Intel® 82801EB (ICH5) and
Intel® 82801ER (ICH5R)
Serial ATA Controller

Programmer’s Reference Manual (PRM)

July 2003

I Document Number: 252671-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining
applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® ICH5 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2003, Intel Corporation

2 SATA Programmer’s Reference Manual

intal

Contents

Appendix A

Appendix B

L 10T [T o) o PRSP 7
1.1 L 0T 1 SR 7
(O70) 1YY o1 17] o L= OSSP 9
2.1 L0 1 (T oot =T 9
22 KEYWOIAS ...ttt ettt et e e e s b e e e s anne s 9
Intel® ICH SATA Controller Basic AHDULES...............c..oiveeeeeeeeeeeeeeeeeeeee e, 11
3.1 Legacy SUD-MOGE.........cooiiiiiiieiieee et e e e e 11
3.2 Native SUD-MOAEo e 11
3.3 Host Controller Configurationseeeiiiiiiiiiiiiiee e 12
Theory Of OPEration e e e e e e e e e e e e e e e e e e annes 13
4.1 Compatible ConfigUuration ..o 13
411 Additional Register SUPPOItcccoiiiiiiiiieiee e 14
4111 MAP — Address Map Register — Offset 90h.............cccoeeeee. 14
4.1.2 Compatible Configuration - Option 1..........cccciiiiiiiiiic e, 15
41.3 Compatible Configuration - Option 2., 16
41.4 Compatible Configuration - Option 3 (Combined)..........ccccceeevvvinrnnnnen. 17
4.2 Enhanced Configuration ... 20
421 Pl - Programming Interface Register — Offset 09h..............cccovveeeeenn. 21
422 MAP Register Programmingocceeeiiiieieiiieeiee e 23
4.3 PCS - Port Control and Status Register — Offset 92h...........ccccceiiiiiiiiieeecees 23
4.3.11 Port Enabling/Disablingcccoiiiiiiiiieee e, 24
43111 BIOS Considerationscccccccevevviieeeeiiieee e, 24

43.1.1.2 Enabling/Disabling a SATA Port from an
Operating System Driverccccevvieeiiiieeeenee 25
43.1.1.3 Enabling/Disabling a SATA Port from ACPI 25
4.4 Device Presence DEetecCt ... 26
441 Hardware and Software Considerationsccoooccoiiiiiiiiiiiieeeen. 26
442 Device Detection — Software EXxamples........ccccccoeeciiiiiieeeccicciiieeeeeen 28
4.5 ATA SWap Bay SUPPOIT ...t e e e e e e eas 28
4.6 Implementing the Intel® ICH5 SATA Host Controller in ACPI Namespace 29
— COdING EXAMPIES ...t 31
A1 Enabling/Disabling SATA Ports from a WDM Driver........c.cccocceviiiiiiiieiiniieeee 31
A2 Enabling/Disabling SATA Ports in the _PSx Control Methodcccccoune 33
A3 Device Presence Check — UsSIiNg /Ocooiiiiiiiiiiiiii e 37
A4 Device Presence Check — USiNg ACPL.........coooiiiiiiie e 39
A5 ACPI Control Method (GSPS)ooiiiiiiie e 43
— Example ACPI NGMESPACE......ccccciiiiiiiiiee ettt e e e e e e e e e e e raeeeaaeeean 47

SATA Programmer’s Reference Manual 3

Figures

Tables

Figure 1. Compatible Configuration - Option 1.........cccceeeiiiiiiiiiie e 15
Figure 2. Compatible Configuration - Option 2...........coociiiiiiiiii e, 16
Figure 3. Compatible Configuration - Option 3...........cccoooiiiiiiiiieee e 17
Figure 4. Compatible Configuration - Option 3a...........cccceiiiiiiiii e, 18
Figure 5. Compatible Configuration - Option 3b.........cccccoiiiiiiiiiiie e, 19
Figure 6. Compatible Configuration - Option 3C.........coccoiiiiiiiiiii e 19
Figure 7. Compatible Configuration - Option 3d..........c..cccoeviiiiiiiii e 20
Figure 8. Enhanced Configuration..............oooieiiiiiii e 21
Figure 9. Power-on to Device Ready Elapsed Timeccccccvviiiiieiiiiiiiiiiiiieieiiieeveeeveeeees 27
Table 1. INtel® ICHS DEVICE IDS ... 7
Table 2. Valid BIOS Option for the Programming Interface Register................ccccccco... 22
Table 3. lllegal BIOS Options for the Programming Interface Registercccccee...... 22

SATA Programmer’s Reference Manual

Revision History

Revision Description Revision Date
Number
-001 Initial Release April 2003
-002 Updated register/bit names to match Intel® 82801EB I/O Controller July 2003
Hub 5 (ICHS5) / Intel® 82801ER 1/0O Controller Hub 5 R (ICH5R)
Datasheet

SATA Programmer’s Reference Manual

This page is intentionally left blank.

SATA Programmer’s Reference Manual

Introduction

Introduction

1.1

Overview

This document was prepared to assist BIOS software providers and Operating System (OS)
providers in supporting the Intel® 82801EB (ICH5)/ 82801ER (ICH5R) SATA Controller feature
set and programming interface.

It is assumed that the reader has a working knowledge of ATA/SATA architecture. Also, the
reader should have an understanding of ATA, BIOS (including ACPI) and device driver
development for the target operating systems.

This document also describes functions that the BIOS and the OS shall perform in order to ensure
correct and reliable operation of the platform. This document will be supplemented from time to
time with specification updates. The specification updates contain information relating to the latest
programming changes. Check with your Intel representative for availability of specification
updates.

This document does not cover any of the software requirements around configuration of the RAID
controller in ICH5R.

The recommendations in this Programmers Reference Manual (PRM) apply to the following
components:

Table 1. Intel® ICH5 Device IDs

Intel® ICH Device Device Function PCI Device ID PCI Vendor ID
Number
Intel® 82801EB (ICH5) and 02h 24D1 8086h
Intel® 82801ER (ICH5R)

Note:

SATA Programmer’s Reference Manual

In this document, references to an ICHx device that has a corresponding ICHx-M/R device will
include the ICHx-M/R part (e.g., reference to ICHS includes ICH5R).

Introduction

This page is intentionally left blank.

8 SATA Programmer’s Reference Manual

Conventions

2 Conventions

2.1 Register Access

This document uses the following notation as related to register access: RegOffset. BitOffset.
Where:

Q RegOffset specifies the name of the register to be accessed (either in I/O or PCI configuration
space)

Q BitOffset specifies the name of a bit contained within RegOffset that is to be accessed.
Example (Uses the Class Code register defined in the table below):
Assumes the following standard PCI configuration register (Class Code) with

CC.SCC refers to the Sub Class Code (SCC - bits 0:7) implemented within the Class Code (CC —
offset 0Ah) register in the PCI Configuration space.

Offset 0Ah - Class Code Register (CC)

Bits Type Reset Description
15:08 RO 01h Base Class Code (BCC): Indicates that this is a mass storage device.
07:00 RO 01h Sub Class Code (SCC): Indicates that this is an IDE device.

2.2 Keywords

e Mandatory - A keyword indicating items to be implemented as defined by this
document.

e System Software — A keyword that refers to both BIOS and operating system software
unless specifically stated otherwise.

e Shall - A keyword indicating a mandatory requirement. Equivalent to the term “must.”

e Should - A keyword indicating flexibility of choice with a strongly preferred alternative.
Equivalent to the phrase “it is recommended.”

SATA Programmer’s Reference Manual 9

Conventions

This page is intentionally left blank.

10 SATA Programmer’s Reference Manual

Intel® ICH SATA Controller Basic Attributes

Intel® ICH SATA Controller Basic
Attributes

3.1

3.2

The register set for the ICHS SATA controller is basically identical to that of the integrated
parallel ATA controller. Because the underlying SATA functionality is transparent to operating
system software, it need not have any special knowledge about SATA or SATA devices. In
addition to supporting the same programming interface, the SATA host controller can also be
configured to use legacy ATA resources as well as native PCI resources.

Legacy Sub-Mode

A host controller (channel) configured for legacy sub-mode of operation has the following
requirements:

e Has its Programming Interface register set for legacy mode
e Shall interrupt via IRQ14 (primary channel) and IRQ15 (secondary channel)
e Command and control block are accessed at fixed I/O locations:

— Command Block Offset: 01FOh for primary and 0170h for secondary
— Control Block Offset: 03F4h for primary and 0374h for secondary

Native Sub-Mode

A host controller (channel) configured for native sub-mode of operation has the following
requirements:

¢ Has its Programming Interface register set for native mode.
o Shall interrupt via the INTA#.

e Command and control blocks are accessed via 1/O space specified by the following BARs
located by the following PCI configuration offsets:

— Offset 10h — Primary Command Block Base Address
— Offset 14h — Primary Control Block Base Address

— Offset 18h — Secondary Command Block Base Address
— Offset 1Ch — Secondary Control Block Base Address

SATA Programmer’s Reference Manual 11

Intel® ICH SATA Controller Basic Attributes

intal

3.3 Host Controller Configurations

The SATA host controller can function independently of, or in conjunction with the parallel ATA
(P-ATA) host controller. The ICHS can support a maximum of six ATA devices: four parallel
ATA device plus two serial ATA devices.

The flexibility and software transparency of the SATA host controller presents an interesting
problem for older operating systems that do not comprehend or support the native mode of
operation (i.e., the ports/channels on both controller’s could be configured to use legacy resources,
which would result in hardware resource conflicts). To prevent this problem, ICHS supports
multiple SATA and P-ATA device configurations: compatible and enhanced. These configurations
are discussed on the next section.

12 SATA Programmer’s Reference Manual

In

4

tel

Theory of Operation

Theory of Operation

4.1

Note:

This section describes the proper usage and programming of the SATA host controller by BIOS
and the operating system when the host controller is operating in compatible or enhanced
configuration.

Compatible Configuration

The compatible configuration is for the express purpose of maintaining backward-compatibility
with those operating systems that do not comprehend native mode of operation. In this
configuration, a maximum of four ATA (serial and/or parallel) devices on the primary and/or
secondary channels can be supported. This mode allows both the primary and secondary channels
to be configured for legacy and/or native sub-modes of operation.

Since the ICHS5 supports up to six ATA devices (parallel + serial), it is possible for an end-user to
populate a platform with a combination of parallel and serial ATA devices. The fact that the ICHS
supports up to six ATA devices is not necessarily an issue for older operating systems; it is the fact
that both the P-ATA controller and SATA controller can be configured to consume legacy
resources (see Section: 3.1 Legacy Sub-Mode) that causes the issues (i.e., the primary and
secondary channel interfaces will attempt to share the same resources).

The compatible configuration solves this dilemma. The compatible configuration allows certain
device configurations to be accessed by software without the issue of legacy resource conflicts and
yet remain backward compatible with operating systems that don’t implement native mode
functionality.

The ICHS supports three compatible configuration options. These options are summarized as
follows and are discussed in detail in the following sections:

e P-ATA devices only (maximum of four) — Compatible Configuration Option 1
e SATA devices only (maximum of two) — Compatible Configuration Option 2
e P-ATA (maximum of two) and SATA devices (maximum of two) — Compatible Configuration

Option 3

Proper support of these options requires that system BIOS provide a BIOS setup option (that is
subsequently saved in nonvolatile memory) that allows the end user to select an option that is
appropriate for their particular hardware/operating system configuration. To insure backward
compatibility with existing software, BIOS is not permitted to dynamically select a configuration.

SATA Programmer’s Reference Manual 13

Theory of Operation

411

4111

14

intal

Additional Register Support

Support of certain Compatible configuration options requires that the ICHS implement an
additional hardware register that is configurable via BIOS. This register is located in the SATA
function’s PCI configuration space at offset 90h and is defined below. The usage model for this
register is described in subsequent sections.

MAP - Address Map Register — Offset 90h

This register is set by BIOS during POST. The exact value programmed into this register is based
on a BIOS setup option. Dynamic modifications of this register by BIOS as a result of POST or
some other event (e.g., docking event) is not permitted, as the underlying operating system
software may not comprehend the new device topology and may result in undefined behavior.

Bit Type Reset Description
7:3 RO 0 Reserved
Map Value (MV): The value in the bits below indicate the address range the
SATA port responds to, and whether or not the P-ATA and SATA functions are
combined.
Bits Mapping
000 Non-combined, SATA Port 0 is primary master, SATA Port 1 is
secondary master
2:0 RW 000 001 Non-combined, SATA Port 0 is secondary master, SATA Port 1
is primary master
Combined, SATA Port 0 is primary master, SATA Port 1 is
100 - .
primary slave, P-ATA is secondary
Combined, SATA Port 0 is primary slave, SATA Port 1 is
101 - .
primary master, P-ATA is secondary
110 Combined, P-ATA is primary, SATA Port 0 is secondary master,
SATA Port 1 is secondary slave
111 Combined, P-ATA is primary, SATA Port 0 is secondary slave,
SATA Port 1 is secondary master

Caution: Programming the MAP. MV register with values other than those specified above will result in
undefined hardware behavior.

Note: The P-ATA host controller does not implement this register.

SATA Programmer’s Reference Manual

intal

Theory of Operation

4.1.2 Compatible Configuration - Option 1

This option is selected when one or more P-ATA devices are to be used. SATA device(s) may or
may not be attached to the SATA ports, but will not be accessible to software. Figure 1 illustrates
this configuration:

Figure 1. Compatible Configuration - Option 1

} Disabled

Intel® ICH5

L Primary

P-ATA

L Secondary

Note: In the figure above, devices represented by dotted lines may be attached, but are not accessible to
software.

Note: This configuration requires no additional programming of the Port Mapping register, as in this
configuration it has no effect on the P-ATA or SATA functions.

To enable this configuration, system BIOS:

1.

Shall not program the SATA (Device 31, Function 2) controller’s base address registers
(Offsets 10h — 24h in PCI configuration space).

Shall disable access to the SATA controller’s I/O space by programming the command
register (PCI configuration, offset 04h, bit 0) with a 0.

Shall disable the SATA function by programming bit 2 (D31 F2_DISABLE) of the Function
Disable register (Device 31, Function 0, Offset F2h) with a 1. This will insure that the PCI
configuration registers associated with the SATA function are not decoded and thus will

insure that operating system configuration software does not enumerate and configure the
SATA function.

Shall insure that the SATA ports are not enabled. This is accomplished by writing ‘0’ to bits
1:0 in the Port Control and Status (PCS) register.

Shall program the P-ATA registers appropriately (the exact details are beyond the scope of
this document).

SATA Programmer’s Reference Manual 15

Theory of Operation

41.3

16

intal

Compatible Configuration - Option 2

This option is selected when one or more (maximum of two) SATA devices are to be used. P-ATA
device(s) may or may not be attached to the P-ATA channels, but will not be accessible to
software. Figure 2 illustrates this configuration:

Figure 2. Compatible Configuration - Option 2

Note:

Note:

Note:

Logical Primary

BIOS Selectable

|>—Peﬂ—1—>@ Logical Secondary

S-ATA

Intel® ICH5

. - - 4---% S
Ot‘
l‘Ml

N
+
¢
w

Disabled {
l‘ z N

In the figure above, devices represented by dotted lines may be attached, but are not accessible to
software.

In this configuration, software reads and writes to the slave device registers will result in a master
abort and as such reading from the slave device registers will return all 1. The Drive/Head register
(offset 06h in the command block) is the exception.

To enable this configuration, system BIOS:

1. Shall not program the P-ATA (Device 31, Function 1) controller’s base address registers
(Offsets 10h — 24h in PCI configuration space).

2. Shall disable access to the P-ATA controller’s I/O space by programming the command
register (PCI configuration, offset 04h, bit 0) with a 0.

3. Shall disable the P-ATA function by programming bit 1 (D3/ FI_DISABLE) of the
Function Disable register (Device 31, Function 0, Offset F2h) with a 1. This will insure that
the PCI configuration registers associated with the P-ATA function are not decoded and thus
will insure that operating system configuration software does not enumerate and configure the
P-ATA function.

4. Shall program the MAP.MV register as follows:

These mappings represent a master-master device arrangement.

SATA Programmer’s Reference Manual

intal

41.4

Theory of Operation

o MAP.MV == ‘000b’. This indicates that a SATA device on port 0 behaves as a master device
on the logical primary channel and a device on port 1 behaves as a master device on the
logical secondary channel.

The flexibility of the mapping register also allows the following configuration:

o MAP.MV == ‘001b’. This indicates that a SATA device on port 0 behaves as a master device
on the logical secondary channel and a device on port 1 behaves as a master device on the
logical primary channel.

5. Shall program the SATA registers appropriately. Because the programming interface is
identical to that of P-ATA, BIOS should follow the same programming guidelines as used for
the P-ATA (the exact details are beyond the scope of this document).

Compatible Configuration - Option 3 (Combined)

This option is selected when at least one SATA device (maximum of two) and at least one P-ATA
device (maximum of two) are connected to both SATA and P-ATA host controllers and are both
accessible by software. This configuration is referred to as the “combined” mode. In combined
mode of operation, devices can be supported in legacy mode, native mode or both. In this mode, it
is expected that the host controller will be programmed for legacy mode of operation. It is
important to note that in this configuration, the SATA and P-ATA host controllers share
functionality but appear as a single PCI function. In this case, the actual P-ATA function is hidden
from system software (i.e., cannot be enumerated or accessed directly) but P-ATA devices
connected to the function (primary channel only) may still be accessed. These devices are accessed
via the standard, P-ATA compatible register set exposed by the SATA controller. Figure 3
illustrates this configuration:

Figure 3. Compatible Configuration - Option 3

Viewed as a
single logical
channel
L
S-ATA
L
Logical Primary/Secondary
Channel Assignment
Intel® ICHS are BIOS Selectable
L
_ Physical Primary/Secondary
P-ATA Channels are Mutually Exclusive
K

SATA Programmer’s Reference Manual 17

Theory of Operation

18

intal

To enable this configuration, the system BIOS:

1.

Shall not program the P-ATA (Device 31, Function 1) controller’s base address registers
(Offsets 10h — 24h in PCI configuration space).

Shall disable access to the P-ATA controller’s I/O space by programming the command
register (PCI configuration, offset 04h, bit 0) with a 0.

Shall disable the P-ATA function by programming bit 1 (D3/_FI1_DISABLE) of the Function
Disable register (Device 31, Function 0, Offset F2h) with a 1. This will insure that the PCI
configuration registers associated with the P-ATA function are not decoded and thus will
insure that operating system configuration software does not enumerate and configure the P-
ATA function.

Shall program the MAP.MV register as follows:
If SATA is the primary channel and P-ATA is the secondary channel and Port 0 device is

primary master and Port 1 device is primary slave then MAP.MV == 100b’. Figure 4
illustrates this configuration:

Figure 4. Compatible Configuration - Option 3a

Logical Primary

S-ATA Channel
q
Intel® ICH5
& - > --- "' s Physical Primary
' o Channel
v Not Used

P-ATA

Logical Secondary
Channel

In the figure above, devices represented by dotted lines may be attached, but are not accessible to
software.

e If SATA is the primary channel and P-ATA is the secondary channel and Port 0 device is

primary slave and Port 1 device is primary master then MAP.MV == *101b’. Figure 5
illustrates this configuration:

SATA Programmer’s Reference Manual

intal

Figure 5. Compatible Configuration - Option 3b

Theory of Operation

S-ATA

i

Intel® ICH5

&

»
x

v

P-ATA| Y

-

Loical Primary
Channel

Physical Primary
Channel
Not Used

Logical Secondary
Channel

Note: In the figure above, devices represented by dotted lines may be attached, but are not accessible to

software.

e [f SATA is the secondary channel and P-ATA is the primary channel and Port 0 device is
secondary master and Port 1 device is secondary slave then MAP.MV == ‘110b’. Figure 6

illustrates this configuration:

Figure 6. Compatible Configuration - Option 3¢

S-ATA

Intel® ICH5

e

P-ATA

re

A
M i

> - #----» S

Logical Secondary
Channel

Logical Primary
Channel

Physical Secondary
Channel
Not Used

Note: In the figure above, devices represented by dotted lines may be attached, but are not accessible to

software.

e If SATA is the secondary channel and P-ATA is the primary channel and Port 0 device is
secondary slave and Port 1 device is secondary master then MAP.MV == ‘111b’. Figure 7

illustrates this configuration:

SATA Programmer’s Reference Manual

19

Theory of Operation

Figure 7. Compatible Configuration - Option 3d

4.2

20

Note:

Note:

Logical Secondary
S-ATA Channel

Intel® ICH5
p Logical Primary
Channel
P-ATA
& o s " Physical Secondary
' Channel
X Not Used

In the figure above, devices represented by dotted lines may be attached, but are not accessible to
software.

Enhanced Configuration

The enhanced configuration is intended for those operating systems (e.g., Microsoft Windows*
2000, Windows* XP) that comprehend both legacy and native modes of operation. It is the
preferred configuration for system software due to the maximum flexibility that it offers. Enhanced
mode allows both the P-ATA and SATA host controllers to be used, providing a maximum of six
ATA (4 P-ATA + 2 SATA) devices that can be used simultaneously.

In this configuration, the P-ATA controller must be programmed for legacy mode while the SATA
controller must be programmed for native mode of operation. Figure 8 illustrates the enhanced
mode configuration:

SATA Programmer’s Reference Manual

intal

Figure 8. Enhanced Configuration

Theory of Operation

Intel® ICH5

|>—P6ﬂ-9—>@ Logical Primary
S-ATA BIOS Selectable
»—Peﬁ—1—>@ Logical Secondary
«
P-ATA
o

Note: While the enhanced configuration can support a maximum of six ATA devices, Intel recommends
that its customers limit their platforms to a four-device maximum configuration (applicable to both
compatible and enhanced configuration), as this will provide for an easier transition to a four
SATA device maximum configuration on future ICHs.

421 Pl - Programming Interface Register — Offset 09h

As stated previously, the P-ATA and SATA channels can be configured for either native mode
only or a combination of legacy and native modes. This is controlled via the Programming
Interface register. The programming interface register is found in both the SATA and P-ATA
functions and can be modified by both BIOS (during POST) and operating system software.

Bit Type Reset Description
7 RO 1 Indicates the SATA controller supports bus master operation.
6:4 RO 0 Reserved
3 RO 1 SOP_MODE_CAP: Indicates that the secondary controller supports both
legacy and native modes.
SOP_MODE_SEL: Determines the mode that the secondary channel is
operating in.
2 RW 0 0 = Legacy PCI mode (Default)
1 = Native PCl mode
1 RO 1 POP_MODE_CAP: Indicates that the primary controller supports both legacy
and native modes.
POP_MODE_SEL: Determines the mode that the primary channel is
operating in.
0 RW 0 0 = Legacy PCI mode (Default)
1 = Native PCl mode

SATA Programmer’s Reference Manual

21

Theory of Operation

Note:

Caution:

intal

Table 2 illustrates the valid values that system BIOS can use for the programming interface
register when in enhanced mode.

The ICHS does permit the SATA and P-ATA host controllers to simultaneously operate in native

mode if they are programmed to do so by the operating system. Due to potential operating system
incompatibilities, it is a requirement (when in enhanced mode) that the system BIOS programs the
P-ATA and SATA host controllers exactly as described in Table 2.

Improper programming could result in undefined behavior.

Some Microsoft operating systems have specific platform support requirements when operating on
systems capable of native mode of operation. Refer to paper titled BIOS Settings for Native-Mode-
Capable ATA Controllers, available from Microsoft Corporation at:
http://www.microsoft.com/hwdev/storage/, for additional operating system-related details.

Table 2. Valid BIOS Option for the Programming Interface Register

SATA - Device 31, Function 2 P-ATA - Device 31, Function 1

POP_MODE_SEL SOP_MODE_SEL POP_MODE_SEL SOP_MODE_SEL

Note:

1 1 0 0

The SATA and P-ATA host controllers do not support the programming of the primary and
secondary channels differently (i.e., primary as native and secondary as legacy). Programming the
controllers with values other than those specified above is illegal and will result in undefined
hardware behavior.

Table 3 illustrates an illegal programming combination. System BIOS programming of all the
channels (both the SATA and P-ATA controllers) for legacy mode or native will result in
undefined behavior. Operating system software requiring legacy only mode capability is required
to find the SATA host controller configured for compatible mode.

Table 3. lllegal BIOS Options for the Programming Interface Register

Note:

22

SATA - Device 31, Function 2 P-ATA - Device 31, Function 1

POP_MODE_SEL

SOP_MODE_SEL

_ SOP_MODE_SEL

SOP_MODE_SEL

0

0

0

0

0

0

1

1

1

1

1

1

Following a reset, the SATA and P-ATA controllers will both be configured for legacy mode.
Therefore it is very important that system BIOS program these registers with legal values as

defined in Table 2. Valid BIOS Option for the Programming Interface Register

SATA Programmer’s Reference Manual

http://www.microsoft.com/hwdev/storage/

4.2.2

4.3

Theory of Operation

MAP Register Programming

As shown in Figure 8. Enhanced Configuration, enhanced mode configures the SATA so each
SATA port is viewed as individual logical channels with a single master device. Using the MAP
register, the logical SATA channels can be configured so that port 0 is the logical primary channel
and port 1 is the logical secondary channel or vice-versa. The programming for this register is as
follows:

o MAP.MV == ‘000b’. This indicates that a SATA device on port 0 behaves as a master device
on the logical primary channel and a device on port 1 behaves as a master device on the
logical secondary channel.

® MAP.MV == ‘001b’. This indicates that a SATA device on port 0 behaves as a master device
on the logical secondary channel and a device on port 1 behaves as a master device on the
logical primary channel.

When in Enhanced mode, programming the MAP register to values other than ‘000b’ or ‘001b’
could result in undefined hardware behavior. The MAP register shall be programmed by the BIOS
only during POST.

PCS - Port Control and Status Register — Offset 92h

To provide better power management and device presence capabilities, the SATA host controller
implements a Port Control and Status (PCS) register. The PCS register provides improved
power savings in that it allows system software to disable individual SATA ports. Device presence
detection is beneficial to system software as this can greatly reduce boot times and resume times
(from S3 and below).

Bit Type Reset Description

7:6 RO 0 Reserved

Port 1 Present (P1P): When set, the SATA host has detected the presence
5 RO 0 of a device on port 1. It may change at any time. This bit is cleared when the
port is disabled via the P1E bit (bit 1 of this register).

Port 0 Present (POP): When set, the SATA host has detected the presence
4 RO 0 of a device on port 0. It may change at any time. This bit is cleared when the
port is disabled via the POE bit (bit O of this register).

3:2 RO 0 Reserved

Port 1 Enabled (P1E): When set, the port is enabled. When cleared, the port
is disabled. When enabled, the port is in the “on” state and can detect

1 RW 0 devices. When disabled, the port is in the “off” state and cannot detect any
devices.

Port 0 Enabled (POE): When set, the port is enabled. When cleared, the port
is disabled. When enabled, the port is in the “on” state and can detect

0 RW 0 devices. When disabled, the port is in the “off” state and cannot detect any
devices.

SATA Programmer’s Reference Manual 23

Theory of Operation

4.3.1.1

Note:
43111
24

intal

By default, the SATA ports are set (by hardware) to the disabled state as a result of a D3 to DO
power state transition (due to initial power-on reset or resume from suspend).

Port Enabling/Disabling

System software may choose to (keep) disable a port as a result of a device being disconnected
from a port(s). Overall power consumption can be reduced if system software only enables those
ports that have SATA devices attached. This is especially beneficial to mobile systems.

The following are general guidelines to be used for determining when the SATA ports shall be
enabled and when they should be disabled:

IMPORTANT — A port shall not be enabled if power is not applied to the attached SATA device.
Power shall be applied to the device for a period of at least 30ms before its associated port is to be
enabled by system software. System software shall insure that a port is disabled prior to removing
power to the associated SATA device.

e A port on the ICH5 SATA host controller shall be enabled in order for the PCS.PxP (where x
is 0 for Port 0 or 1 for Port 1) bits to be accurate. See Section 4.4.1 Hardware and Software
Considerations.

e As part of a robust power conservation strategy, a port on the ICH5 SATA host controller
should be disabled when a SATA device is not physically present or is unusable.

Ports may be enabled and disabled via the following methods:
e Operating system device driver (either directly or through ACPI)

¢ ACPI power management control method (e.g., PSx)
BIOS Considerations
To insure that SATA devices are functional following certain system power state transitions,
system BIOS shall enable the SATA ports under the following conditions:

e Any APM supported system state transition where the ICHS SATA host controller is reset.

e Device power state transitions where the operating system cannot enable the SATA ports
through the use of a native (non-ICHS5 SATA host controller aware) device driver or through
the use of ACPI control methods.

These considerations do not apply if both of the following conditions are true:

e The SATA devices are not crucial to operating system boot or for resuming from hibernation

AND

e The operating system implements an ICHS SATA host controller aware device driver.

Failure by the system BIOS to provide the required support will result in device inaccessibility
and/or loss of operating system functionality.

SATA Programmer’s Reference Manual

intal

4.3.1.1.2

Note:

43113

Note:

Theory of Operation

Enabling/Disabling a SATA Port from an Operating System Driver

To disable or enable a SATA port, system software need only program the PCS.PxE (where x is 0
for Port 0 or 1 for Port 1) bit(s) with a 0 or a 1. Note that the SATA host controller hardware
allows the PCS. PxE bits to be written to individually or simultaneously. A WDM driver may
program the PCS.PxE bits directly (through the PCI driver) or indirectly (through an ACPI control
method — see 4.4 Device Presence Check — Using ACPI for an example of how to call an ACPI
control method from a WDM driver).

A.1 Enabling/Disabling SATA Ports from a WDM Driver illustrates how a WDM driver could
read/write the PCS.PxE bits for enabling or disabling the SATA port(s).

Because the SATA host controller is designed with backward compatibility in mind, it is not
expected that existing operating system software designed for P-ATA host controllers should ever
have to modify the PCS.PxE bits directly; this shall be done by the system BIOS and/or ACPI
control methods (see Section: 4.3.1.1.3 Enabling/Disabling a SATA Port from ACPI).

Enabling/Disabling a SATA Port from ACPI

Enabling and disabling of the SATA ports is also a function of the standard PSx (PSO or PS3 —
these control methods can be used to supplement the device power management and are executed
whenever the operating system wishes to place the SATA into the DO and D3 power states,
respectively) control methods found in the ACPI namespace for the SATA controller.

By enabling the SATA ports when the host controller transitions to the DO power state (via_PS0)
and disabling the SATA ports prior to the host controller transitioning to the D3 power state (via
_PS3), backward compatibility with system software designed for non-ICHS SATA aware ACPI
operating systems will be maintained.

Using ACPI can also be beneficial to device drivers that comprehend the ICHS SATA in that the
ACPI implementation abstracts the actual hardware implementation and location of the PCS
register. This is especially useful if hardware designers require a change in the location in PCI
configuration space of the PCS register due to silicon stepping requirements. Using ACPI could
prevent a re-spin of the device driver and any subsequent re-validation.

A.2 Enabling/Disabling SATA Ports in the PSx Control Method provides an example of how the
SATA ports are enabled and disabled via the _PS0 and PS3 control methods.

For those platforms that support hot insertion/removal of SATA devices through specialized
hardware, the associated ACPI control methods (e.g., EJx) shall also implement ASL (ACPI
Script Language) code that disables a SATA port (for device removal events) and enables a SATA
port (for device insertion events).

SATA Programmer’s Reference Manual 25

Theory of Operation

4.4

441

26

Note:

intal

Device Presence Detect

The ICH5 SATA host controller provides bits in the PCS register (POP and P1P) that can be used
by system software to detect the presence of (or lack of) SATA device(s) connected to the SATA
host controller.

Device presence detection has two main benefits:

e Can potentially assist in quicker boot times (both BIOS POST and operating system) by
eliminating the need for time-consuming device detection algorithms (as required for P-
ATA devices). Limitations to this feature are addressed in the next section.

e Assists in providing better power management. A port with no device present can be
disabled as a disabled SATA port consumes less power than one that is enabled (See
Section: 4.3.1.1 Port Enabling/Disabling)

Hardware and Software Considerations

The value of the port presence bits is valid only under the following conditions:
e The SATA host controller is in the DO power state.
e The port to be checked is enabled.

There is no requirement that both ports are enabled when checking the PxP bit; only the port being
examined needs to be enabled.

At some point in time, after a port has been enabled (PCS.PxE== 1), system software will want to
determine two things:

1. IsaSATA device is attached to the port?
2. Ifa SATA device is attached to a port, is it ready to receive commands?

These two items can be determined by software in succession (detect for device, then check
readiness) or simultaneously (check for readiness, as a ready device must be present). Device
detection can be accomplished through an examination of a port’s PxP bit (via polling).
However, the amount of time that may elapse between when system software enables a port
and when the ICHS SATA HBA detects a device (or not) is SATA device specific and is not
specified.

SATA Programmer’s Reference Manual

intal

Theory of Operation

Figure 9. Power-on to Device Ready Elapsed Time

Device
Ready
Power System SW SATA HW BSY == 0
On sets PxE sets PxP DRDY ==1

» Time
0 X
ms, y z
us or ms ms or secs

secs

In Figure 9, the total elapsed time from power on until a device attached to a SATA port is
“ready.” is the sum of the amount of elapsed time shown above (x +y + z). In the figure above, the
time value ‘x’ is the amount of time that elapses prior to the setting of the PxE bit by system
software. This value may measure in microseconds, milliseconds or seconds — its value is
dependent on when system software sets the PxE bit.

The time value ‘y’ can be up to 10ms plus an unspecified amount of time (as per the Serial ATA:
High Speed Serialized AT Attachment v1.0 specification - this document is available from the
Serial ATA Working Group at: http://www.serialata.org/). This duration is highly dependent on
the manufacturer of the SATA device.

The time value ‘z’ is bound to an upper value and is defined by the AT Attachment with Packet
Interface — 6 (ATA/ATAPI-6) Specification, available from the T13 Technical Committee at:
http://www.t13.org/.

If the PxP bit is not set by the ICH5 SATA PHY at some interval within the time denoted by x +y
+ z, then system software shall assume that no device is present on the port.

As noted in the figure above, the PxP bits only indicate device presence; device readiness (e.g.,
able to receive commands) shall be determined by an examination of the Status register (contained
within the appropriate channel control register). The device indicates ‘readiness’ when the device
is 1) Not busy (BSY == 0) and 2) is ready (DRDY == 1). This is identical to how device
presence/readiness is determined for P-ATA devices.

SATA Programmer’s Reference Manual 27

http://www.serialata.org/
http://www.t13.org/

Theory of Operation

442

4.5

28

Note:

intal

The accuracy of the PxP bits cannot be guaranteed if the SATA PHY and associated device is in a
slumber state. System software shall first disable the port and then re-enable it. This will cause the
SATA PHY and associated device to wake, thus allowing the SATA hardware to properly detect
and report the port connect status.

In the above figure (Figure 9), because the cumulative amount of time ‘)’ is not bound to any spec-
ed value and can vary from device manufacturer to manufacturer. Because this time can very short
(e.g., within 10 ms) or very long (10+ ms), system software may choose to exclusively use device
“readiness” as an indicator of device presence instead of relying on the setting of PxP. Selecting a
mechanism for use by system software is beyond the scope of this paper.

Device Detection — Software Examples

System software may examine the port presence bits using two different methods:

1. Direct reads to the SATA host controller I/O space.
2. ACPI control methods.

The sample code in 4.3 Device Presence Check — Using I/0 illustrates how system software could
directly read the port presence bits to determine the connect status of the SATA ports.

The sample code (for Windows WDM drivers) in 4.4 Device Presence Check — Using ACPI
illustrates how to execute an ACPI control method that returns the connection status for the SATA
port(s) associated with a logical SATA channel. This code assumes that a PDO (Physical Device
Object) exists for both the logical primary and secondary channels. WDM device drivers can only
execute control methods associated with their corresponding ADR object in ACPI namespace (of
which there is a direct relationship between the ADR object and the PDO).

Note that in these two examples, the ACPI control method handles the complexities of determining
whether the SATA host controller is configured for Compatible mode and which SATA ports are
the logical master and logical slave (if applicable). This sample driver code uses the ACPI sample
code illustrated in 4.5 ACPI Control Method (GSPS).

ATA Swap Bay Support

While the ICHS SATA host controller does not support surprise (removal of a SATA device while
transactions are active on the SATA bus) device removals, it does provide basic ATA Swap Bay
Support. Using the PCS register configuration bits (PxE and PxP) and power management flows,
a device can be powered down by system software, and the port can then be powered off, allowing
removal and insertion of a new device.

How system software handles device swapping is very dependent on the target platform. For
example, mobile platforms may continue to use a combination of specialized hardware, interrupts
and ACPI control methods (especially useful for swap bays that could support traditional P-ATA
devices in addition to SATA devices) for communicating device insertions and removals to the
operating system. Other platform types (e.g., desktop, workstations) traditionally do not implement
additional hardware (interrupts) and ACPI control methods and may require that the operating
system (device drivers) implement specific software based device detection algorithms. How this
is implemented is beyond the scope of this document.

SATA Programmer’s Reference Manual

Theory of Operation

4.6 Implementing the Intel® ICH5 SATA Host Controller
in ACPI Namespace

See Appendix B — Example ACPI Namespace for an example of an ACPI namespace for the ICHS
SATA host controller. This example supports the ICHS5 SATA host controller operating in
enhanced, combined and non-combined modes.

SATA Programmer’s Reference Manual 29

Theory of Operation

30

This page is intentionally left blank.

SATA Programmer’s Reference Manual

Theory of Operation

Appendix A — Coding Examples

A1 Enabling/Disabling SATA Ports from a WDM Driver

!/

// Function Proto for Reading and Writing to device configuration space

!/

NTSTATUS ReadWriteConfigSpace(PDEVICE OBJECT pDO, BOOLEAN fRead, PVOID pBuf,
ULONG Offset, ULONG Length) ;

!/

//

// This example illustrates how a WDM driver could read/write the PCS.PxE bits for

// enabling or disabling the SATA port(s).

//

// This example assumes direct access to the SATA PCI Configuration space

//

//

// Disable the ports. For simplicity, we don’t do any status checking

//
BYTE val = 0; // to disable both ports
ReadWriteConfigSpace (pDO, TRUE, &val, 0x92, sizeof(val));

//
// Enable the ports. For simplicity, we don’t do any status checking

//
BYTE val = 3; // to enable both ports
ReadWriteConfigSpace (pDO, FALSE, &val, 0x92, sizeof(wval));

//
// Enable only port 0. For simplicity, we don’t do any status
// checking

//
BYTE val;

SATA Programmer’s Reference Manual 31

Theory of Operation

32

/7

// need to perform a read/write modified in order to do this

// properly

// Read the current settings
ReadWriteConfigSpace (pDO, TRUE, &val, 0x92,
val |= 1; // set bit 0 to enable Port 0
ReadWriteConfigSpace(pDO, FALSE, &val, 0x92,

sizeof (val));

sizeof (val));

//

// ReadWriteConfigSpace - Read or write PCI config space

//

// Entry:

// pDO = ptr to our device object

// fRead = TRUE if reading, FALSE if writing

// pBuf = ptr to buffer that contains/receives the data
// Offset =» Offset into PCI config space to read/write
// Length=» size of pBuf

// Exit:

// returns NT SUCCESS if no errors.

//

NTSTATUS

ReadWriteConfigSpace (PDEVICE OBJECT pDO, BOOLEAN fRead, PVOID pBuf, ULONG Offset,

ULONG Length)

KEVENT event;
PIRP pIrp;
NTSTATUS status;

pIrp = IoAllocateIrp(pDO->StackSize, FALSE) ;

if (pIrp == NULL)
return STATUS_ INSUFFICIENT_RESOURCES;

KeInitializeEvent (&event, NotificationEvent, FALSE) ;

// The PnP IRPs need the Status field initialized to STATUS_NOT SUPPORTED.

pIrp->IoStatus.Status = STATUS NOT SUPPORTED;

nextStack = IoGetNextIrpStackLocation(pIrp) ;

nextStack->MajorFunction= IRP_MJ PNP;

nextStack->MinorFunction= fRead ? IRP MN READ CONFIG : IRP_MN WRITE CONFIG;

nextStack->Parameters.ReadWriteConfig.WhichSpace = PCI_WHICHSPACE_ CONFIG;

SATA Programmer’s Reference Manual

A.2

Theory of Operation

nextStack->Parameters.ReadWriteConfig.Buffer = pBuf;

nextStack->Parameters.ReadWriteConfig.Offset = Offset;
nextStack->Parameters.ReadWriteConfig.Length = Length;

status = IoCallDriver(pDO, irp);

if (status == STATUS_PENDING) {
//
// Request did not complete. Need to wait until it does
//

KeWaitForSingleObject (&event, Suspended, KernelMode, FALSE, NULL) ;

status = pIrp->IoStatus.Status;

}

return(status) ;

Enabling/Disabling SATA Ports in the _PSx Control
Method

//

// This sample ASL code demonstrates how to enable and disable the SATA port (s)
// from the PS0 and _PS3 control methods

!/

OperationRegion (IDEC, PCI_Config, 0x90, 3)

Field (IDEC, ByteAcc,NoLock, Preserve)

{
MAP, 8, // SATA Map register - Offset 90h
, 8, // skip 8 bits
PCS, 8 // SATA Port status and control register - Offset 92h
1

Device(IDE1l) { // SATA controller
Name (_ADR, 0x01£0002) // Device 31, Function 2
//
// EPRT - Enable the SATA ports. This assumes the controller is in combined
// mode. This would be need to modified to handle non-combined modes.
// Entry:
// arg0 = bit map indicating which port(s) to enable:
// bit 0 set, enable Port 0
// bit 1 set, enable Port 1
// all other bits must be zero

!/

!/

// Since the ports operate independently, we can enable both

SATA Programmer’s Reference Manual 33

Theory of Operation

// simultaneously if necessary
//
Method (EPRT, 1) {
Store(1, Local0) // Set max attempts
Store(Arg0, Locall)
While (LNotEqual (Local0O, 0))
Or(Arg0, PCS, PCS) // enable Port (s)
Sleep(500) // Wait 500ms. Some devices respond
// very quickly, some longer. This loop will
// account for worse case. This is an
// example and could be better optimized
Decrement (LocalO) // account for this attempt
Store(PCS, Local2) // fetch port presence bits
// Check if we are enabling Port 0
If(LAnd(Arg0, 0x01) {
If(LAnd(Local2, 0x10)) {
Decrement (Locall) // Port 0 is enabled
}
Else {
//
// Since a device detect failed, we disable the port. This will
// insure that the port remains disabled - this is not
// required, but is part of a good power conservation policy.
//
And(PCS, 0x02, PCS) // disable Port 0

}

// Check if we are enabling Port 1
If(LAnd(Arg0, 0x02) {
If(LAnd(Local2, 0x20)) {

Decrement (Locall) // Port 1 is enabled
1
Else {

And(PCS, 0x01, PCS) // disable Port 1

}

If(LEqual(Locall, Zero)) { // all ports enabled?
Store(Zero, LocalO) // terminate loop
1

} // end while

}

Device(PRID) { // Primary channel
Name (ADR, 0) // Logical primary channel (Port 0 or 1, BIOS selectable).

// Assumes BIOS populated the SATA timing registers appropriately

34 SATA Programmer’s Reference Manual

Theory of Operation

// depending on which port is configured as primary and secondary

Device(DRVO) // Logical primary master

Name (_ADR, 0)

}
/!

// Handle transitions to DO power state

/!

Method (_PS0,0)

{

//

// make sure the OS drivers finds the ports in an enabled state as they
// (the device drivers) may have been designed for P-ATA and ‘know’

// nothing about the PCS register

//

// Since enhance mode implements a master-master scheme, only 1 port

// would be enabled here (dependent on the MAP settings). In Combined

// mode, both SATA ports are viewed as a single logical channel

// implementing a master-slave configuration in which case both ports are
// enabled.

//

//

// Enable Power to the device - Set the GPIO(s) bit corresponding to the
// power plane control. This shall be done before

// the port(s) are enabled. This is platform specific

//

- // power plane control is platform specific

// Must wait 30ms before we can enable the ports

Sleep(30)

EPRT (0x03) // enable the ports - assumes combined mode

/!
!/
!/

}
!/

Check ports and disable device power plane if port(s) not enabled.

// power plane control is platform specific

// Handle transitions to D3 power state

!/

Method (_PS3,0)

{
//
//

Disable the ports. Since a non-SATA aware driver could be in use,

SATA Programmer’s Reference Manual 35

Theory of Operation

36

//
//
//
//
//
//
//
//

INtal

we need to disable the SATA ports here

Since enhance mode implements a master-master scheme, only 1 port
would be disabled here (dependent on the MAP settings). In Combined
mode, both SATA ports are viewed as a single logical channel
implementing a master-slave configuration in which case both ports are

disabled.

Store(Zero, PCS) // disable ports 0 and 1 - assume combined mode

!/
/!
!/
//

}

Disable Power to the device - Set the GPIO bit corresponding to the

power plane control

// platform specific

Device(SECD) { // Secondary channel

Name (

_ADR, 1) // Logical secondary channel (Port 0 or 1, BIOS selectable)

Device(DRVO) // Logical secondary master

{

Name (_ADR, 0)

}
!/

// Handle transitions to DO power state

!/

Method (_PS0,0)

{
//
//
//
//
//
//
//
//
//
//
//

/7
//
/7
//

make sure the 0OS drivers finds the ports in an enabled state as they
(the device drivers) may have been designed for P-ATA and ‘know’

nothing about the PCS register

Since enhance mode implements a master-master scheme, only 1 port
would be enabled here (dependent on the MAP settings). In Combined
mode, both SATA ports are viewed as a single logical channel
implementing a master-slave configuration in which case both ports

are enabled.

Enable Power to the device - Set the GPIO(s) bit corresponding to the
power plane control. This shall be done before

the port(s) are enabled. This is platform specific

SATA Programmer’s Reference Manual

A3

Theory of Operation

!/
// power plane control is platform specific
// Must wait 30ms before we can enable the ports
Sleep(30)
EPRT (0x03) // enable the ports, assumes combined mode
//
// Check ports and disable device power plane if port(s) not enabled.
//
// power plane control is platform specific
}
//
// Handle transitions to D3 power state
//
Method (_PS3,0)

{
//

// Disable the ports. Since a non-SATA aware driver could be in use,
// we need to disable the SATA ports here

//

// Since enhance mode implements a master-master scheme, only 1 port
// would be disabled here (dependent on the MAP settings). In Combined
// mode, both SATA ports are viewed as a single logical channel

// implementing a master-slave configuration in which case both ports
// are disabled.

//

Store(Zero, PCS) // disable ports 0 and 1 - assume combined mode.

//

// Disable Power to the device - Set the GPIO bit corresponding to the

// power plane control, platform specific

!/

}

} // Device(IDE1)

Device Presence Check — Using I/O
//

// This sample code illustrates how system software could directly read the port
// presence (PxP) bits to determine the connect status of the SATA ports.

//

// Note: This sample code does not apply to any specific operating system. As
// such, the function, 0S_ReadPCI() is a hypothetical, 0S provided function that

// allows a device’s PCI configuration space to be read.

SATA Programmer’s Reference Manual 37

Theory of Operation

38

//
BYTE bMAP = OS_ReadPCI(0x90); // read the map register

/7

// It is assumed that the port is enabled and the device and PHY are not in a

// slumber state as this is required in order for the port presence bits to be

// accurate.

//

BYTE bPCS = OS _ReadPCI(0x92); // read the port/status control register
//

// check the status of port 0

!/

INT iPortOStatus, iPortlStatus, iAllStatus = 0;

!/
// make sure the P-ATA is not the primary channel
//
if (bMAP < 0x06) {
//
// Not P-ATA device. Must be SATA.
//
if(bPCS & 0x10)
iPortOStatus = 1; // Port 0 device present
if (bPCS & 0x20)
iPortlStatus = 1; // Port 1 device present
// Now we need to figure out which is master and slave (if applicable)
if(! (bMAP & 0x01)) { // is Port 0 master?
// Port 0 is master
iAllStatus = iPortOStatus;
// check if combined mode
if (bMAP & 0x04) // Is combined mode?
// yes, set the slave device status (Port 1)
iAllStatus |= iPortlStatus << 1;
1
else {
// Port 1 is master
iAllStatus = iPortlStatus;
if (bMAP & 0x04) // Is combined mode?
// yes, set the slave device status (Port 0)

iAllStatus |= iPortOStatus << 1;

}

else
// P-ATA does not support this. Indicate connect status unknown
iAllStatus = -1;

!/

SATA Programmer’s Reference Manual

Theory of Operation

// At this point, iAllStatus will contain:

// 0 ==> no devices present

// 1 ==> master device present

// 2 ==> slave device present

// -1 ==> Not supported or unknown (P-ATA)

!/

return(iAllStatus); // done

A4 Device Presence Check — Using ACPI

//
/7
//
/7
//
/7
//
/7
//
/7
//

/7
//

The following sample code (for Windows WDM drivers) can be used to execute a
control method that will return the status of the SATA port(s) associated with
a SATA channel. It also illustrates how to execute an ACPI control method that
returns the connection status for a logical channel. This code assumes that a
PDO (Physical Device Object) exists for both the logical primary and secondary
channels. WDM device drivers can only execute control methods associated with
their corresponding ADR object in ACPI namespace (of which there is a direct
relationship between the ADR object and the PDO) .

This sample driver code uses the ACPI sample code illustrated

in A.5 ACPI Control Method (GSPS).

Function Protos

NTSTATUS SATA CheckPortStatus(IN PDEVICE OBJECT pDO, PDWORD pdwStatus) ;

NTSTATUS SendIRP(IN PDEVICE OBJECT Pdo, IN ULONG Ioctl, IN PVOID InputBuffer,

IN ULONG InputSize, IN PACPI_EVAL OUTPUT BUFFER OutputBuffer,
IN ULONG OutputSize) ;

VOID ProcessConnectStatus(DWORD dwPortStatus) ;

{

NT_ STATUS status;
DWORD dwPortStatus;
Status = SATA CheckPortStatus(pDO, &dwPortStatus) ;
if (INT SUCCESS(status))
//
// Not an ACPI 0OS or control method not supported. Set the

// status to indicate that port status is unknown

!/
dwPortStatus = -1;
ProcessConnectStatus (dwPortStatus); // TODO - implementation specific

SATA Programmer’s Reference Manual 39

Theory of Operation

}

#define SATA GET PORT_ STATUS 'SPSG' // Control method to execute
//

// SATA CheckPortStatus - Get the SATA port status

//

// Entry:

// pDO ==> pointer to our physical device object
// pdwStatus ==> ptr to receive port status value
//

// Exit:

// Returns status code.

// If success, pdwStatus has the SATA port status:
// 0 ==> No devices connected

// 1 ==> Master device present

// 2 ==> Slave device present

// 3 ==> Master and slave device present

// -1 ==> Device presence unknown

//

NTSTATUS

SATA CheckPortStatus(IN PDEVICE OBJECT pDO, PDWORD pdwStatus)
{

NTSTATUS status = STATUS_ SUCCESS;

PACPI_METHOD ARGUMENTpArgBuf;

ACPI_EVAL INPUT BUFFER InputBuffer;

ACPI_EVAL OUTPUT_BUFFER OutputBuffer;

//

// setup the request structure

//

InputBuffer->MethodNameAsUlong = SATA GET_ PORT STATUS;
InputBuffer->Signature = ACPI_EVAL INPUT BUFFER_SIGNATURE;

!/

// finally, do the request

!/

status = SendIRP(pDO, // this logical channel's PDO
IOCTL ACPI_EVAL_METHOD,
pInputBuffer, // ptr to input buffer
sizeof (ACPI_EVAL INPUT BUFFER), // its size
pOutputBuffer, // ptr to output buffer
sizeof (ACPI_EVAL OUTPUT BUFFER);// its size

//

40 SATA Programmer’s Reference Manual

Theory of Operation

// if not successful, the control method probably does not

// exists or APM mode is being used

//
if (NT SUCCESS(status)) {
//
// make sure we received the correct data type back
//
if (pOutputBuffer->Argument [0] .Type != ACPI_METHOD ARGUMENT INTEGER)
status = STATUS DATA ERROR;
else
// Port status is here
*pdwStatus = pOutputBuffer->Argument[0] .Argument;
}
return(status) ;
}
//
// SendIrp - Send Irp to ACPI
//
// Entry:
// Pdo ==> target of the request
// Ioctl ==> the request
// InputBuffer ==> ptr to input parameters
// InputSize ==> size of InputBuffer
// OutputBuffer ==> ptr to receive results
// OutputSize ==> size of OutputBuffer
//
// Exit:
// Returns status code.
// OutputBuffer <== indeterminent
//
NTSTATUS

SendIRP(IN PDEVICE OBJECT Pdo, IN ULONG Ioctl, IN PVOID InputBuffer,

IN ULONG InputSize, IN PACPI_EVAL OUTPUT BUFFER OutputBuffer,

IN ULONG OutputSize)

IO_STATUS_BLOCK ioBlock;
KEVENT evIoctl;

NTSTATUS status;

PIRPIrp;

PIO_STACK LOCATION pIrpStack;

// Initialize an event to wait upon
KeInitializeEvent (&evIoctl, SynchronizationEvent, FALSE) ;

// Build the request

SATA Programmer’s Reference Manual 41

42

Theory of Operation

N

Irp = IoBuildDeviceIoControlRequest (Ioctl, Pdo, InputBuffer, InputSize,

OutputBuffer, OutputSize, FALSE,
&evIoctl, &ioBlock) ;
if(!Irp)
status = STATUS INSUFFICIENT RESOURCES;
else {
pIrpStack = IoGetNextIrpStackLocation(Irp);
pIrpStack->MajorFunction = IRP_MJ DEVICE CONTROL;

// Pass the request to the Pdo, always wait for the completion

// routine
status = IoCallDriver(Pdo, Irp);
if (status == STATUS_PENDING)
// Wait for the IRP to be completed, then grab the real status code

KeWaitForSingleObject (&evIoctl, Executive, KernelMode, FALSE, NULL) ;

status = ioBlock.Status;

// Sanity check the data

if (OutputBuffer != NULL) {
if (OutputBuffer->Signature != ACPI_EVAL OUTPUT_BUFFER_SIGNATURE
|| OutputBuffer->Count == 0)

status = STATUS_DATA ERROR;

}

return(status) ;

SATA Programmer’s Reference Manual

Theory of Operation

A.5 ACPI Control Method (GSPS)

//

// Define where the SATA MAP and Status/Control registers reside in PCI Config
// space

!/

OperationRegion (IDEC, PCI_Config, 0x90, 3)

Field (IDEC, ByteAcc,NoLock, Preserve)

{
MAP, 8, // SATA Map register - Offset 90h
, 8, // skip 8 bits
PCS, 8 // SATA Port status and control register - Offset 92h
1

Device(IDE1l) { // SATA controller

Name (_ADR, 0x01£0002) // Device 31, Function 2

Device(PRID) { // Primary channel
Name (_ADR, 0) // Logical primary channel (Port 0 or 1, BIOS selectable).
// Assumes BIOS populated the SATA timing registers appropriately
// depending on which port is configured as primary and secondary
/7
// This control method determines if device(s) are present on the logical
// primary channel. Because this control method is shared with P-ATA
// devices and because P-ATA does not
// have equivalent registers, this control will indicate a status of

// unknown (P-ATA only)

!/

// Entry:

// Nothing

// Exit:

// DWORD value representing the channel status:
// 0 ==> no devices present

// 1 ==> master device present

// 2 ==> slave device present

// -1 ==> Not supported or unknown (P-ATA)
//

Method(GSPS, 0) // Get the port status for the device(s)

{
// need to figure out which port(s) to look at (e.g. are we in a

// master-master configuration or master-slave)

//

Store(Zero, Locall)

SATA Programmer’s Reference Manual 43

Theory of Operation

44

Store (MAP, Locall)

Store(PCS, Local2)

// make sure the P-ATA is not the primary channel

If(LLess(Locall, 0x06))

{

// Not P-ATA device. Must be SATA.

Store(Zero, Local3)
Store(Zero, Local4)
Store(Zero, Locals)

If(LAnd(Local2, 0x10))

{

Store(One, Local3) // Port 0 device present

If(LAnd(Local2, 0x20))

Store(One, Local4) // Port 1 device present

}

// Now we need to figure out which is master and slave (if

// applicable)

If(LNot(LAnd(Locall, 0x01))) // is Port 0 master?

Local4), Locals)

{
// Port 0 is master
Store(Local3, Locals)
If(LAnd(Locall, 0x04)) // Is combined mode?
{
// yes, set the slave device status (Port 1)
Or(ShiftLeft(Local4, 1,
1
}
Else

// Port 1 is master

Store(Local4, Locals)

If(LAnd(Locall, 0x04)) // Is combined mode?

{

// yes, set the slave device status (Port 0)

Or(ShiftLeft(Local3, 1,

}

Return(Local5)

Else

Locall3), Locals)

// P-ATA is primary. Indicate device status unknown

SATA Programmer’s Reference Manual

return(Oxffffffff)

}

Device(DRVO) // Logical primary master

{

Name (_ADR, 0)

}

Device (SECD) // Secondary channel

{

Method (GSPS, 0) // Get the port status

{

// Similar to GSPS for PRID

}

Name (ADR, 1) // Logical secondary channel

Device(DRVO) // Logical secondary master

{

Name (_ADR, 0)

SATA Programmer’s Reference Manual

(Port 0 or 1,

Theory of Operation

BIOS selectable)

45

Theory of Operation

46

This page is intentionally left blank.

SATA Programmer’s Reference Manual

INtal

Theory of Operation

Appendix B — Example ACPI
Namespace

/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
//
//
/7
//
/7
//
/7
//
/7
//

The following illustrates the sample ASL code for a Combined

and non-combined mode configuration.

The SATA controller supports several configurations. Combined

mode and non-Combined mode. If in non-Combined mode (P-ATA and

SATA are separate PCI functions), then:
Port 0 == logical primary master
Port 1 == logical secondary master

or (optionally selectable via BIOS setup)
Port == logical secondary master

0
Port 1

= logical primary master

Note that a separate P-ATA device namespace is required in the

event that non-Combined mode is used.

If in Combined mode (P-ATA and SATA combined as a single PCI
function) then:
Assumes SATA Port 0 and Port 1 are a single logical channel

(primary/secondary BIOS selectable)

Assumes P-ATA (physical primary or secondary channel) is a

logical channel. (primary/secondary BIOS selectable) .

Possible Combined mode configurations:

Port 0 == primary master

Port 1 == primary slave

P-ATA == Secondary master/slave
or

Port 0 == primary slave

Port 1 == primary master

P-ATA == secondary master/slave
or

P-ATA == primary master/slave

Port 0 == secondary master

Port 1 == secondary slave

SATA Programmer’s Reference Manual 47

Theory of Operation

// or

// P-ATA == primary master/slave
// Port 0 == secondary slave

// Port 1 == secondary master

//

OperationRegion (IDEC, PCI_Config, 0x90, 3)

Field (IDEC, ByteAcc,NoLock, Preserve)

{
MAP, 8, // SATA Map register - Offset 90h
, 8, // Skip 8 bits
PCS, 8 // SATA Port status and control register
1

Device(IDE1l) { // SATA controller
Name (_ADR, 0x01£0002) // Device 31, Function 2
//
// EPRT - Enable the SATA ports. This assumes the controller is in combined
// mode. This would be need to modified to handle non-combined modes.
// Entry:
// arg0 = bit map indicating which port(s) to enable:
// bit 0 set, enable Port 0
// bit 1 set, enable Port 1
// all other bits must be zero

!/

//
// Since the ports operate independently, we can enable both simultaneously
//
Method(EPRT, 1) {
Store(1, Local0) // Set max attempts
Store(Arg0, Locall)
While (LNotEgqual (LocalO, 0)){
Or(Arg0, PCS, PCS) // enable Port (s)
Sleep(500) // Wait 500ms. Some devices respond
// very quickly, some longer. This loop will
// account for worse case. This is an
// example and could be better optimized
Decrement (LocalO) // account for this attempt
Store(PCS, Local2) // fetch port presence bits
// Check if we are enabling Port 0
If(LAnd(Arg0, 0x01) {
If(LAnd(Local2, 0x10)) {
Decrement (Locall) // Port 0 is enabled

}

Else {

48 SATA Programmer’s Reference Manual

Theory of Operation

!/

// Since a device detect failed, we disable the port. This is not
// required, but is part of a good power conservation policy.

//

And(PCS, 0x02, PCS) // disable Port 0

}
// Check if we are enabling Port 1
If(LAnd(Arg0, 0x02) {

If(LAnd(Local2, 0x20)) {

Decrement (Locall) // Port 1 is enabled
1
Else {

And(PCS, 0x01, PCS) // disable Port 1

}
If(LEqual(Locall, Zero)) { // all ports enabled?

Store(Zero, LocalO) // terminate loop

}

} // end while

/7
// CTYP - This method determines the type of device being
// managed by the specified logical channel

//

// Entry:

// Arg0 ==> specifies which channel is to be checked (0 =
// Primary, 1 = Secondary)

// Exit:

// Returns 0 if the channel is hosting P-ATA device(s)

// Returns 1 if the primary channel is hosting SATA device(s)
// (Combined mode)

// Returns 2 if the secondary channel is hosting SATA

// device(s) (Combined Mode)

// Returns 3 if port 0 is primary master SATA device (non-
// Combined mode)

// Returns 4 if port 1 is primary master SATA device (non-
// Combined)

// Returns 5 if port 0 is secondary master SATA device (s)
// (non-Combined Mode)

// Returns 6 if port 1 is secondary master SATA device (s)
// (non-Combined Mode)

//

SATA Programmer’s Reference Manual 49

Theory of Operation

Method(CTYP, 1)

{
Store(Zero, Localol)
If(Argo)
{
//
// Check the Primary Channel
//

// Check if combined mode and if this device is a P-ATA
// device MAP == 100b or 101lb Combined mode, P-ATA is

// secondary

//
If(LAnd(LGreater(MAP, 0x1l), LLess(MAP, 0x6)))
{
Store(0x1l, LocalO) // SATA is primary, combined
1
Else {
If(LEqual(MAP, Zero))
{
Store(3, Local0)// port 0 is primary master
1
If(LEqual(MAP, One)
{
Store(4, Local0)// port 1 is primary master
1
1
1
Else {
//
// Check the secondary Channel
//
// Check if combined mode and if this device is a P-ATA
// device MAP == 110b or 111b Combined mode, P-ATA is
// primary
//
If(LGreater(MAP, 0x5))
{
Store(0x2, LocalO) // SATA is Secondary, combined
1
Else
If (LEqual(MAP, Zero))
{
Store(5, Local0O)// port 0 is secondary master
1

50 SATA Programmer’s Reference Manual

Theory of Operation

If (LEqual(MAP, One)

{
Store(6, Local0)// port 1 is secondary master
}
}
}
Return(LocalO)
}
//
// Logical Primary channel
//
// Physical SATA Port 0 == logical primary master
// or
// Physical SATA Port 1 == logical primary master
!/
// In Combined mode, the following must be supported by PRID:
// Physical SATA Port 0 == logical primary master
// Physical SATA Port 1 == logical primary slave
// or
// Physical SATA Port 0 == logical primary slave
// Physical SATA Port 1 == logical primary master
// or
// P-ATA == Primary master/slave
//

Device(PRID) {
Name (_ADR, 0) // Logical primary channel (Port 0/1, BIOS
// selectable or P_ATA)
Method(GTM) {}// similar to current P-ATA implementations
Method(_STM, 3) {} // similar to current P-ATA implementations
//
// Like the GTF methods, these control methods may require
// additional checks as the power sequences (registers, etc)
// may be different for P-ATA and SATA channels.
//
Method (_PS0,0)
{
// Handle PM duties based on device type
Store(CTYP(0), Local0)
If(Localo) {
//
// Not P-ATA device. Must be SATA
// make sure the 0OS drivers finds the ports in an
// enabled state as they (the device drivers) may have

// been designed for P-ATA and 'know' nothing about the

SATA Programmer’s Reference Manual 51

Theory of Operation

52

// PCS register

//

// Since Enhance mode implements a master-master

// scheme,

only 1 port would be enabled here (dependent

// on the MAP settings). In Combined mode, both SATA

// ports are viewed as a single logical channel

// implementing a master-slave configuration in which

// case both ports are enabled.

!/
Store(Zero, Locall)
If (LEqual(LocalO, 1))
{
// Enable Power to the device, platform specific
Sleep(30) // power must be applied for at least 30ms
Store(0x03, Locall) // is combined, enable both ports
}
If(LEqual(LocalO, 3)
{
// Enable Power to the device, platform specific
Sleep(30) // power must be applied for at least 30ms
Store(0x01, Locall) // only enable port 0
}
If(LEqual(LocalO, 4)
{
// Enable Power to the device, platform specific
Sleep(30) // power must be applied for at least 30ms
Store(0x02, Locall) // only enable port 1
}
EPRT (Locall) // enable the Port (s)

Else

// Disable Power to the device(s) if the port(s)

// were left disabled, platform specific

// Is Combined mode and is a P-ATA device

}

Method (_PS3,0)

{

// Handle PM duties based on device type

Store(CTYP(0)
If(Localo)

{

, Localo0)

SATA Programmer’s Reference Manual

Theory of Operation

!/

// Not P-ATA device. Must be SATA

// make sure the 0OS drivers finds the ports in an enabled
// state as they (the device drivers) may have been

// designed for P-ATA and 'know' nothing about the PCS
// register

//

// Since Enhance mode implements a master-master scheme,
// only 1 port would be disabled here (dependent on the
// MAP settings). In Combined mode, both SATA ports are
// viewed as a single logical channel implementing a

// master-slave configuration in which case both ports

// are disabled.

//
If (LEqual(LocalO, 1))
{
Store(0x0, PCS)// is combined, disable both ports
1
If (LEqual(LocalO, 3)
{
NAnd(PCS, 0x01, PCS) // only disable port 0
1
If (LEqual(LocalO, 4)
{
NAnd(PCS, 0x02, PCS) // only disable port 1
1

// Disable Power to the device - Set the GPIO bit
// corresponding to the power plane control, platform

// specific

//
// platform specific
}
Else
{
// Is Combined mode and is a P-ATA device
}
}
Device(DRVO) // Logical primary master (SATA Port 0/1, or P-ATA device 0)
{

Name (_ADR, 0)

//
// similar to current P-ATA implementations. Since this

// device node can represent either a P-ATA device or a SATA

SATA Programmer’s Reference Manual

53

Theory of Operation

// device, a check may need to be added since the task file
// could be different.
//
Method (_GTF,0)
{
// return task file info based on device type
If(CTYP(0))
{

// Is Combined mode and is a P-ATA device

Else

// Not P-ATA device. Must be SATA

1
//***
// DRVl is only accessed when configured for Combined mode. In
// non-Combined mode SATA devices use a master-master
// arrangement.

//
Device(DRV1) // Logical primary slave (SATA Port 0/1, or P-ATA device 1)
{
Name (_ADR, 1)
//
// similar to current P-ATA implementations. Since this device
// node can represent either a P-ATA device or a SATA device,
// a check may need to be added since the task file could be
// different.
//
Method (_GTF,0)
{
// return task file info based on device type
If(CTYP(0))
{

// Is Combined mode and is a P-ATA device

Else

// Not P-ATA device. Must be SATA

54 SATA Programmer’s Reference Manual

}

//
}
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7
//
/7

//

Theory of Operation

kkkhkkhkkkhkkhkhkhkhkhhkhkhkhhkhkhkhhkhkhhhkkhkkhhhkhkhkhhkkhkhhkkhkkhkhkkkdkhkkkkd*x*x

Logical Secondary channel

Physical SATA Port 0 == logical secondary master
or
Physical SATA Port 1 == logical secondary master

In Combined mode, the following must be supported by SECD:

Physical SATA Port 0 == logical secondary master

Physical SATA Port 1 == logical secondary slave
or

Physical SATA Port 0 == logical secondary slave

Physical SATA Port 1 == logical secondary master
or

P-ATA == logical secondary master/slave

Device(SECD) {

Name (_ADR, 1)
Method(GTM) {}// similar to current P-ATA implementations
Method(STM, 3) {} // similar to current P-ATA implementations
!/
// Like the _GTF methods, these control methods may require
// additional checks as the power sequences (registers, etc)
// may be different for P-ATA and SATA channels.
//
Method (_PS0,0)
{
// Handle PM duties based on device type
Store(CTYP(1), Local0)
If(Localo)
{
//
// Not P-ATA device. Must be SATA
// make sure the 0S drivers finds the ports in an enabled
// state as they (the device drivers) may have been
// designed for P-ATA and 'know' nothing about the PCS
// register

//

SATA Programmer’s Reference Manual

55

Theory of Operation

// Since Enhance mode implements a master-master scheme,
// only 1 port would be enabled here (dependent on the
// MAP settings). In Combined mode, both SATA ports are
// viewed as a single logical channel implementing a
// master-slave configuration in which case both ports
// are enabled.
//
If(LEqual(LocalO, 2))
{
// Enable Power to the device, platform specific
Sleep(30) // power must be applied for at least 30ms
Store(Locall, 0x03, Locall) // is combined, enable both ports
}
If(LEqual(LocalO, 5)
{
// Enable Power to the device, platform specific
Sleep(30) // power must be applied for at least 30ms
Store(0x01, Locall) // only enable port 0
}
If(LEqual(LocalO, 6)
{
// Enable Power to the device, platform specific
Sleep(30) // power must be applied for at least 30ms
Store(0x02, Locall() // only enable port 1
}
EPRT (Locall) // enable the port(s)
// Disable Power to the device(s) if the port(s)

// were left disabled, platform specific
Else

// Is Combined mode and is a P-ATA device

}

Method (_PS3,0)
{
// Handle PM duties based on device type
Store(CTYP(0), Local0)
If(Localo)
{
//
// Not P-ATA device. Must be SATA

// make sure the 0OS drivers finds the ports in an

56 SATA Programmer’s Reference Manual

Theory of Operation

// enabled state as they (the device drivers) may have
// been designed for P-ATA and 'know' nothing about the
// PCS register

//

// Since Enhance mode implements a master-master scheme,
// only 1 port would be disabled here (dependent on the
// MAP settings). In Combined mode, both SATA ports are
// viewed as a single logical channel implementing a

// master-slave configuration in which case both ports

// are disabled.

//
If (LEqual(LocalO, 2))
{
Store(0x0, PCS) // is combined, disable both ports
1
If (LEqual(LocalO, 5)
{
NAnd(PCS, 0x01, PCS) // only disable port 0
1
If (LEqual(LocalO, 6)
{
NAnd(PCS, 0x02, PCS) // only disable port 1
1

// Disable Power to the device - Set the GPIO bit
// corresponding to the power plane control, platform
// specific
//
// platform specific

Else

// Is Combined mode and is a P-ATA device

}

Device(DRVO) // Logical secondary master (SATA Port 0/1, or P-ATA device 0)
{
Name (_ADR, 0)
//
// similar to current P-ATA implementations. Since this
// device node can represent either a P-ATA device or a SATA
// device, a check may need to be added since the task file

// could be different.

SATA Programmer’s Reference Manual

57

Theory of Operation

/7
Method (_GTF, 0)

{

// return task file info based on device type
If(CTYP(1))

{

// Is Combined mode and is a P-ATA device

Else

// Not P-ATA device. Must be SATA

}

//***
// DRV1 is only accessed when configured for Combined mode. In
// non-Combined mode SATA devices use a master-master

// arrangement.

//
Device(DRV1l) // Logical secondary slave (SATA Port 0/1, or P-ATA device 1)
{
Name (_ADR, 1)
//
// similar to current P-ATA implementations. Since this
// device node can represent either a P-ATA device or a SATA
// device, a check may need to be added since the task file
// could be different.
//
Method (_GTF,0)
{
// return task file info based on device type
If(CTYP(1))
{
// Is Combined mode and is a P-ATA device
1
Else
{
// Not P-ATA device. Must be SATA
1
1
1

58 SATA Programmer’s Reference Manual

//***

}
}

SATA Programmer’s Reference Manual

Theory of Operation

59

	Title Page
	Contents
	Revision History
	Introduction
	Overview

	Conventions
	Register Access
	Keywords

	Intel® ICH SATA Controller Basic Attributes
	Legacy Sub-Mode
	Native Sub-Mode
	Host Controller Configurations

	Theory of Operation
	Compatible Configuration
	Additional Register Support
	MAP – Address Map Register – Offset 90h

	Compatible Configuration - Option 1
	Compatible Configuration - Option 2
	Compatible Configuration - Option 3 (Combined)

	Enhanced Configuration
	PI - Programming Interface Register – Offset 09h
	MAP Register Programming

	PCS - Port Control and Status Register – Offset 92h
	
	Port Enabling/Disabling
	BIOS Considerations
	Enabling/Disabling a SATA Port from an Operating System Driver
	Enabling/Disabling a SATA Port from ACPI

	Device Presence Detect
	Hardware and Software Considerations
	Device Detection – Software Examples

	ATA Swap Bay Support
	Implementing the Intel® ICH5 SATA Host Controller in ACPI Namespace

