromised in the event of a power failure during any FFS operation.  It is expected that an 
FFS driver will produce an instance of the Firmware Volume Protocol and that all normal file 
operations will take place in that context.  All file operations must follow all the creation, update, 
and deletion rules described in this specification to avoid file system corruption. See the Intel® 
Platform Innovation Framework for EFI Firmware Volume Specification for the definition of the 
Firmware Volume Protocol. 
The following FvCheck() pseudo code must be executed during FFS initialization to avoid file 
system corruption.  If at any point a failure condition is reached, then the firmware volume is 
corrupted and a crisis recovery is initiated. 
 
// Firmware volume initialization entry point – returns TRUE  
// if FFS driver can use this firmware volume. 
BOOLEAN FvCheck(Fv) 
{ 
  // first check out firmware volume header 
  if (FvHeaderCheck(Fv) == FALSE) { 
    FAILURE();// corrupted firmware volume header 
  } 
  if (Fv->FvFileSystemId != EFI_FIRMWARE_FILE_SYSTEM_GUID) { 
    return (FALSE);  // This firmware volume is not  
                     // formatted with FFS 
  } 
 
  // next walk files and verify the FFS is in good shape 
  for (FilePtr = FirstFile; Exists(Fv, FilePtr);  
          FilePtr = NextFile(Fv, FilePtr)) { 
    if (FileCheck (Fv, FilePtr) != 0) { 
      FAILURE(); // inconsistent file system 
    } 
  } 
  if (CheckFreeSpace (Fv, FilePtr) != 0) { 
    FAILURE(); 
  } 
  return (TRUE);     // this firmware volume can be used by the FFS  
                     // driver and the file system is OK 
} 
 



Firmware File System Specification   

36 September 2003 Version 0.9 

// FvHeaderCheck – returns TRUE if FvHeader checksum is OK. 
BOOLEAN FvHeaderCheck (Fv) 
{ 
  return (Checksum (Fv.FvHeader) == 0); 
} 
 
// Exists – returns TRUE if any bits are set in the file header 
BOOLEAN Exists(Fv, FilePtr) 
{ 
  return (BufferErased (Fv.ErasePolarity,  
                FilePtr, sizeof (EFI_FIRMWARE_VOLUME_HEADER) == FALSE); 
} 
 
// BufferErased – returns TRUE if no bits are set in buffer 
BOOLEAN BufferErased (ErasePolarity, BufferPtr, BufferSize) 
{ 
  UINTN  Count; 
 
  if (Fv.ErasePolarity == 1) { 
    ErasedByte = 0xff; 
  } else { 
    ErasedByte = 0; 
  } 
  for (Count = 0; Count < BufferSize; Count++) { 
    if (BufferPtr[Count] != ErasedByte) { 
      return FALSE; 
    } 
  } 
  return TRUE; 
} 
 
// GetFileState – returns high bit set of state field. 
  UINT8 GetFileState (Fv, FilePtr) { 
  UINT8 FileState; 
  UINT8 HighBit; 
 
  FileState = FilePtr->State; 
  if (Fv.ErasePolarity != 0) { 
    FileState = ~FileState; 
  } 
  HighBit = 0x80; 
  while (HighBit != 0 && (HighBit & FileState) == 0) { 
    HighBit = HighBit >> 1; 
  } 
  return HighBit; 
} 
 



  Pseudo Code 

Version 0.9 September 2003 37 

// FileCheck – returns TRUE if the file is OK 
BOOLEAN FileCheck (Fv, FilePtr) { 
  switch (GetFileState (Fv, FilePtr)) { 
    case EFI_FILE_HEADER_CONSTRUCTION: 
      SetHeaderBit (Fv, FilePtr, EFI_FILE_HEADER_INVALID); 
      break; 
    case EFI_FILE_HEADER_VALID: 
      if (VerifyHeaderChecksum (FilePtr) != TRUE) { 
        return (FALSE); 
      } 
      SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED); 
      Break; 
    case EFI_FILE_DATA_VALID: 
      if (VerifyHeaderChecksum (FilePtr) != TRUE) { 
        return (FALSE); 
      } 
      if (VerifyFileChecksum (FilePtr) != TRUE) { 
        return (FALSE); 
      } 
      if (DuplicateFileExists (Fv, FilePtr,  
                     EFI_FILE_DATA_VALID) != NULL) { 
        return (FALSE); 
      } 
      break; 
    case EFI_FILE_MARKED_FOR_UPDATE: 
      if (VerifyHeaderChecksum (FilePtr) != TRUE) { 
        return (FALSE); 
      } 
      if (VerifyFileChecksum (FilePtr) != TRUE) { 
        return (FALSE); 
      } 
      if (FilePtr->State & EFI_FILE_DATA_VALID) == 0) { 
        return (FALSE); 
      } 
      if (FilePtr->Type == EFI_FV_FILETYPE_FFS_PAD) { 
        SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED); 
      } 
      else { 
        if (DuplicateFileExists (Fv, FilePtr, EFI_FILE_DATA_VALID)) { 
          SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED); 
        } 
        else { 
          if (Fv->Attributes & EFI_FVB_STICKY_WRITE) { 
            CopyFile (Fv, FilePtr); 
            SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED); 
          } 
          else { 
            ClearHeaderBit (Fv, FilePtr, EFI_FILE_MARKED_FOR_UPDATE); 
          } 
        } 
      } 
      break; 



Firmware File System Specification   

38 September 2003 Version 0.9 

    case EFI_FILE_DELETED: 
      if (VerifyHeaderChecksum (FilePtr) != TRUE) { 
        return (FALSE); 
      } 
      if (VerifyFileChecksum (FilePtr) != TRUE) { 
        return (FALSE); 
      } 
      break; 
    case EFI_FILE_HEADER_INVALID: 
      break; 
  } 
  return (TRUE); 
} 
 
// FFS_FILE_PTR * DuplicateFileExists (Fv, FilePtr, StateBit) 
//    This function searches the firmware volume for another occurrence 
//    of the file described by FilePtr in which the duplicate files  
//    high state bit that is set is defined by the parameter StateBit.   
//    It returns a pointer to a duplicate file if it exists and NULL  
//    if it does not. 
 
// CopyFile (Fv, FilePtr) 
//    This real purpose of this function is to clear the  
//    EFI_FILE_MARKED_FOR_UPDATE bit from FilePtr->State  
//    in firmware volumes that have EFI_FVB_STICKY_WRITE == TRUE. 
//    The file is copied exactly header and all, except the 
//    EFI_FILE_MARKED_FOR_UPDATE bit in the file header of the 
//    new file is clear. 
 
// VerifyHeaderChecksum (FilePtr) 
//    This purpose of this function is to verify the file header  
//    sums to zero. See IntegrityCheck.Checksum.Header definition 
//    for details. 
 
// VerifyFileChecksum (FilePtr) 
//    This purpose of this function is to verify the file integrity 
//    check. See IntegrityCheck.Checksum.File definition for details. 
//    It also verifies the file tail. 
 



  Pseudo Code 

Version 0.9 September 2003 39 

Pre-FFS Initialization Access to Files 
The Security (SEC), Pre-EFI Initialization (PEI), and early Driver Execution Environment (DXE) 
code must be able to traverse the FFS and read and execute files before a write-enabled DXE FFS 
driver is initialized.  Because the FFS may have inconsistencies due to a previous power failure or 
other system failure, it is necessary to follow a set of rules to verify the validity of files prior to 
using them.  It is not incumbent on SEC, PEI, or the early read-only DXE FFS services to make any 
attempt to recover or modify the file system.  If any situation exists where execution cannot 
continue due to file system inconsistencies, a recovery boot is initiated. 
There is one inconsistency that the SEC, PEI, and early DXE code can deal with without initiating a 
recovery boot.  This condition is created by a power failure or other system failure that occurs 
during a file update on a previous boot.  Such a failure will cause two files with the same file name 
GUID to exist within the firmware volume.  One of them will have the 
EFI_FILE_MARKED_FOR_UPDATE bit set in its State field but will be otherwise a completely 
valid file.  The other one may be in any state of construction up to and including 
EFI_FILE_DATA_VALID.  All files used prior to the initialization of the write-enabled DXE FFS 
driver must be screened with this test prior to their use.  If this condition is discovered, it 
is permissible to initiate a recovery boot and allow the recovery DXE to complete the update. 
The following pseudo code describes the method for determining which of these two files to use.  
The inconsistency is corrected during the write-enabled initialization of the DXE FFS driver. 

 



Firmware File System Specification   

40 September 2003 Version 0.9 

// Screen files to ensure we get the right one in case 
// of an inconsistency. 
FFS_FILE_PTR EarlyFfsUpdateCheck(FFS_FILE_PTR * FilePtr) { 
  FFS_FILE_PTR * FilePtr2; 
 
  if (VerifyHeaderChecksum (FilePtr) != TRUE) { 
    return (FALSE); 
  } 
  if (VerifyFileChecksum (FilePtr) != TRUE) { 
    return (FALSE); 
  } 
  switch (GetFileState (Fv, FilePtr)) { 
    case EFI_FILE_DATA_VALID: 
      return (FilePtr); 
      break; 
    case EFI_FILE_MARKED_FOR_UPDATE: 
      FilePtr2 = DuplicateFileExists (Fv, FilePtr, 
                            EFI_FILE_DATA_VALID); 
      if (FilePtr2 != NULL) { 
        if (VerifyHeaderChecksum (FilePtr) != TRUE) { 
          return (FALSE); 
        } 
        if (VerifyFileChecksum (FilePtr) != TRUE) { 
          return (FALSE); 
        } 
        return (FilePtr2); 
      } else { 
        return (FilePtr); 
      } 
      break; 
  } 
} 

 

 NOTE  
There is no check for duplicate files once a file in the EFI_FILE_DATA_VALID state is located.  
The condition where two files in a single firmware volume have the same file name GUID and are 
both in the EFI_FILE_DATA_VALID state cannot occur if the creation and update rules that are 
defined in this specification are followed. 


	1 Introduction
	Overview
	Target Audience
	Conventions Used in This Document
	Data Structure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions


	2 Design Discussion
	Introduction
	File Format
	Overview
	FFS GUID
	FFS File Image

	FFS File Integrity and State
	Detecting FFS File Corruption
	File State Transitions
	Overview
	Initial State
	Creating a File
	Deleting a File
	Updating a File


	FFS-Defined File Types
	Overview
	Pad Files (File Type 0xF0)
	Pad File Overview
	Reclaiming a Pad File’s Free Space
	Updating a File Using a Pad File’s Free Space
	Updating Multiple Files in Lockstep


	Volume Top File

	3 Code Definitions
	Introduction
	 File Format
	EFI_FIRMWARE_FILE_SYSTEM_GUID
	EFI_FFS_FILE_HEADER
	EFI_FFS_FILE_TAIL

	Pad Files
	EFI_FV_FILETYPE_FFS_PAD 

	Volume Top File
	EFI_FFS_VOLUME_TOP_FILE_GUID


	4 Pseudo Code
	FFS Initialization
	Pre-FFS Initialization Access to Files


