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Introduction

1.1

1.1.1

1.1.2

Document Goals and Scope

Importance of Thermal Management

The objective of thermal management is to ensure that the temperatures of all
components in a system are maintained within their functional temperature range.
Within this temperature range, a component is expected to meet its specified
performance. Operation outside the functional temperature range can degrade system
performance, cause logic errors or cause component and/or system damage.
Temperatures exceeding the maximum operating limit of a component may result in
irreversible changes in the operating characteristics of this component.

In a system environment, the processor temperature is a function of both system and
component thermal characteristics. The system level thermal constraints consist of the
local ambient air temperature and airflow over the processor as well as the physical
constraints at and above the processor. The processor temperature depends in
particular on the component power dissipation, the processor package thermal
characteristics, and the processor thermal solution.

All of these parameters are affected by the continued push of technology to increase
processor performance levels and packaging density (more transistors). As operating
frequencies increase and packaging size decreases, the power density increases while
the thermal solution space and airflow typically become more constrained or remains
the same within the system. The result is an increased importance on system design
to ensure that thermal design requirements are met for each component, including
the processor, in the system.

Document Goals

Depending on the type of system and the chassis characteristics, new system and
component designs may be required to provide adequate cooling for the processor.
The goal of this document is to provide an understanding of these thermal
characteristics and discuss guidelines for meeting the thermal requirements imposed
on single processor systems using the Intel® Core™2 Duo desktop processor
E6000/E4000 sequence, Intel® Pentium® Dual Core Processor E2000 sequence, and
Intel® Pentium® 4 Processor 6x1 Sequence.

The concepts given in this document are applicable to any system form factor. Specific
examples used will be the Intel enabled reference solution for ATX/uATX systems. See
the applicable BTX form factor reference documents to design a thermal solution for
that form factor.
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inte|u> Introduction

Document Scope

This design guide supports the following processors:

e Intel® Core™2 Duo desktop processors E6700, E6600, E6420, E6400, E6320, and
E6300.

e Intel® Core™2 Duo desktop processors E4400 and E4300
e Intel® Pentium® Dual Core Processor E2160 and E2140

e Intel® Pentium® 4 Processor 631, 641, 651, and 661 at 65 W

References to Intel® Core™2 Duo desktop processor with 4 MB cache apply to the
E6700 E6600, E6420, and E6320 only and references to the Intel® Core™2 Duo desktop
processor with 2 MB cache apply to the E6400, E6300, E4400, and E4300 only

References to the Intel® Core™2 Duo desktop processor E6000 sequence applies to
the Intel® Core™2 Duo desktop processors E6700, E6600, E6420, E6400, E6320, and
E6300.

References to the Intel® Core™2 Duo desktop processor E4000 sequence applies to
the Intel® Core™2 Duo desktop processor E4400 and E4300.

References to the Intel® Pentium® Dual Core Processor E2000 sequence applies to the
Intel® Pentium® Dual Core Processor E2160 and E2140.

References to the Intel® Pentium® 4 Processor 6x1 Sequence apply to the Intel®
Pentium® 4 Processor 631, 641, 651, and 661.

In this document when a reference is made to “the processor” it is intended that this
includes all the processors supported by this document. If needed for clarity, the
specific processor will be listed.

In this document, when a reference is made to “the datasheet”, the reader should
refer to the Intel® Core™2 Duo Extreme Processor X6800 and Intel® Core™2 Duo
Desktop Processor E6000 and E4000 Sequence Datasheet, Intel® Pentium® Dual Core
Processor E2000 Sequence Datasheet, and Intel® Pentium® 4 Processor 6x1 Sequence
Datasheet.

Chapter 2 of this document discusses package thermal mechanical requirements to
design a thermal solution for the Intel® Core™2 Duo desktop processor E6000/E4000
sequence and Intel® Pentium® 4 processor 6x1 sequence in the context of personal
computer applications. Chapter 3 discusses the thermal solution considerations and
metrology recommendations to validate a processor thermal solution. Chapter 4
addresses the benefits of the processor’s integrated thermal management logic for
thermal design.

Chapter 6 provides information on the Intel reference thermal solution for the
processor. Chapter 6 discusses the implementation of acoustic fan speed control.

The physical dimensions and thermal specifications of the processor that are used in
this document are for illustration only. Refer to the datasheet for the product
dimensions, thermal power dissipation and maximum case temperature. In case of
conflict, the data in the datasheet supersedes any data in this document.

Thermal and Mechanical Design Guidelines



Introduction

1.2 References

intel.

Material and concepts available in the following documents may be beneficial when

reading this document.

Document

Comment

LGA775 Socket Mechanical Design Guide

http://developer.intel.com/des
ign/Pentium4/quides/302666.
htm

Intel® Core™2 Extreme Processor X6800 and Intel® Core™2 Duo
Desktop Processor E6000 and E4000 Sequence Datasheet

www.intel.com/design/proce
ssor/datashts/313278.htm

Intel® Pentium® Dual Core Processor E2000 Sequence Datasheet

www.intel.com//design/proces
sor/datashts/316981.htm

Intel® Pentium® 4 Processor 6x1 Sequence Datasheet

www.intel.com/design/proce
ssor/datashts/310308.htm

Intel® Pentium® 4 Processor on 90 nm Process in the 775-
Land LGA Package Thermal and Mechanical Design
Guidelines

http://developer.intel.com/des

ign/Pentium4/gquides/302553.
htm

Fan Specification for 4-wire PWM Controlled Fans

http://www.formfactors.orqg/

Performance ATX Desktop System Thermal Design
Suggestions

http://www.formfactors.orqg/

Performance microATX Desktop System Thermal Design
Suggestions

http://www.formfactors.org/

Balanced Technology Extended (BTX) System Design Guide

http://www.formfactors.orqg/

1.3 Definition of Terms

Term Description
The measured ambient temperature locally surrounding the processor. The ambient
TA temperature should be measured just upstream of a passive heatsink or at the fan
inlet for an active heatsink.
T The case temperature of the processor, measured at the geometric center of the
c topside of the IHS.
T The ambient air temperature external to a system chassis. This temperature is usually
E measured at the chassis air inlets.
Heatsink temperature measured on the underside of the heatsink base, at a location
Ts corresponding to Tc-
T The maximum case temperature as specified in a component specification.
C-MAX
Case-to-ambient thermal characterization parameter (psi). A measure of thermal
solution performance using total package power. Defined as (Tc — T») / Total Package
LPCA Power.
Note: Heat source must be specified for ¥ measurements.
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Term Description
Case-to-sink thermal characterization parameter. A measure of thermal interface
material performance using total package power. Defined as (T¢c — Ts) / Total Package
LIJcs Power.
Note: Heat source must be specified for ¥ measurements.
Sink-to-ambient thermal characterization parameter. A measure of heatsink thermal
LPSA performance using total package power. Defined as (Ts — Ta) / Total Package Power.
Note: Heat source must be specified for Y measurements.
Thermal Interface Material: The thermally conductive compound between the heatsink
TIM and the processor case. This material fills the air gaps and voids, and enhances the
transfer of the heat from the processor case to the heatsink.
PMAX The maximum power dissipated by a semiconductor component.
TDP Thermal Design Power: a power dissipation target based on worst-case applications.
Thermal solutions should be designed to dissipate the thermal design power.
IHS Integrated Heat Spreader: a thermally conductive lid integrated into a processor

package to improve heat transfer to a thermal solution through heat spreading.

LGA775 Socket

The surface mount socket designed to accept the processors in the 775—
Land LGA package.

ACPI Advanced Configuration and Power Interface.
Bypass is the area between a passive heatsink and any object that can act
Bypass to form a duct. For this example, it can be expressed as a dimension away
from the outside dimension of the fins to the nearest surface.
Thermal A feature on the processor that attempts to keep the processor die
Monitor temperature within factory specifications.
Thermal Control Circuit: Thermal Monitor uses the TCC to reduce die
TCC temperature by lowering effective processor frequency when the die
temperature has exceeded its operating limits.
TpioDE Temperature reported from the on-die thermal diode.
Fan Speed Control: Thermal solution that includes a variable fan speed
FSC which is driven by a PWM signal and uses the on-die thermal diode as a
reference to change the duty cycle of the PWM signal.
T controL TcontroL IS the specification limit for use with the on-die thermal diode.
Pulse width modulation is a method of controlling a variable speed fan. The
PWM enabled 4 wire fans use the PWM duty cycle % from the fan speed

controller to modulate the fan speed.

Health Monitor

Any standalone or integrated component that is capable of reading the
processor temperature and providing the PWM signal to the 4 pin fan

Component header.
BTX Balanced Technology Extended.
T™A Thermal Module Assembly. The heatsink, fan and duct assembly for the

BTX thermal solution
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2 Processor Thermal/Mechanical
Information

2.1 Mechanical Requirements

2.1.1 Processor Package

The processors covered in the document are packaged in a 775-Land LGA package
that interfaces with the motherboard via a LGA775 socket. Refer to the datasheet for
detailed mechanical specifications.

The processor connects to the motherboard through a land grid array (LGA) surface
mount socket. The socket contains 775 contacts arrayed about a cavity in the center
of the socket with solder balls for surface mounting to the motherboard. The socket is
named LGA775 socket. A description of the socket can be found in the LGA775 Socket
Mechanical Design Guide.

The package includes an integrated heat spreader (IHS) that is shown in Figure 1 for
illustration only. Refer to the processor datasheet for further information. In case of
conflict, the package dimensions in the processor datasheet supersedes dimensions
provided in this document.

Figure 1. Package IHS Load Areas

IHS Step
Substrate To_p Surface of “__|S to interface with LGA775
to install a heatsink Socket Load Plate

Y |

A 4
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The primary function of the IHS is to transfer the non-uniform heat distribution from
the die to the top of the IHS, out of which the heat flux is more uniform and spread
over a larger surface area (not the entire IHS area). This allows more efficient heat
transfer out of the package to an attached cooling device. The top surface of the IHS
is designed to be the interface for contacting a heatsink.

The IHS also features a step that interfaces with the LGA775 socket load plate, as
described in LGA775 Socket Mechanical Design Guide. The load from the load plate is
distributed across two sides of the package onto a step on each side of the IHS. It is
then distributed by the package across all of the contacts. When correctly actuated,
the top surface of the IHS is above the load plate allowing proper installation of a
heatsink on the top surface of the IHS. After actuation of the socket load plate, the
seating plane of the package is flush with the seating plane of the socket. Package
movement during socket actuation is along the Z direction (perpendicular to
substrate) only. Refer to the LGA775 Socket Mechanical Design Guide for further
information about the LGA775 socket.

The processor package has mechanical load limits that are specified in the processor
datasheet. The specified maximum static and dynamic load limits should not be
exceeded during their respective stress conditions. These include heatsink installation,
removal, mechanical stress testing, and standard shipping conditions.

e When a compressive static load is necessary to ensure thermal performance of the
thermal interface material between the heatsink base and the IHS, it should not
exceed the corresponding specification given in the processor datasheet.

e When a compressive static load is necessary to ensure mechanical performance, it
should remain in the minimum/maximum range specified in the processor
datasheet.

e The heatsink mass can also generate additional dynamic compressive load to the
package during a mechanical shock event. Amplification factors due to the impact
force during shock must be taken into account in dynamic load calculations. The
total combination of dynamic and static compressive load should not exceed the
processor datasheet compressive dynamic load specification during a vertical
shock. For example, with a 0.550 kg [1.2 Ib] heatsink, an acceleration of 50G
during an 11 ms trapezoidal shock with an amplification factor of 2 results in
approximately a 539 N [117 Ibf] dynamic load on the processor package. If a
178 N [40 Ibf] static load is also applied on the heatsink for thermal performance
of the thermal interface material the processor package could see up to a 717 N
[156 Ibf]. The calculation for the thermal solution of interest should be compared
to the processor datasheet specification.

No portion of the substrate should be used as a load- bearing surface.
Finally, the processor datasheet provides package handling guidelines in terms of
maximum recommended shear, tensile and torque loads for the processor IHS relative

to a fixed substrate. These recommendations should be followed in particular for
heatsink removal operations.
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2.1.2

2.1.2.1

Heatsink Attach

General Guidelines

There are no features on the LGA775 socket to directly attach a heatsink: a
mechanism must be designed to attach the heatsink directly to the motherboard. In
addition to holding the heatsink in place on top of the IHS, this mechanism plays a
significant role in the robustness of the system in which it is implemented, in
particular:

¢ Ensuring thermal performance of the thermal interface material (TIM) applied
between the IHS and the heatsink. TIMs based on phase change materials are
very sensitive to applied pressure: the higher the pressure, the better the initial
performance. TIMs such as thermal greases are not as sensitive to applied
pressure. Designs should consider a possible decrease in applied pressure over
time due to potential structural relaxation in retention components.

¢ Ensuring system electrical, thermal, and structural integrity under shock and
vibration events. The mechanical requirements of the heatsink attach mechanism
depend on the mass of the heatsink and the level of shock and vibration that the
system must support. The overall structural design of the motherboard and the
system have to be considered when designing the heatsink attach mechanism.
Their design should provide a means for protecting LGA775 socket solder joints.
One of the strategies for mechanical protection of the socket is to use a preload
and high stiffness clip. This strategy is implemented by the reference design and
described in Section 6.6.

Note: Package pull-out during mechanical shock and vibration is constrained by the LGA775

2.1.2.2

socket load plate (refer to the LGA775 Socket Mechanical Design Guide for further
information).

Heatsink Clip Load Requirement

The attach mechanism for the heatsink developed to support the processor should
create a static preload on the package between 18 Ibf and 70 Ibf throughout the life
of the product for designs compliant with the Intel reference design assumptions:

e 72 mm X 72 mm mounting hole span for ATX (refer to Figure 70)
e TMA preload vs. stiffness for BTX within the limits shown on Figure 15
¢ And no board stiffening device (backing plate, chassis attach, etc.).

The minimum load is required to protect against fatigue failure of socket solder joint in
temperature cycling.

It is important to take into account potential load degradation from creep over time
when designing the clip and fastener to the required minimum load. This means that,
depending on clip stiffness, the initial preload at beginning of life of the product may
be significantly higher than the minimum preload that must be met throughout the life
of the product. For additional guidelines on mechanical design, in particular on designs
departing from the reference design assumptions refer to Appendix A.

For clip load metrology guidelines, refer to Appendix B.

Thermal and Mechanical Design Guidelines 17
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2.1.2.3

2.2

2.2.1
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Note:

Additional Guidelines

In addition to the general guidelines given above, the heatsink attach mechanism for
the processor should be designed to the following guidelines:

¢ Holds the heatsink in place under mechanical shock and vibration events and

applies force to the heatsink base to maintain desired pressure on the thermal

interface material. Note that the load applied by the heatsink attach mechanism

must comply with the package specifications described in the processor datasheet.

One of the key design parameters is the height of the top surface of the processor

IHS above the motherboard. The IHS height from the top of board is expected to

vary from 7.517 mm to 8.167 mm. This data is provided for information only, and

should be derived from:

— The height of the socket seating plane above the motherboard after reflow,
given in the LGA775 Socket Mechanical Design Guide with its tolerances.

— The height of the package, from the package seating plane to the top of the
IHS, and accounting for its nominal variation and tolerances that are given in
the corresponding processor datasheet.

¢ Engages easily, and if possible, without the use of special tools. In general, the
heatsink is assumed to be installed after the motherboard has been installed into
the chassis.

¢ Minimizes contact with the motherboard surface during installation and actuation
to avoid scratching the motherboard.

Thermal Requirements

Refer to the datasheet for the processor thermal specifications. The majority of
processor power is dissipated through the IHS. There are no additional components,
e.g., BSRAMs, which generate heat on this package. The amount of power that can be
dissipated as heat through the processor package substrate and into the socket is
usually minimal.

The thermal limits for the processor are the Thermal Profile and TcontroL- The Thermal
Profile defines the maximum case temperature as a function of power being
dissipated. TcontroL IS @ specification used in conjunction with the temperature
reported by the digital thermal sensor and a fan speed control method. Designing to
these specifications allows optimization of thermal designs for processor performance
and acoustic noise reduction.

Processor Case Temperature

For the processor, the case temperature is defined as the temperature measured at
the geometric center of the package on the surface of the IHS. For illustration,
Figure 2 shows the measurement location for a 37.5 mm x 37.5 mm

[1.474 in x 1.474 in] 775-Land LGA processor package with a 28.7 mm x 28.7 mm
[1.13 in x 1.13 in] IHS top surface. Techniques for measuring the case temperature
are detailed in Section 3.4.

In case of conflict, the package dimensions in the processor datasheet supersedes
dimensions provided in this document.
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Figure 2. Processor Case Temperature Measurement Location

Measure T at this point
(geometric center of the package)

/
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2.2.2 Thermal Profile

The Thermal Profile defines the maximum case temperature as a function of processor
power dissipation. The TDP and Maximum Case Temperature are defined as the
maximum values of the thermal profile. By design the thermal solutions must meet
the thermal profile for all system operating conditions and processor power levels.

The slope of the thermal profile was established assuming a generational
improvement in thermal solution performance of the Intel reference design. For an
example of Intel® Core™2 Duo processor with 4MB cache in ATX platform, its
improvement is about 16% over the Intel reference design (RCBFH-3). This
performance is expressed as the slope on the thermal profile and can be thought of as
the thermal resistance of the heatsink attached to the processor, ¥, (Refer to

Section 3.1). The intercept on the thermal profile assumes a maximum ambient
operating condition that is consistent with the available chassis solutions.

The thermal profiles for the processor are defined such that a single thermal solution
(e.g., RCBFH-3 or BTX TMA Type Il reference design) can be used for all
775_VR_CONFIG_06 processors (TDP = 65 W). See the document of Intel® Pentium®
4 Processor on 90 nm Process in the 775-Land LGA Package Thermal and Mechanical
Design Guidelines for the further information of RCBFH-3. See Chapter 5 for a
discussion of the BTX TMA Type Il reference design.

To determine compliance to the thermal profile, a measurement of the actual
processor power dissipation is required. The measured power is plotted on the
Thermal Profile to determine the maximum case temperature. Using the example in
Figure 3 for a processor dissipating 50W the maximum case temperature is 58 °C. See
the datasheet for the thermal profile.
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Example Thermal Profile
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TconTrOL

TconTROL defines the maximum operating temperature for the digital thermal sensor

when the thermal solution fan speed is being controlled by the digital thermal sensor.
The TconTROL parameter defines a very specific processor operating region where fan

speed can be reduced. This allows the system integrator a method to reduce the
acoustic noise of the processor cooling solution, while maintaining compliance to the
processor thermal specification.

The TconTroL Value for the processor is relative to the Thermal Control Circuit (TCC)
activation set point which will be seen as 0 via the digital thermal sensor. As a result
the TconTRrOL Value will always be a negative number. See Chapter 4 for the
discussion the thermal management logic and features and Chapter 7 on Intel® Quiet
System Technology (Intel® QST).

The value of TconTRrOL is driven by a number of factors. One of the most significant of

these is the processor idle power. As a result a processor with a high (closer to 0)
TconTROL Will dissipate more power than a part with lower value (farther from 0, e.g.,

more negative number) of TconTROL When running the same application.

The value of TconTROL is calculated such that regardless of the individual processor’s
TconTROL Value the thermal solution should perform similarly. The higher power of
some parts is offset by a higher value of TconTrROL in such a way that they should
behave similarly in the acoustic performance.

This is achieved in part by using the ¥, vs. RPM and RPM vs. Acoustics (dBA)

performance curves from the Intel enabled thermal solution. A thermal solution
designed to meet the thermal profile would be expected to provide similar acoustic
performance of different parts with potentially different TconTROL-
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The value for TconTROL is calculated by the system BIOS based on values read from a
factory configured processor register. The result can be used to program a fan speed
control component. See the appropriate processor datasheet for further details on
reading the register and calculating TcoNTROL-

See Chapter 7, Intel® Quiet System Technology (Intel® QST), for details on
implementing a design using TcontroL @nd the Thermal Profile.

2.3 Heatsink Design Considerations

To remove the heat from the processor, three basic parameters should be considered:

e The area of the surface on which the heat transfer takes place. Without any
enhancements, this is the surface of the processor package IHS. One method used
to improve thermal performance is by attaching a heatsink to the IHS. A heatsink
can increase the effective heat transfer surface area by conducting heat out of the
IHS and into the surrounding air through fins attached to the heatsink base.

e The conduction path from the heat source to the heatsink fins. Providing a
direct conduction path from the heat source to the heatsink fins and selecting
materials with higher thermal conductivity typically improves heatsink
performance. The length, thickness, and conductivity of the conduction path from
the heat source to the fins directly impact the thermal performance of the
heatsink. In particular, the quality of the contact between the package IHS and
the heatsink base has a higher impact on the overall thermal solution performance
as processor cooling requirements become stricter. Thermal interface material
(TIM) is used to fill in the gap between the IHS and the bottom surface of the
heatsink, and thereby improve the overall performance of the stack-up (IHS-TIM-
Heatsink). With extremely poor heatsink interface flatness or roughness, TIM may
not adequately fill the gap. The TIM thermal performance depends on its thermal
conductivity as well as the pressure applied to it. Refer to Section 2.3.4 and
Appendix C for further information on TIM and on bond line management between
the IHS and the heatsink base.

¢ The heat transfer conditions on the surface on which heat transfer takes
place. Convective heat transfer occurs between the airflow and the surface
exposed to the flow. It is characterized by the local ambient temperature of the
air, T, and the local air velocity over the surface. The higher the air velocity over
the surface, and the cooler the air, the more efficient is the resulting cooling. The
nature of the airflow can also enhance heat transfer via convection. Turbulent flow
can provide improvement over laminar flow. In the case of a heatsink, the surface
exposed to the flow includes in particular the fin faces and the heatsink base.

Active heatsinks typically incorporate a fan that helps manage the airflow through
the heatsink.

Passive heatsink solutions require in-depth knowledge of the airflow in the chassis.
Typically, passive heatsinks see lower air speed. These heatsinks are therefore
typically larger (and heavier) than active heatsinks due to the increase in fin surface
required to meet a required performance. As the heatsink fin density (the number of
fins in a given cross-section) increases, the resistance to the airflow increases: it is
more likely that the air travels around the heatsink instead of through it, unless air
bypass is carefully managed. Using air-ducting techniques to manage bypass area can
be an effective method for controlling airflow through the heatsink.
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2.3.1

2.3.2
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Heatsink Size

The size of the heatsink is dictated by height restrictions for installation in a system
and by the real estate available on the motherboard and other considerations for
component height and placement in the area potentially impacted by the processor
heatsink. The height of the heatsink must comply with the requirements and
recommendations published for the motherboard form factor of interest. Designing a
heatsink to the recommendations may preclude using it in system adhering strictly to
the form factor requirements, while still in compliance with the form factor
documentation.

For the ATX/microATX form factor, it is recommended to use:

e The ATX motherboard keep-out footprint definition and height restrictions for
enabling components, defined for the platforms designed with the LGA775 socket
in Appendix G of this design guide.

¢ The motherboard primary side height constraints defined in the ATX Specification
V2.2 and the microATX Motherboard Interface Specification V1.2 found at
http://www.formfactors.org/.

The resulting space available above the motherboard is generally not entirely available
for the heatsink. The target height of the heatsink must take into account airflow
considerations (for fan performance for example) as well as other design
considerations (air duct, etc.).

For BTX form factor, it is recommended to use:

e The BTX motherboard keep-out footprint definitions and height restrictions for
enabling components for platforms designed with the LGA77 socket in Appendix G
of this design guide.

e An overview of other BTX system considerations for thermal solutions can be
obtained in the latest version of the Balanced Technology Extended (BTX) System
Design Guide found at http://www.formfactors.ora/.

Heatsink Mass

With the need to push air cooling to better performance, heatsink solutions tend to
grow larger (increase in fin surface) resulting in increased mass. The insertion of
highly thermally conductive materials like copper to increase heatsink thermal
conduction performance results in even heavier solutions. As mentioned in

Section 2.1, the heatsink mass must take into consideration the package and socket
load limits, the heatsink attach mechanical capabilities, and the mechanical shock and
vibration profile targets. Beyond a certain heatsink mass, the cost of developing and
implementing a heatsink attach mechanism that can ensure the system integrity
under the mechanical shock and vibration profile targets may become prohibitive.

The recommended maximum heatsink mass for the ATX thermal solution is 550g. This
mass includes the fan and the heatsink only. The attach mechanism (clip, fasteners,
etc.) are not included.

The mass limit for BTX heatsinks that use Intel reference design structural ingredients
is 900 grams. The BTX structural reference component strategy and design is
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Note:

Note:

2.3.3

2.3.4

reviewed in depth in the latest version of the Balanced Technology Extended (BTX)
System Design Guide.

The 550g mass limit for ATX solutions is based on the capabilities of reference design
components that retain the heatsink to the board and apply the necessary preload.
Any reuse of the clip and fastener in derivative designs should not exceed 550g. ATX
Designs that have a mass of greater than 550g should analyze the preload as
discussed in Appendix A and retention limits of the fastener.

The chipset components on the board are affected by processor heatsink mass.
Exceeding these limits may require the evaluation of the chipset for shock and
vibration.

Package IHS Flatness

The package IHS flatness for the product is specified in the datasheet and can be used
as a baseline to predict heatsink performance during the design phase.

Intel recommends testing and validating heatsink performance in full mechanical
enabling configuration to capture any impact of IHS flathness change due to combined
socket and heatsink loading. While socket loading alone may increase the IHS
warpage, the heatsink preload redistributes the load on the package and improves the
resulting IHS flatness in the enabled state.

Thermal Interface Material

Thermal interface material application between the processor IHS and the heatsink
base is generally required to improve thermal conduction from the IHS to the
heatsink. Many thermal interface materials can be pre-applied to the heatsink base
prior to shipment from the heatsink supplier and allow direct heatsink attach, without
the need for a separate thermal interface material dispense or attach process in the
final assembly factory.

All thermal interface materials should be sized and positioned on the heatsink base in
a way that ensures the entire processor IHS area is covered. It is important to
compensate for heatsink-to-processor attach positional alignment when selecting the
proper thermal interface material size.

When pre-applied material is used, it is recommended to have a protective application
tape over it. This tape must be removed prior to heatsink installation.
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System Thermal Solution Considerations

Chassis Thermal Design Capabilities

The Intel reference thermal solutions and Intel® Boxed Processor thermal solutions
assume that the chassis delivers a maximum T, at the inlet of the processor fan
heatsink (refer to Section 6.1.1). The tables below show the T, requirements for the
reference solutions and Intel Boxed processor thermal solutions.

Table 1. Heatsink Inlet Temperature of Intel® Reference Themal Solutions

Table 2. H

2.4.2

Processor Type ATX RCBFH-3 BTX Type |11

Heatsink Inlet Temperature 40 °C 35.5 °C

eatsink Inlet Temperature of Intel® Boxed Processor Themal Solutions

Processor Type Boxed Processor for Intel® Core™2 Duo Processor
E6000 and E4000 Sequence, Intel® Pentium® Dual
Core Processor E2000 Sequence, and Intel® Pentium®
4 Processor 6x1 Sequence

Heatsink Inlet Temperature 38 °C
NOTE:
1. Boxed processor thermal solutions for ATX assume the use of the thermally advantaged
chassis.

2. Refer to Thermally Advantaged Chassis, version 1.1 for Thermally Advantaged Chassis
thermal and mechanical requirements.

Improving Chassis Thermal Performance

The heat generated by components within the chassis must be removed to provide an
adequate operating environment for both the processor and other system
components. Moving air through the chassis brings in air from the external ambient
environment and transports the heat generated by the processor and other system
components out of the system. The number, size and relative position of fans and
vents determine the chassis thermal performance, and the resulting ambient
temperature around the processor. The size and type (passive or active) of the
thermal solution and the amount of system airflow can be traded off against each
other to meet specific system design constraints. Additional constraints are board
layout, spacing, component placement, acoustic requirements and structural
considerations that limit the thermal solution size. For more information, refer to the
Performance ATX Desktop System Thermal Design Suggestions or Performance
microATX Desktop System Thermal Design Suggestions or Balanced Technology
Extended (BTX) System Design Guide documents available on the
http://www.formfactors.org/ web site.

24

In addition to passive heatsinks, fan heatsinks and system fans are other solutions
that exist for cooling integrated circuit devices. For example, ducted blowers, heat
pipes and liquid cooling are all capable of dissipating additional heat. Due to their
varying attributes, each of these solutions may be appropriate for a particular system
implementation.
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To develop a reliable, cost-effective thermal solution, thermal characterization and
simulation should be carried out at the entire system level, accounting for the thermal
requirements of each component. In addition, acoustic noise constraints may limit the
size, number, placement, and types of fans that can be used in a particular design.

To ease the burden on thermal solutions, the Thermal Monitor feature and associated
logic have been integrated into the silicon of the processor. By taking advantage of
the Thermal Monitor feature, system designers may reduce thermal solution cost by
designing to TDP instead of maximum power. Thermal Monitor attempts to protect the
processor during sustained workload above TDP. Implementation options and
recommendations are described in Chapter 4.

2.4.3 Summary

In summary, considerations in heatsink design include:

¢ The local ambient temperature T, at the heatsink, which is a function of chassis
design.

¢ The thermal design power (TDP) of the processor, and the corresponding
maximum T¢ as calculated from the thermal profile. These parameters are usually
combined in a single lump cooling performance parameter, Yca (case to air
thermal characterization parameter). More information on the definition and the
use of Y, is given Section 3.1.

¢ Heatsink interface to IHS surface characteristics, including flatness and roughness.

¢ The performance of the thermal interface material used between the heatsink and
the IHS.

¢ The required heatsink clip static load, between 18 Ibf to 70 Ibf throughout the life
of the product (Refer to Section 2.1.2.2 for further information).

e Surface area of the heatsink.

¢ Heatsink material and technology.

e Volume of airflow over the heatsink surface area.

¢ Development of airflow entering and within the heatsink area.
¢ Physical volumetric constraints placed by the system

2.5 System Integration Considerations

Manufacturing with Intel® Components using 775—-Land LGA Package and LGA775
Socket documentation provides Best Known Methods for all aspects LGA775 socket
based platforms and systems manufacturing. Of particular interest for package and
heatsink installation and removal is the System Assembly module. A video covering
system integration is also available. Contact your Intel field sales representative for
further information.
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Thermal Metrology

3.1

Note:

This chapter discusses guidelines for testing thermal solutions, including measuring
processor temperatures. In all cases, the thermal engineer must measure power
dissipation and temperature to validate a thermal solution. To define the performance
of a thermal solution the “thermal characterization parameter”, ¥ (“psi”) will be used.

Characterizing Cooling Performance
Requirements

The idea of a “thermal characterization parameter”, ¥ (“psi”), is a convenient way to
characterize the performance needed for the thermal solution and to compare thermal
solutions in identical situations (same heat source and local ambient conditions). The
thermal characterization parameter is calculated using total package power.

Heat transfer is a three-dimensional phenomenon that can rarely be accurately and
easily modeled by a single resistance parameter like Y.

The case-to-local ambient thermal characterization parameter value (Yca) is used as a
measure of the thermal performance of the overall thermal solution that is attached to
the processor package. It is defined by the following equation, and measured in units
of °C/W:

VY., =(T.-T,) /P, (Equation 1)

Where:
Yca = Case-to-local ambient thermal characterization parameter (°C/W)
Tc = Processor case temperature (°C)
Ta = Local ambient temperature in chassis at processor (°C)
Pp = Processor total power dissipation (W) (assumes all power dissipates

through the IHS)
The case-to-local ambient thermal characterization parameter of the processor, Y, is

comprised of Ycs, the thermal interface material thermal characterization parameter,
and of ¥s,, the sink-to-local ambient thermal characterization parameter:

W.,= Vs + ¥, (Equation 2)

Where:
Ycs = Thermal characterization parameter of the thermal interface material
(°Cc/wW)
Ysa = Thermal characterization parameter from heatsink-to-local ambient
(°Cc/wW)
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Ycs is strongly dependent on the thermal conductivity and thickness of the TIM
between the heatsink and IHS.

Wsa is @ measure of the thermal characterization parameter from the bottom of the
heatsink to the local ambient air. ¥s, is dependent on the heatsink material, thermal

conductivity, and geometry. It is also strongly dependent on the air velocity through
the fins of the heatsink.

Figure 4 illustrates the combination of the different thermal characterization
parameters.

Figure 4. Processor Thermal Characterization Parameter Relationships

3.1.1
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The cooling performance, ¥c,, is then defined using the principle of thermal
characterization parameter described above:

e The case temperature Tc yax and thermal design power TDP given in the processor
datasheet.

¢ Define a target local ambient temperature at the processor, Ta.

Since the processor thermal profile applies to all processor frequencies, it is important
to identify the worst case (lowest Y¢,) for a targeted chassis characterized by T, to
establish a design strategy.

The following provides an illustration of how one might determine the appropriate
performance targets. The example power and temperature numbers used here are not

related to any specific Intel processor thermal specifications, and are for illustrative
purposes only.
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Assume the TDP, as listed in the datasheet, is 100 W and the maximum case
temperature from the thermal profile for 200W is 67 °C. Assume as well that the
system airflow has been designed such that the local ambient temperature is 38 °C.
Then the following could be calculated using equation 1 from above:

Wep = (Te—Ta)/ TDP = (67 — 38) / 100 = 0.29 °C/W

To determine the required heatsink performance, a heatsink solution provider would
need to determine Y¢s performance for the selected TIM and mechanical load
configuration. If the heatsink solution were designed to work with a TIM material
performing at ¥cs < 0.10 °C/W, solving for equation 2 from above, the performance of
the heatsink would be:

lPSA = lPCA - lPCS =0.29-0.10=0.19 °C/W

3.2 Processor Thermal Solution Performance
Assessment

Thermal performance of a heatsink should be assessed using a thermal test vehicle
(TTV) provided by Intel. The TTV is a stable heat source that the user can make
accurate power measurement, whereas processors can introduce additional factors
that can impact test results. In particular, the power level from actual processors
varies significantly, even when running the maximum power application provided by
Intel, due to variances in the manufacturing process. The TTV provides consistent
power and power density for thermal solution characterization and results can be
easily translated to real processor performance. Accurate measurement of the power
dissipated by an actual processor is beyond the scope of this document.

Once the thermal solution is designed and validated with the TTV, it is strongly
recommended to verify functionality of the thermal solution on real processors and on
fully integrated systems. The Intel maximum power application enables steady power
dissipation on a processor to assist in this testing. This application is called Maximum
Power Program for the Processor (Intel® Core™2 Duo or Intel® Pentium® 4 Processor
6x1 Sequence). Contact your Intel Field Sales representative for a copy of the latest
release of this application.
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Local Ambient Temperature Measurement
Guidelines

The local ambient temperature T, is the temperature of the ambient air surrounding
the processor. For a passive heatsink, T, is defined as the heatsink approach air
temperature; for an actively cooled heatsink, it is the temperature of inlet air to the
active cooling fan.

It is worthwhile to determine the local ambient temperature in the chassis around the
processor to understand the effect it may have on the case temperature.

Ta is best measured by averaging temperature measurements at multiple locations in
the heatsink inlet airflow. This method helps reduce error and eliminate minor spatial
variations in temperature. The following guidelines are meant to enable accurate
determination of the localized air temperature around the processor during system
thermal testing.

For active heatsinks, it is important to avoid taking measurement in the dead flow
zone that usually develops above the fan hub and hub spokes. Measurements should
be taken at four different locations uniformly placed at the center of the annulus
formed by the fan hub and the fan housing to evaluate the uniformity of the air
temperature at the fan inlet. The thermocouples should be placed approximately

3 mm to 8 mm [0.1 to 0.3 in] above the fan hub vertically and halfway between the
fan hub and the fan housing horizontally as shown in the ATX heatsink in Figure 5
(avoiding the hub spokes). Using an open bench to characterize an active heatsink can
be useful, and usually ensures more uniform temperatures at the fan inlet. However,
additional tests that include a solid barrier above the test motherboard surface can
help evaluate the potential impact of the chassis. This barrier is typically clear
Plexiglas*, extending at least 100 mm [4 in] in all directions beyond the edge of the
thermal solution. Typical distance from the motherboard to the barrier is 81 mm

[3.2 in]. For even more realistic airflow, the motherboard should be populated with
significant elements like memory cards, graphic card, and chipset heatsink. If a
barrier is used, the thermocouple can be taped directly to the barrier with a clear tape
at the horizontal location as previously described, half way between the fan hub and
the fan housing. If a variable speed fan is used, it may be useful to add a
thermocouple taped to the barrier above the location of the temperature sensor used
by the fan to check its speed setting against air temperature. When measuring T, in a
chassis with a live motherboard, add-in cards, and other system components, it is
likely that the T, measurements will reveal a highly non-uniform temperature
distribution across the inlet fan section.

For passive heatsinks, thermocouples should be placed approximately 13 mm to
25 mm [0.5 to 1.0 in] away from processor and heatsink as shown in Figure 6. The
thermocouples should be placed approximately 51 mm [2.0 in] above the baseboard.
This placement guideline is meant to minimize the effect of localized hot spots from
baseboard components.

Testing an active heatsink with a variable speed fan can be done in a thermal chamber
to capture the worst-case thermal environment scenarios. Otherwise, when doing a
bench top test at room temperature, the fan regulation prevents the heatsink from
operating at its maximum capability. To characterize the heatsink capability in the
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worst-case environment in these conditions, it is then necessary to disable the fan
regulation and power the fan directly, based on guidance from the fan supplier.

Figure 5. Locations for Measuring Local Ambient Temperature, Active ATX Heatsink
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Figure 6. Locations for Measuring Local Ambient Temperature, Passive Heatsink
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Processor Case Temperature Measurement
Guidelines

To ensure functionality and reliability, the processor is specified for proper operation
when Tc is maintained at or below the thermal profile as listed in the datasheet. The
measurement location for T¢ is the geometric center of the IHS. Figure 2 shows the

location for Tc measurement.

Special care is required when measuring T¢ to ensure an accurate temperature
measurement. Thermocouples are often used to measure T¢. Before any temperature
measurements are made, the thermocouples must be calibrated, and the complete
measurement system must be routinely checked against known standards. When
measuring the temperature of a surface that is at a different temperature from the
surrounding local ambient air, errors could be introduced in the measurements. The
measurement errors could be caused by poor thermal contact between the junction of
the thermocouple and the surface of the integrated heat spreader, heat loss by
radiation, convection, by conduction through thermocouple leads, or by contact
between the thermocouple cement and the heatsink base.

Appendix D defines a reference procedure for attaching a thermocouple to the IHS of
a 775-Land LGA processor package for Tc measurement. This procedure takes into
account the specific features of the 775-Land LGA package and of the LGA775 socket
for which it is intended.
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Thermal Management Logic and
Thermal Monitor Feature

4.1

4.2

Processor Power Dissipation

An increase in processor operating frequency not only increases system performance,
but also increases the processor power dissipation. The relationship between
frequency and power is generalized in the following equation: P = CV?F

(where P = power, C = capacitance, V = voltage, F = frequency). From this equation,
it is evident that power increases linearly with frequency and with the square of
voltage. In the absence of power saving technologies, ever increasing frequencies will
result in processors with power dissipations in the hundreds of watts. Fortunately,
there are numerous ways to reduce the power consumption of a processor, and Intel
is aggressively pursuing low power design techniques. For example, decreasing the
operating voltage, reducing unnecessary transistor activity, and using more power
efficient circuits can significantly reduce processor power consumption.

An on-die thermal management feature called Thermal Monitor is available on the
processor. It provides a thermal management approach to support the continued
increases in processor frequency and performance. By using a highly accurate on-die
temperature sensing circuit and a fast acting Thermal Control Circuit (TCC), the
processor can rapidly initiate thermal management control. The Thermal Monitor can
reduce cooling solution cost, by allowing thermal designs to target TDP.

The processor also supports an additional power reduction capability known as
Thermal Monitor 2 described in Section 4.2.3.

Thermal Monitor Implementation

The Thermal Monitor consists of the following components:
e A highly accurate on-die temperature sensing circuit

¢ A bi-directional signal (PROCHOT#) that indicates if the processor has exceeded
its maximum temperature or can be asserted externally to activate the Thermal
Control Circuit (TCC) (see Section 4.2.1for more details on user activation of TCC
via PROCHOT# signal)

¢ A Thermal Control Circuit that will attempt to reduce processor temperature by
rapidly reducing power consumption when the on-die temperature sensor indicates
that it has exceeded the maximum operating point.

¢ Registers to determine the processor thermal status.
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4.2.1

Prochot# Signal

The primary function of the PROCHOT# signal is to provide an external indication the
processor has exceeded its maximum operating temperature. While PROCHOT# is
asserted, the TCC will be active. Assertion of the PROCHOT# signal is independent of
any register settings within the processor. It is asserted any time the processor die
temperature reaches the trip point.

PROCHOT# can be configured via BIOS as an output or bi-directional signal. As an
output, PROCHOT# will go active when the processor temperature of either core
exceeds its maximum operating temperature. This indicates the TCC has been
activated. As an input, assertion of PROCHOT# will activate the TCC for both cores.
The TCC will remain active until the system de-asserts PROCHOT#.

The temperature at which the PROCHOT# signal goes active is individually calibrated
during manufacturing. The power dissipation of each processor affects the set point
temperature. The temperature where PROCHOT# goes active roughly parallels the
thermal profile. Once configured, the processor temperature at which the PROCHOT#
signal is asserted is not re-configurable.

One application is the thermal protection of voltage regulators (VR). System designers
can create a circuit to monitor the VR temperature and activate the TCC when the
temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) which
activates the TCC, the VR can cool down as a result of reduced processor power
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target
maximum sustained current instead of maximum current. Systems should still provide
proper cooling for the VR, and rely on bi-directional PROCHOT# signal only as a
backup in case of system cooling failure.

Note: A thermal solution designed to meet the thermal profile targets should rarely

4.2.2

34

experience activation of the TCC as indicated by the PROCHOT# signal going active.

Thermal Control Circuit

The Thermal Control Circuit portion of the Thermal Monitor must be enabled for the
processor to operate within specifications. The Thermal Monitor’'s TCC, when active,
will attempt to lower the processor temperature by reducing the processor power
consumption. In the original implementation of thermal monitor this is done by
changing the duty cycle of the internal processor clocks, resulting in a lower effective
frequency. When active, the TCC turns the processor clocks off and then back on with
a predetermined duty cycle. The duty cycle is processor specific, and is fixed for a
particular processor. The maximum time period the clocks are disabled is ~3 ps. This
time period is frequency dependent and higher frequency processors will disable the
internal clocks for a shorter time period. Figure 7 illustrates the relationship between
the internal processor clocks and PROCHOT#.

Performance counter registers, status bits in model specific registers (MSRs), and the
PROCHOT# output pin are available to monitor the Thermal Monitor behavior.
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Figure 7. Concept for Clocks under Thermal Monitor Control
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4.2.3 Thermal Monitor 2

The processor supports an enhanced Thermal Control Circuit. In conjunction with the
existing Thermal Monitor logic, this capability is known as Thermal Monitor 2. This
enhanced TCC provides an efficient means of reducing the power consumption within
the processor and limiting the processor temperature.

When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the
enhanced TCC will be activated. The enhanced TCC causes the processor to adjust its
operating frequency (by dropping the bus-to-core multiplier to its minimum available
value) and input voltage identification (VID) value. This combination of reduced
frequency and VID results in a reduction in processor power consumption.

A processor enabled for Thermal Monitor 2 includes two operating points, each
consisting of a specific operating frequency and voltage. The first operating point
represents the normal operating condition for the processor.

The second operating point consists of both a lower operating frequency and voltage.
When the TCC is activated, the processor automatically transitions to the new
frequency. This transition occurs very rapidly (on the order of 5 microseconds). During
the frequency transition, the processor is unable to service any bus requests, all bus
traffic is blocked. Edge-triggered interrupts will be latched and kept pending until the
processor resumes operation at the new frequency.

Once the new operating frequency is engaged, the processor will transition to the new
core operating voltage by issuing a new VID code to the voltage regulator. The
voltage regulator must support VID transitions in order to support Thermal Monitor 2.
During the voltage change, it will be necessary to transition through multiple VID
codes to reach the target operating voltage. Each step will be one VID table entry
(i.e., 12.5 mV steps). The processor continues to execute instructions during the
voltage transition. Operation at the lower voltage reduces the power consumption of
the processor, providing a temperature reduction.
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Once the processor has sufficiently cooled, and a minimum activation time has
expired, the operating frequency and voltage transition back to the normal system
operating point. Transition of the VID code will occur first, in order to insure proper
operation once the processor reaches its normal operating frequency. Refer to
Figure 8 for an illustration of this ordering.

Figure 8. Thermal Monitor 2 Frequency and Voltage Ordering
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Refer to the datasheet for further information on Thermal Monitor 2.

Operation and Configuration

To maintain compatibility with previous generations of processors, which have no
integrated thermal logic, the Thermal Control Circuit portion of Thermal Monitor is
disabled by default. During the boot process, the BIOS must enable the Thermal
Control Circuit. Thermal Monitor must be enabled to ensure proper processor
operation.

The Thermal Control Circuit feature can be configured and monitored in a number of
ways. OEMs are required to enable the Thermal Control Circuit while using various
registers and outputs to monitor the processor thermal status. The Thermal Control
Circuit is enabled by the BIOS setting a bit in an MSR (model specific register).
Enabling the Thermal Control Circuit allows the processor to attempt to maintain a
safe operating temperature without the need for special software drivers or interrupt
handling routines. When the Thermal Control Circuit has been enabled, processor
power consumption will be reduced after the thermal sensor detects a high
temperature, i.e. PROCHOT# assertion. The Thermal Control Circuit and PROCHOT#
transitions to inactive once the temperature has been reduced below the thermal trip
point, although a small time-based hysteresis has been included to prevent multiple
PROCHOT# transitions around the trip point. External hardware can monitor
PROCHOT# and generate an interrupt whenever there is a transition from active-to-
inactive or inactive-to-active. PROCHOT# can also be configured to generate an
internal interrupt which would initiate an OEM supplied interrupt service routine.
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4.2.5

Note:

4.2.6

Regardless of the configuration selected, PROCHOT# will always indicate the thermal
status of the processor.

The power reduction mechanism of thermal monitor can also be activated manually
using an “on-demand” mode. Refer to Section 4.2.5 for details on this feature.

On-Demand Mode

For testing purposes, the thermal control circuit may also be activated by setting bits
in the ACPI MSRs. The MSRs may be set based on a particular system event (e.g., an
interrupt generated after a system event), or may be set at any time through the
operating system or custom driver control thus forcing the thermal control circuit on.
This is referred to as “on-demand” mode. Activating the thermal control circuit may be
useful for thermal solution investigations or for performance implication studies. When
using the MSRs to activate the on-demand clock modulation feature, the duty cycle is
configurable in steps of 12.5%, from 12.5% to 87.5%.

For any duty cycle, the maximum time period the clocks are disabled is ~3 ps. This
time period is frequency dependent, and decreases as frequency increases. To achieve
different duty cycles, the length of time that the clocks are disabled remains constant,
and the time period that the clocks are enabled is adjusted to achieve the desired
ratio. For example, if the clock disable period is 3 ps, and a duty cycle of ¥ (25%) is
selected, the clock on time would be reduced to approximately 1 ps [on time (1 ps) +
total cycle time (3 + 1) us = % duty cycle]. Similarly, for a duty cycle of 7/8 (87.5%),
the clock on time would be extended to 21 ps [21 + (21 + 3) = 7/8 duty cycle].

In a high temperature situation, if the thermal control circuit and ACPlI MSRs
(automatic and on-demand modes) are used simultaneously, the fixed duty cycle
determined by automatic mode would take precedence.

On-demand mode can not activate the power reduction mechanism of Thermal
Monitor 2

System Considerations

Intel requires the Thermal Monitor and Thermal Control Circuit to be enabled for all
processors. The thermal control circuit is intended to protect against short term
thermal excursions that exceed the capability of a well designed processor thermal
solution. Thermal Monitor should not be relied upon to compensate for a thermal
solution that does not meet the thermal profile up to the thermal design power (TDP).

Each application program has its own unique power profile, although the profile has
some variability due to loop decisions, 1/0 activity and interrupts. In general, compute
intensive applications with a high cache hit rate dissipate more processor power than
applications that are 1/0 intensive or have low cache hit rates.

The processor TDP is based on measurements of processor power consumption while
running various high power applications. This data is used to determine those
applications that are interesting from a power perspective. These applications are then
evaluated in a controlled thermal environment to determine their sensitivity to
activation of the thermal control circuit. This data is used to derive the TDP targets
published in the processor datasheet.
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4.2.7

4.2.8

4.2.9
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A system designed to meet the thermal profile at TDP and Tc.uax vValues published in
the processor datasheet greatly reduces the probability of real applications causing the
thermal control circuit to activate under normal operating conditions. Systems that do
not meet these specifications could be subject to more frequent activation of the
thermal control circuit depending upon ambient air temperature and application power
profile. Moreover, if a system is significantly under designed, there is a risk that the
Thermal Monitor feature will not be capable of maintaining a safe operating
temperature and the processor could shutdown and signal THERMTRIP#.

For information regarding THERMTRIP#, refer to the processor datasheet and to
Section 4.2.8 of this Thermal Design Guidelines.

Operating System and Application Software
Considerations

The Thermal Monitor feature and its thermal control circuit work seamlessly with ACPI
compliant operating systems. The Thermal Monitor feature is transparent to
application software since the processor bus snooping, ACPI timer, and interrupts are
active at all times.

THERMTRIP# Signal

In the event of a catastrophic cooling failure, the processor will automatically shut
down when the silicon temperature has reached its operating limit. At this point the
system bus signal THERMTRIP# goes active and power must be removed from the
processor. THERMTRIP# activation is independent of processor activity and does not
generate any bus cycles. Refer to the processor datasheet for more information about
THERMTRIP#.

The temperature where the THERMTRIP# signal goes active is individually calibrated
during manufacturing. The temperature where THERMTRIP# goes active is roughly
parallel to the thermal profile and greater than the PROCHOT# activation
temperature. Once configured, the temperature at which the THERMTRIP# signal is
asserted is neither re-configurable nor accessible to the system.

Cooling System Failure Warning

It may be useful to use the PROCHOT# signal as an indication of cooling system
failure. Messages could be sent to the system administrator to warn of the cooling
failure, while the thermal control circuit would allow the system to continue
functioning or allow a normal system shutdown. If no thermal management action is
taken, the silicon temperature may exceed the operating limits, causing THERMTRIP#
to activate and shut down the processor. Regardless of the system design
requirements or thermal solution ability, the Thermal Monitor feature must still be
enabled to ensure proper processor operation.
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4.2.10 Digital Thermal Sensor

The Intel® Core™2 Duo desktop processor EG000/E4000 sequence and Intel®
Pentium® Dual Core processor E2000 sequence introduce the Digital Thermal Sensor
(DTS) as the on-die sensor to use for fan speed control (FSC). The DTS will eventually
replace the on-die thermal diode used in pervious products. The Intel® Core™2 Duo
desktop processor E6000/E4000 sequences and Intel® Pentium® Dual Core processor
E2000 sequence will have both the DTS and thermal diode enabled. The DTS is
monitoring the same sensor that activates the TCC (see Section 4.2.2). Readings from
the DTS are relative to the activation of the TCC. The DTS value where TCC activation
occurs is O (zero).

The DTS can be accessed by two methods. The first is via a MSR. The value read via
the MSR is an unsigned number of degrees C away from TCC activation. The second
method which is expected to be the primary method for FSC is via the PECI interface.
The value of the DTS when read via the PECI interface is always negative and again is
degrees C away from TCC activation.

A TcontroL Value will be provided for use with DTS. The usage model for Tcontrol With
the DTS is the same as with the on-die thermal diode:

o If the Digital thermal sensor is less than TcontroL, the fan speed can be reduced.

¢ If the Digital thermal sensor is greater than or equal to TcontroL, then Tc must be
maintained at or below the Thermal Profile for the measured power dissipation.

The calculation of TconTroL IS Slightly different from previous product. There is no base
value to sum with the Torrser located in the same MSR as used in previous processors.
The BIOS only needs to read the Torrser MSR and provide this value to the fan speed
control device.

Figure 9. TCONTROL for Digital Thermal Sensor
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Multiple digital thermal sensors can be implemented within the package without
adding a pair of signal pins per sensor as required with the thermal diode. The digital
thermal sensor is easier to place in thermally sensitive locations of the processor than
the thermal diode. This is achieved due to a smaller foot print and decreased
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Note:

4.2.11

40

sensitivity to noise. Since the DTS is factory set on a per-part basis there is no need
for the health monitor components to be updated at each processor family.

Intel® Core™2 Duo processor E6000 and E4000 sequences and Intel® Pentium® Dual
Core processor E2000 sequence do not have an on-die thermal diode. The TcontroL IiN
the MSR is relevant only to the DTS.

Platform Environmental Control Interface (PECI)

The PECI interface is a proprietary single wire bus between the processor and the
chipset or other health monitoring device. At this time the digital thermal sensor is the
only data being transmitted. For an overview of the PECI interface see PECI Feature
Set Overview. For additional information on the PECI see the Intel® Core™2 Duo
Extreme Processor X6800 and Intel® Core™2 Duo Desktop Processor E6000 and
E4000 Sequence Datasheet.

The PECI bus is available on pin G5 of the LGA 775 socket. Starting with the Intel
ICH8 10 Controller Hub has integrated a PECI host controller. The PECI interface and
the Manageability Engine, embedded in the Intel 965 Express chipset family, are key
elements to the Intel® Quiet System Technology (Intel® QST), see Chapter 7 and the
Intel® Quiet System Technology Configuration and Tuning Manual.

Intel has worked with many vendors that provide fan speed control devices to provide

PECI host controllers. Consult the local representative for your preferred vendor for
their product plans and availability.
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5 Intel® Enabled Balanced
Technology Extended (BTX)
Reference solution

51 Overview of the Balanced Technology Extended
(BTX) Reference Design

The reference thermal module assembly is a Type Il BTX compliant design and is
compliant with the reference BTX motherboard keep-out and height recommendations
defined Section 6.5.

The solution comes as an integrated assembly. An isometric view of the assembly is
provided Figure 13.

51.1 Target Heatsink Performance

Table 3 provides the target heatsink performance for the 775_VR_CONFIG_06 65 W
processors with the BTX boundary conditions. The results will be evaluated using the
test procedure described in Section 5.2.

The table also includes a T, assumption of 35.5 °C for the Intel reference thermal
solution at the processor fan heatsink inlet discussed Section 3.3. The analysis
assumes a uniform external ambient temperature to the chassis of 35 °C across the
fan inlet, resulting in a temperature rise, Tg, of 0.5 °C. Meeting T, and Y, targets can
maximize processor performance (refer to Sections 2.2, 2.4. and Chapter 4).
Minimizing Tg, can lead to improved acoustics.

Table 3. Balanced Technology Extended (BTX) Reference Heatsink Performance Targets
for 775 VR _CONFIG_06 65 W Processors

Processor Thermal Performance ¥ca T, Notes
(Mean + 3c) Assumption
Intel® Core™2 Duo desktop processor E6000 0.38 °C/W 35.5°C 1,2
sequence with 4 MB cache
Intel® Core™2 Duo desktop processor 0.40 °C/W 35.5°C 1,2
E6000/E4000 sequence with 2 MB cache
Intel® Pentium® Dual Core processor E2000 0.40 °°C/W 35.5°°C 1,2
sequence
Intel® Pentium® 4 processor 6x1 sequence 0.44 °C/W 35.5°C 2
NOTE:

1. The difference in the target W ca between the Intel® Core™2 Duo desktop processor
E6000/E4000 sequence with 4 MB cache and 2 MB cache is due to a slight difference in
the die size.

2. Performance targets (W ca) as measured with a live processor at TDP.
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Acoustics

Intel® Enabled Balanced Technology Extended (BTX) Reference solution

To optimize acoustic emission by the fan heatsink assembly, the reference design
implements a variable speed fan. A variable speed fan allows higher thermal
performance at higher fan inlet temperatures (T,) and the appropriate thermal
performance with improved acoustics at lower fan inlet temperatures. The required
fan speed necessary to meet thermal specifications can be controlled by the fan inlet
temperature and should comply with requirements below:

Table 4. Acoustic Targets

Fan Thermistor Acoustic Thermal Performance ¥Yca Notes
Speed Set Point
RPM
~ 5300 | High < 6.4 BA 0.38 °C/W (Intel® Core™2 Duo Case 1:
Ta = 35 °C processors - 4 MB) Thermal Design Power
0.40 °C/W (Intel® Core™2 Duo | Maximum fan speed
processors - 2 MB) 100% PWM dUty Cycle
0.40 °C/W (Intel® Pentium
Dual-Core E2000 sequence)
0.44 °C/W (Intel® Pentium® 4
processor 6x1 sequence)
~ 2500 | Low No Target 0.56 °C/W (Intel® Core™2 Duo | Case 2
Ta=23°C Defined processors - 4 MB) Thermal Design Power
0.58 °C/W (Intel® Core™2 Duo | System (PSU, HDD, TMA)
processors - 2 MB) Fan speed I|m|tfed by the
® . fan hub thermistor
0.58 °C/W (Intel™ Pentium
Dual-Core E2000 sequence)
0.63 °C/W (Intel® Pentium® 4
processor 6x1 sequence)
~ 1400 | Low < 3.4 BA ~0.87 °C/W (Intel® Core™2 Case 3
Ta=23°C Duo processors - 4 MB) 50% Thermal Design Power
~0.89 °C/W (Intel® Core™2 TMA Only
Duo processors - 2 MB)
~0.89 °C/W (Intel® Pentium
Dual-Core E2000 sequence)
~0.93 °C/W (Intel® Pentium® 4
processor 6x1 sequence)
~ 1400 | Low < 4.0 BA ~0.87 °C/W (Intel® Core™2 Case 3
Ta=23°C Duo processors - 4 MB) 50% Thermal Design Power
~0.89 °C/W (Intel® Core™2 System (PSU, HDD, TMA)
Duo processors - 2 MB)
~0.89 °C/W (Intel® Pentium
Dual-Core E2000 sequence)
~0.93 °C/W (Intel® Pentium® 4
processor 6x1 sequence)
NOTE:

1. Acoustic performance is defined in terms of measured sound power (LwA) as defined in

ISO 9296 standard, and measured according to 1SO 7779.

2.  Acoustic testing will be for the TMA only when installed in a BTX S2 chassis for Case 1

and 3
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3.  Acoustics testing for Case 2 will be system level in the same a BTX S2 reference chassis
and commercially available power supply. Acoustic data for Case 2 will be provided in
the validation report but this condition is not a target for the design. The acoustic model
is predicting that the power supply fan will be the acoustic limiter.

4. The fan speeds (RPM) are estimates for one of the two reference fans and will be
adjusted to meet thermal performance targets then acoustic target during validation.
The designer should identify the fan speed required to meet the effective fan curve
shown in Section 5.1.3

5. Minimum fan speed is expected to be no higher than 1200 RPM for the fan being used
in validation testing.

While the fan hub thermistor helps optimize acoustics at high processor workloads by
adapting the maximum fan speed to support the processor thermal profile, additional
acoustic improvements can be achieved at lower processor workload by using the
TconTroL Specifications described in Section 2.2.3. Intel’s recommendation is to use the
Fan Specification for 4 Wire PWM Controlled Fans to implement fan speed control
capability based the digital thermal sensor. Refer to Chapter 7 for further details.

5.1.3 Effective Fan Curve

The TMA must fulfill the processor cooling requirements shown in Table 3 when it is
installed in a functional BTX system. When installed in a system, the TMA must
operate against the backpressure created by the chassis impedance (due to vents,
bezel, peripherals, etc...) and will operate at lower net airflow than if it were tested
outside of the system on a bench top or open air environment. Therefore an allowance
must be made to accommodate or predict the reduction in Thermal Module
performance due to the reduction in heatsink airflow from chassis impedance. For this
reason, it is required that the Thermal Module satisfy the prescribed ¥c, requirements
when operating against an impedance that is characteristic for BTX platforms.

Because of the coupling between TMA thermal performance and system impedance,
the designer should understand the TMA effective fan curve. This effective fan curve
represents the performance of the fan component AND the impedance of the stator,
heatsink, duct, and flow partitioning devices. The BTX system integrator will be able to
evaluate a TMA based on the effective fan curve of the assembly and the airflow
impedance of their target system.

Note: It is likely that at some operating points the fans speed will be driven by the system
airflow requirements and not the processor thermal limits.

Figure 10 shows the effective fan curve for the reference design TMA. These curves
are based on analysis. The boundary conditions used are the S2 6.9L reference
chassis, the reference TMA with the flow portioning device, extrusion and an AVC Type
Il fan geometry.

When selecting a fan for use in the TMA care should be taken that similar effective fan

curves can be achieved. Final verification requires the overlay of the Type Il MASI
curve to ensure thermal compliance.
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Figure 10. Effective TMA Fan Curves with Reference Extrusion
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Voltage Regulator Thermal Management

The BTX TMA is integral to the cooling of the processor voltage regulator (VR). The
reference design includes a flow partitioning device to ensure an appropriate airflow
balance between the TMA and the VR as well as provide sufficient downstream airflow
to the chipset.

The BTX thermal management strategy relies on the Thermal Module to provide
effective cooling for the voltage regulator (VR) chipset and system memory
components on the motherboard. The Thermal Module is required to have features
that allow for airflow to bypass the heatsink and flow over the VR region on both the
primary and secondary sides of the board. The following requirements apply to VR
cooling.

Table 5. VR Airflow Requirements

44

Item Target

Minimum VR bypass airflow for 775_VR_CONFIG_06 processors 2.4 CFM

NOTE:

1. This is the recommended airflow rate that should be delivered to the VR when the VR
power is at a maximum in order to support the 775_VR_CONFIG_06 processors (Intel®
Core™2 Duo desktop processor EB000/E4000 sequence, Intel® Pentium® Dual Core
processor E2000 sequence, and Intel® Pentium® 4 processor 6x1 sequence) at TDP
power dissipation, and the chassis external environment temperature is at 35 ©C. Less
airflow is necessary when the VR power is not at a maximum or if the external ambient
temperature is less than 35 °C.

2.  This recommended airflow rate is based on the requirements for the Intel® 965 Express
chipset family.

Thermal and Mechanical Design Guidelines



m ®
Intel® Enabled Balanced Technology Extended (BTX) Reference solution l n tel

5.1.5 Altitude

The reference TMA was evaluated at sea level. However, many companies design
products that must function reliably at high altitude, typically 1,500 m [5,000 ft] or
more. Air-cooled temperature calculations and measurements at sea level must be
adjusted to take into account altitude effects like variation in air density and overall
heat capacity. This often leads to some degradation in thermal solution performance
compared to what is obtained at sea level, with lower fan performance and higher
surface temperatures. The system designer needs to account for altitude effects in the
overall system thermal design to make sure that the T_ requirement for the processor

is met at the targeted altitude.

5.1.6 Reference Heatsink Thermal Validation

The Intel reference heatsink was validated within the specific boundary conditions
based on the methodology described in Section 5.2 , and using a thermal test vehicle.

Testing is done in a BTX chassis at ambient lab temperature. The test results, for a
number of samples, is reported in terms of a worst-case mean + 3c value for thermal

characterization parameter using real processors (based on the thermal test vehicle
correction factors).

5.1.7 Fan Performance for Active Heatsink Thermal Solution
The fan power requirements for proper operation are given Table 6.

Table 6. Fan Electrical Performance Requirements

Requirement Value
Maximum Average fan current draw 15A
Fan start-up current draw 22 A
Fan start-up current draw maximum duration 1.0 second
Fan header voltage 12 V £5%
Tachometer output 2 pulse per revolution

In addition to comply with overall thermal requirements (Section 6.1.1), and the
general environmental reliability requirements (Section 6.2) the fan should meet the
following performance requirements:

¢ Mechanical wear out represents the highest risk reliability parameter for fans. The
capability of the functional mechanical elements (ball bearing, shaft, and tower
assembly) must be demonstrated to a minimum useful lifetime of 40,000 hours.

¢ In addition to passing the environmental reliability tests described in Section 6.2,
the fan must demonstrate adequate performance after 7,500 on/off cycles with
each cycle specified as 3 minutes on, 2 minutes off, at a temperature of 70 °C.

See the Fan Specification for 4-wire PWM Controlled Fans for additional details on the
fan specification.
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52 Environmental Reliability Testing

52.1 Structural Reliability Testing

Structural reliability tests consist of unpackaged, system -level vibration and shock
tests of a given thermal solution in the assembled state. The thermal solution should
meet the specified thermal performance targets after these tests are conducted;
however, the test conditions outlined here may differ from your own system
requirements.

5.2.1.1 Random Vibration Test Procedure

Recommended performance requirement for a system:

e Duration: 10 min/axis, 3 axes

e Frequency Range: 5 Hz to 500 Hz
5 Hz @ .001 g2/Hz to 20 Hz @ 0.01 g2/Hz (slope up)
20 Hz to 500 Hz @ 0.01 g2/Hz (flat)

e Power Spectral Density (PSD) Profile: 2.2 G RMS

Figure 11. Random Vibration PSD
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5.2.1.2 Shock Test Procedure

Recommended performance requirement for a system:

eQuantity: 2 drops for + and - directions in each of 3 perpendicular axes (i.e., total
12 drops).

eProfile: 25 G trapezoidal waveform
225 in/sec minimum velocity change. (systems > 20 |lbm)
250 in/sec minimum velocity change. (systems < 20 |lbm)

eSetup: Mount sample system on tester.
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Figure 12. Shock Acceleration Curve
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Recommended Test Sequence

Each test sequence should start with components (i.e. motherboard, heatsink

assembly, etc.) that have never been previously submitted to any reliability testing.

The test sequence should always start with a visual inspection after assembly, and
BIOS/CPU/Memory test (refer to Section 6.2.3).

Prior to the mechanical shock & vibration test, the units under test should be
preconditioned for 72 hours at 45 ©C. The purpose is to account for load relaxation
during burn-in stage.

The stress test should be followed by a visual inspection and then BIOS/CPU/Memory

test.

Post-Test Pass Criteria

The post-test pass criteria are:

1. No significant physical damage to the heatsink attach mechanism (including such

items as clip and motherboard fasteners).
2. Heatsink must remain attached to the motherboard.

3. Heatsink remains seated and its bottom remains mated flatly against IHS surface.
No visible gap between the heatsink base and processor IHS. No visible tilt of the

heatsink with respect to its attach mechanism.

4. No signs of physical damage on motherboard surface due to impact of heatsink or

heatsink attach mechanism.
5. No visible physical damage to the processor package.
6. Successful BIOS/Processor/memory test of post-test samples.

7. Thermal compliance testing to demonstrate that the case temperature
specification can be met.
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52.3

53
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Power Cycling

Thermal performance degradation due to TIM degradation is evaluated using power
cycling testing. The test is defined by 7500 cycles for the case temperature from room
temperature (—23 ©C) to the maximum case temperature defined by the thermal
profile at TDP. Thermal Test Vehicle is used for this test.

Recommended BIOS/Processor/Memory Test Procedures

This test is to ensure proper operation of the product before and after environmental
stresses, with the thermal mechanical enabling components assembled. The test shall
be conducted on a fully operational motherboard that has not been exposed to any
battery of tests prior to the test being considered.

Testing setup should include the following components, properly assembled and/or
connected:

e Appropriate system motherboard

e Processor

¢ All enabling components, including socket and thermal solution parts
e Power supply

e Disk drive

e Video card

e DIMM

e Keyboard

e Monitor

The pass criterion is that the system under test shall successfully complete the
checking of BIOS, basic processor functions and memory, without any errors.

Material and Recycling Requirements

Material shall be resistant to fungal growth. Examples of non-resistant materials
include cellulose materials, animal and vegetable based adhesives, grease, oils, and
many hydrocarbons. Synthetic materials such as PVC formulations, certain
polyurethane compositions (e.g., polyester and some polyethers), plastics which
contain organic fillers of laminating materials, paints, and varnishes also are
susceptible to fungal growth. If materials are not fungal growth resistant, then MIL-
STD-810E, Method 508.4 must be performed to determine material performance.

Material used shall not have deformation or degradation in a temperature life test.

Any plastic component exceeding 25 grams must be recyclable per the European Blue
Angel recycling standards.
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54 Safety Requirements

Heatsink and attachment assemblies shall be consistent with the manufacture of units
that meet the safety standards:

¢ UL Recognition-approved for flammability at the system level. All mechanical and
thermal enabling components must be a minimum UL94V-2 approved.

e CSA Certification. All mechanical and thermal enabling components must have
CSA certification.

¢ All components (in particular the heatsink fins) must meet the test requirements
of UL1439 for sharp edges.

¢ If the International Accessibility Probe specified in IEC 950 can access the moving
parts of the fan, consider adding safety feature so that there is no risk of personal
injury.

55 Geometric Envelope for Intel® Reference
Balanced Technology Extended (BTX) Thermal
Module Assembly

Figure 73 through Figure 77 in Appendix G gives the motherboard keep-out
information for the BTX thermal mechanical solutions. Additional information on BTX
design considerations can be found in Balanced Technology Extended (BTX) System
Design Guide available at http://www.formfactors.org.

The maximum height of the TMA above the motherboard is 60.60 mm [2.386 inches],
for compliance with the motherboard primary side height constraints defined in the
BTX Interface Specification for Zone A, found at http://www.formfactors.org.

Figure 13. Intel Type Il TMA 65W Reference Design

‘

Development vendor information for the Intel Type Il TMA Reference Solution is
provided in Appendix H.
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5.6

56.1

Preload and TMA Stiffness

Structural Design Strategy

Structural design strategy for the Intel Type Il TMA is to minimize upward board
deflection during shock to help protect the LGA775 socket.

BTX thermal solutions utilize the SRM and TMA that together resists local board
curvature under the socket and minimize, board deflection (Figure 14). In addition, a
moderate preload provides initial downward deflection.

Figure 14. Upward Board Deflection During Shock

5.6.2
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TMA Preload vs. Stiffness

The Thermal Module assembly is required to provide a static preload to ensure
protection against fatigue failure of socket solder joint. The allowable preload range
for BTX platforms is provided in Table 7, but the specific target value is a function of
the Thermal Module effective stiffness.

The solution space for the Thermal Module effective stiffness and applied preload
combinations is shown by the shaded region of Figure 15. This solution space shows
that the Thermal Module assembly must have an effective stiffness that is sufficiently
large such that the minimum preload determined from the relationship requirement in
Figure 15 does not exceed the maximum allowed preload shown in Table 7.
Furthermore, if the Thermal Module effective stiffness is so large that the minimum
preload determined from Figure 15 is below the minimum required value given in
Table 7, then the Thermal Module should be re-designed to have a preload that lies
within the range given in Table 7, allowing for preload tolerances.
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Table 7. Processor Preload Limits

Parameter Minimum Required Maximum Notes
Allowed
Processor Preload 98 N [22 Ibf] 222 N [50 Ibf] 1

NOTE:

1. These values represent upper and lower bounds for the processor preload. The nominal
preload design point for the Thermal Module is based on a combination of requirements

of the TIM, ease of assembly and the Thermal Module effective stiffness.

Figure 15. Minimum Required Processor Preload to Thermal Module Assembly Stiffness
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NOTE:

1. The shaded region shown is the acceptable domain for Thermal Module assembly
effective stiffness and processor preload combinations. The Thermal Module design
should have a design preload and stiffness that lies within this region. The design
tolerance for the preload and TMA stiffness should also reside within this boundary.
Note that the lower and upper horizontal boundaries represent the preload limits
provided in Table 7. The equation for the left hand boundary is described in note 2.

2.  The equation for this section of the preload-Thermal Module stiffness boundary is given
by the following relationship: Min Preload = 1.38E-3*k"2 — 1.18486k + 320.24753 for
k < 300 N/mm where k is the Thermal Module assembly effective stiffness. Note that
this equation is only valid in the stiffness domain of 93N/mm < k < 282N/mm. This
equation would not apply, for example, for TMA stiffness less than 93N/mm.

3. The target stiffness for the 65 W Type Il TMA reference design is 484 N/mm

(2764 Ib / in).

Note: These preload and stiffness recommendations are specific to the TMA mounting
scheme that meets the BTX Interface Specification and Support Retention Mechanism
(SRM) Design Guide. For TMA mounting schemes that use only the motherboard
mounting hole position for TMA attach, the required preload is approximately 10—15N
greater than the values stipulated in Figure 15; however, Intel has not conducted any

validation testing with this TMA mounting scheme.
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Figure 16. Thermal Module Attach Pointes and Duct-to-SRM Interface Features
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For clarity the motherboard is not shown in this figure. In an actual assembly, the
captive 6x32 screws in the thermal module pass through the rear holes in the
motherboard designated in the socket keep-in Figure 73 through Figure 77 in
Appendix G and screw into the SRM and chassis PEM features.

This front duct ramp feature has both outer and inner lead-in that allows the feature to
slide easily into the SRM slot and around the chassis PEM nut. Note that the front PEM
nut is part of the chassis not the SRM.
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6 ATX Thermal/Mechanical
Design Information

6.1 ATX Reference Design Requirements

Intel is not developing an ATX reference thermal solution for the Intel® Core™2 Duo
desktop processor E6000/E4000 sequence, Intel® Pentium® Dual Core processor
E2000 sequence, and Intel® Pentium® 4 processor 6x1 sequence with a TDP of 65 W.
This chapter will document the requirements for an active air-cooled design, with a
fan installed at the top of the heatsink. The thermal technology required for the
775_VR_CONFIG_06 processor is roughly equivalent to RCBFH-3, see Intel® Pentium®
4 Processor on 90 nm Process in the 775—Land LGA Package Thermal and Mechanical
Design Guidelines for a complete description of this reference design

Note: Intel ATX reference design RCBFH-3 is the higher thermal solution performance of the
65 W 775_VR_CONFIG_06 requirements (It requires Yca. of 0.04 °C/W lower than the
65 W 775_VR_CONFIG_06 requirements). It generates an improvement in acoustic
performance to reduce the fan speed to show the acoustic advantage (acoustic results
are in Table 9).

Note: If the heatsink design is used in your product for cost savings instead of acoustic
advantage, the design that optimizes cost would likely use aluminum core type
designs with the similar fan or a combination of all these (the smaller copper core, the
less expensive fan, and the lower fin density extrusion).

The ATX motherboard keep-out and height recommendations defined Section 6.5
remain the same for a thermal solution for the Intel® Core™2 Duo desktop processor
E6000/E4000 sequence and Intel® Pentium® Dual Core processor E2000 sequence
with a TDP of 65 W. The solution should come as an integrated assembly. An example
of an exploded view of the assembly is provided Figure 19.

Note: The 65 W 775_VR_CONFIG_06 mechanical requirements would need to meet all the
published mechanical requirements for 2005 Performance 775_VR_CONFIG_05
solutions (RCFH-4); such as, the mechanical keep-in, keep-out, symmetry and socket
loading.

Note: If this fan design is used in your product and you will deliver it to end use customers,
you have the responsibility to determine an adequate level of protection
(e.g., protection barriers, a cage, or an interlock) against contact with the energized
fan by the user during user servicing.

6.1.1 Target Heatsink Performance

Table 8 provides the target heatsink performance for the 775_VR_CONFIG_06 65 W
processors with ATX boundary conditions. The results are based on the test procedure
described in Section 6.1.4.

The table also includes a T, assumption of 40 °C for the Intel reference thermal
solution at the processor fan heatsink inlet discussed Section 3.3. An external ambient
temperature to the chassis of 35 °C is assumed, resulting in a temperature rise, Tg, of
5 °C. Meeting T, and ¥, targets can maximize processor performance (refer to
Sections 2.2, 2.4. and Chapter 4). Minimizing Ti can lead to improved acoustics.
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Table 8. ATX Target Heatsink Performance in 775 _VR_CONFIG_06 65 W Processor

Processor Thermal Performance a Notes
Yca (Mean + 3c) Assumption

Intel® Core™2 Duo desktop processor E6000 0.31 °C/W 40 °C 1,2
sequence with 4 MB cache
Intel® Core™2 Duo desktop processor 0.33 °C/W 40 °C 1,2
E6000/E4000 sequence with 2 MB cache
Intel® Pentium® Dual Core processor E2000 0.33 °C/W 40°C 2
sequence
Intel® Pentium® 4 processor 6x1 sequence 0.37 °C/W 40°C 2

NOTE:
1.

2.

The difference in W ca between the Intel® Core™2 Duo desktop processor E6G000/E4000
sequence with 4 MB cache and 2 MB cache is due to a slight difference in the die size.
Performance targets (W ca) as measured with a live processor at TDP.

Acoustics

To optimize acoustic emission by the fan heatsink assembly, Intel recommends the
use of a thermistor controlled variable speed fan. A variable speed fan allows higher
thermal performance at higher fan inlet temperatures (T,) and lower thermal
performance with improved acoustics at lower fan inlet temperatures. The required
fan speed necessary to meet thermal specifications can be controlled by the fan inlet
temperature and should comply with requirements below:

Table 9. Acoustic Results

Fan Speed Thermistor Acoustic Thermal Performance ¥ca Notes
RPM Set Point
2300 High 4.1 BA 0.31 °C/W (Intel® Core™2 Duo Processor -
Ta =40 °C 4 MB)
0.33 °C/W (Intel® Core™2 Duo Processor -
2 MB)
0.33 °C/W (Intel® Pentium Dual-Core
E2000 sequence)
0.37 °C/W (Intel® Pentium® 6x1 sequence)
1000 Low 3.3 BA 0.49 °C/W (Intel® Core™2 Duo Processor - | Thermal
Ta =28 °C 4 MB) Design
® Power, Fan
0.51 °C/W (Intel™ Core™2 Duo Processor - speed
2 MB) limited by
0.51 °C/W (Intel® Pentium Dual-Core the fan hub
E2000 sequence) thermistor
0.56 °C/W (Intel® Pentium® 6x1 sequence)
1000 Low 3.3 BA Minimum
Ta=28°C fan speed
Note: Acoustic performance is defined in terms of measured sound power (LwA) as defined

in 1ISO 9296 standard, and measured according to 1SO 7779.
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6.1.3

6.1.4

Note:

6.1.5

Table 10.

While the fan hub thermistor helps optimize acoustics at high processor workloads by
adapting the maximum fan speed to support the processor thermal profile, additional
acoustic improvements can be achieved at lower processor workload by using the
TconTroL Specifications described in Section 2.2.3. Intel recommendation is to use the
Fan Specification for 4 Wire PWM Controlled Fans to implement fan speed control
capability based digital thermal sensor temperature. Refer to Chapter 7 for further
details.

Altitude

Many companies design products that must function reliably at high altitude, typically
1,500 m [5,000 ft] or more. Air-cooled temperature calculations and measurements at
the test site elevation must be adjusted to take into account altitude effects like
variation in air density and overall heat capacity. This often leads to some degradation
in thermal solution performance compared to what is obtained at sea level, with lower
fan performance and higher surface temperatures. The system designer needs to
account for altitude effects in the overall system thermal design to make sure that the
T. requirement for the processor is met at the targeted altitude.

Heatsink Thermal Validation

Intel recommends evaluation of the heatsink within the specific boundary conditions
based on the methodology described Section 6.2 , and using a thermal test vehicle.

Testing is done on bench top test boards at ambient lab temperature. In particular, for
the reference heatsink, the Plexiglas™ barrier is installed 81.28 mm [3.2 in] above the
motherboard (refer to Sections 3.3 and 6.5).

The test results, for a number of samples, are reported in terms of a worst-case mean
+ 30 value for thermal characterization parameter using real processors (based on the
thermal test vehicle correction factors).

The above 81.28 mm obstruction height that is used for testing complies with the
recommended obstruction height of 88.9 mm for the ATX form factor. However, it
would conflict with systems in strict compliance with the ATX specification which
allows an obstruction as low as 76.2 mm above the motherboard surface in Area A.

Fan Performance for Active Heatsink Thermal Solution

The fan power requirements for proper operation are given Table 10.

Fan Electrical Performance Requirements
Requirement Value
Maximum Average fan current draw 15A
Fan start-up current draw 2.2A
Fan start-up current draw maximum duration 1.0 second
Fan header voltage 12 V £5%
Tachometer output 2 pulse per revolution
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6.2

6.2.1

6.2.1.1

56

In addition to comply with overall thermal requirements (Section 6.1.1), and the
general environmental reliability requirements (Section 6.2) the fan should meet the
following performance requirements:

e Mechanical wear out represents the highest risk reliability parameter for fans. The
capability of the functional mechanical elements (ball bearing, shaft, and tower
assembly) must be demonstrated to a minimum useful lifetime of 50,000 hours.

¢ In addition to passing the environmental reliability tests described in Section 6.2,
the fan must demonstrate adequate performance after 7,500 on/off cycles with
each cycle specified as 3 minutes on, 2 minutes off, at a temperature of 70 °C.

See the Fan Specification for 4-wire PWM Controlled Fans for additional details on the
fan specification.

Environmental Reliability Testing

Structural Reliability Testing

Structural reliability tests consist of unpackaged, board-level vibration and shock tests
of a given thermal solution in the assembled state. The thermal solution should meet
the specified thermal performance targets after these tests are conducted; however,
the test conditions outlined here may differ from your own system requirements.

Random Vibration Test Procedure
Duration: 10 min/axis, 3 axes
Frequency Range: 5 Hz to 500 Hz

Power Spectral Density (PSD) Profile: 3.13 G RMS
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Figure 17. Random Vibration PSD
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6.2.1.2 Shock Test Procedure

Recommended performance requirement for a motherboard:

e Quantity: 3 drops for + and - directions in each of 3 perpendicular axes
(i.e., total 18 drops).

e Profile: 50 G trapezoidal waveform, 170 in/sec minimum velocity change.

e Setup: Mount sample board on test fixture.

Figure 18. Shock Acceleration Curve
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6.2.1.2.1

6.2.1.2.2

6.2.2

58

Recommended Test Sequence

Each test sequence should start with components (i.e., motherboard, heatsink
assembly, etc.) that have never been previously submitted to any reliability testing.

The test sequence should always start with a visual inspection after assembly, and
BlOS/processor/Memory test (refer to Section 6.2.3).

Prior to the mechanical shock & vibration test, the units under test should be
preconditioned for 72 hours at 45 ©C. The purpose is to account for load relaxation
during burn-in stage.

The stress test should be followed by a visual inspection and then
BIOS/processor/Memory test.

Post-Test Pass Criteria

The post-test pass criteria are:

1. No significant physical damage to the heatsink attach mechanism (including such
items as clip and motherboard fasteners).

2. Heatsink must remain attached to the motherboard.

3. Heatsink remains seated and its bottom remains mated flatly against IHS surface.
No visible gap between the heatsink base and processor IHS. No visible tilt of the
heatsink with respect to its attach mechanism.

4. No signs of physical damage on motherboard surface due to impact of heatsink or
heatsink attach mechanism.

5. No visible physical damage to the processor package.

2

Successful BIOS/Processor/memory test of post-test samples.

7. Thermal compliance testing to demonstrate that the case temperature
specification can be met.

Power Cycling

Thermal performance degradation due to TIM degradation is evaluated using power
cycling testing. The test is defined by 7500 cycles for the case temperature from room
temperature (—23 ©C) to the maximum case temperature defined by the thermal
profile at TDP. A thermal test vehicle is used for this test.
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6.2.3

6.3

Recommended BIOS/Processor/Memory Test Procedures

This test is to ensure proper operation of the product before and after environmental
stresses, with the thermal mechanical enabling components assembled. The test shall
be conducted on a fully operational motherboard that has not been exposed to any
battery of tests prior to the test being considered.

Testing setup should include the following components, properly assembled and/or
connected:

e Appropriate system motherboard

e Processor

¢ All enabling components, including socket and thermal solution parts
e Power supply

e Disk drive

¢ Video card

e DIMM

¢ Keyboard

e Monitor

The pass criterion is that the system under test shall successfully complete the
checking of BIOS, basic processor functions and memory, without any errors.

Material and Recycling Requirements

Material shall be resistant to fungal growth. Examples of non-resistant materials
include cellulose materials, animal and vegetable based adhesives, grease, oils, and
many hydrocarbons. Synthetic materials such as PVC formulations, certain
polyurethane compositions (e.g., polyester and some polyethers), plastics which
contain organic fillers of laminating materials, paints, and varnishes also are
susceptible to fungal growth. If materials are not fungal growth resistant, then MIL-
STD-810E, Method 508.4 must be performed to determine material performance.

Material used shall not have deformation or degradation in a temperature life test.

Any plastic component exceeding 25 grams must be recyclable per the European Blue
Angel recycling standards.
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6.4

6.5
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Safety Requirements

Heatsink and attachment assemblies shall be consistent with the manufacture of units
that meet the safety standards:

¢ UL Recognition-approved for flammability at the system level. All mechanical and
thermal enabling components must be a minimum UL94V-2 approved.

e CSA Certification. All mechanical and thermal enabling components must have
CSA certification.

¢ All components (in particular the heatsink fins) must meet the test requirements
of UL1439 for sharp edges.

¢ If the International Accessibility Probe specified in IEC 950 can access the moving
parts of the fan, consider adding safety feature so that there is no risk of personal
injury.

Geometric Envelope for Intel® Reference ATX
Thermal Mechanical Design

Figure 70, Figure 71, and Figure 72 in Appendix G gives detailed reference ATX/PATX
motherboard keep-out information for the reference thermal/mechanical enabling
design. These drawings include height restrictions in the enabling component region.

The maximum height of the reference solution above the motherboard is 71.12 mm
[2.8 inches], and is compliant with the motherboard primary side height constraints
defined in the ATX Specification revision 2.1 and the microATX Motherboard Interface
Specification revision 1.1 found at http://www.formfactors.org. The reference solution
requires a chassis obstruction height of at least 81.28 mm [3.2 inches], measured
from the top of the motherboard (refer to Sections 3.3 and 6.1.4). This allows for
appropriate fan inlet airflow to ensure fan performance, and therefore overall cooling
solution performance. This is compliant with the recommendations found in both ATX
Specification V2.1 and microATX Motherboard Interface Specification V1.1 documents.

Thermal and Mechanical Design Guidelines



®
ATX Thermal/Mechanical Design Information l n tel

Figure 19. Intel® RCFH-4 Reference Design — Exploded View

6.6

6.6.1

Fan Assy.

Development vendor information for the Intel RCFH-4 Reference Solution is provided
in Appendix H.

Reference Attach Mechanism

Structural Design Strategy

Structural design strategy for the Intel RCFH-4 Reference Solution is to minimize
upward board deflection during shock to help protect the LGA775 socket.

The reference design uses a high clip stiffness that resists local board curvature under
the heatsink, and minimizes, in particular, upward board deflection (Figure 20). In
addition, a moderate preload provides initial downward deflection.
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Figure 20. Upward Board Deflection During Shock

6.6.2

62

Note:

Shock Load

— /)
Y

Less curvature in region
under stiff clip

The target metal clip nominal stiffness is 540 N/mm [3100 Ib/in]. The combined target
for reference clip and fasteners nominal stiffness is 380 N/mm [2180 Ib/in]. This is
consistent with the results for the RCBFH-3 design. The nominal preload provided by
the Intel RCFH-4 reference design is 191.3 N = 44.5 N [43 |b = 10 Ib].

Intel reserves the right to make changes and modifications to the design as necessary
to the Intel RCFH-4 reference design, in particular the clip and fastener.

Mechanical Interface to the Reference Attach Mechanism

The attach mechanism component from the Intel RCFH-4 Reference Design can be
used by other 3™ party cooling solutions. The attach mechanism consists of:

¢ A metal attach clip that interfaces with the heatsink core; see Appendix G,
Figure 78, and Figure 79 for the component drawings.

¢ Four plastic fasteners; see Appendix G, Figure 80, Figure 81, Figure 82, and
Figure 83 for the component drawings.

Figure 19 shows the reference attach mechanism as part of the Intel RCFH-4
Reference Design. The clip is assembled to heatsink during copper core insertion, and
is meant to be trapped between the core shoulder and the extrusion as shown in
Figure 21. Figure 78 and Figure 79 in Appendix G provides additional details.
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FIQUI e 21. Relel ence Cllp/I IeatSII |k Assen bly
i |l

Clip M """""__

/Core shoulder
traps clip in place

The mechanical interface with the reference attach mechanism is defined in Figure 22
and Figure 23. Complying with the mechanical interface parameters is critical to
generating a heatsink preload compliant with the minimum preload requirement given
in Section 2.1.2.2.

Additional requirements for the reference attach mechanism (clip and fasteners)
include:

e Total assembly mass, including heatsink/fan mass (< 550 g), clip and fasteners
<595 ¢

¢ Whole assembly center of gravity < 25.4 mm, measured from the top of the IHS
— Whole assembly = Heatsink + Fan + Attach clip + Fasteners
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Figure 22.

®

ATX Thermal/Mechanical Design Information

Critical Parameters for Interfacing to Reference Clip

=1

Fin Array

Core

.

See Detail A

Clip

Fin Array

Detail A

Figure 23.

Critical Core Dimension

®38.68 +/- 0.30 mm

1.00 +/- 0.10 mm

|

®36.14 +/- 0.10 mm

Gap required to avoid

—*| [~ core surface blemish
during clip assembly.
Recommend 0.3 mm min.

Core
1.00 mm min R 0.40 mm max
L N ?
T | R 0.40 mm max
f \

I

| 2.596 +/- 0.10 mm |

% NOTE:

Dimension from the bottom of the clip to the bottom of the
heatsink core (or base) should be met to enable the required
load from the heatsink clip (i.e., 43 Ibf nominal +/- 10 Ibf)
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e

Intel® Quiet System
Technology (Intel® QST)

7.1

Note:

In the Intel® 965 Express family chipset a new control algorithm for fan speed control
is being introduced. It is composed of a Manageability Engine (ME) in the Graphics
Memory Controller Hub (GMCH) which executes the Intel Quiet System Technology
(Intel QST) algorithm and the ICH8 containing the sensor bus and fan control circuits.

The ME provides integrated fan speed control in lieu of the mechanisms available in a
SI10 or a stand-alone ASIC. The Intel QST is time based as compared to the linear or
state control used by the current generation of FSC devices.

A short discussion of Intel QST will follow along with thermal solution design
recommendations. For a complete discussion of programming the Intel QST in the ME,
consult the Intel® Quiet System Technology (Intel® QST) Configuration and Tuning
Manual.

Fan speed control algorithms and Intel QST in particular rely on a thermal solution
being compliant to the processor thermal profile. It is unlikely that any fan speed
control algorithm can compensate for a non-compliant thermal solution. See Chapter 5
and Chapter 6 for thermal solution requirements that should be met before evaluating
or configuring a system with Intel QST.

Intel® QST Algorithm

The objective of Intel QST is to minimize the system acoustics by more closely
controlling the thermal sensors to the corresponding processor or chipset device
TconTtroL Value. This is achieved by the use of a Proportional-Integral-Derivative (PID)
control algorithm and a Fan Output Weighting Matrix. The PID algorithm takes into
account the difference between the current temperature and the target (TcontroL), the
rate of change and direction of change to minimize the required fan speed change.
The Fan Output Weighting Matrix uses the effects of each fan on a thermal sensor to
minimize the required fan speed changes

Figure 24 shows in a very simple manner how Intel QST works. See the Intel® Quiet
System Technology (Intel® QST) Configuration and Tuning Manual for a detail
discussion of the inputs and response.
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Figure 24. Intel® QST Overview

7.1.1

7.1.2
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System Response

Output Weighting Matrix

Intel QST provides an Output Weighting Matrix that provides a means for a single
thermal sensor to affect the speed of multiple fans. An example of how the matrix
could be used is if a sensor located next to the memory is sensitive to changes in both
the processor heatsink fan and a 2" fan in the system. By placing a factor in this
matrix additional the Intel QST could command the processor thermal solution fan and
this 2"? fan to both accelerate a small amount. At the system level these two small
changes can result in a smaller change in acoustics than having a single fan respond
to this sensor.

Proportional-Integral-Derivative (PID)

The use of Proportional-Integral-Derivative (PID) control algorithms allow the
magnitude of fan response to be determined based upon the difference between
current temperature readings and specific temperature targets. A major advantage of
a PID Algorithm is the ability to control the fans to achieve sensor temperatures much
closer to the TconTrOL-

Figure 25 is an illustration of the PID fan control algorithm. As illustrated in the figure,
when the actual temperature is below the target temperature, the fan will slow down.
The current FSC devices have a fixed temperature vs. PWM output relationship and
miss this opportunity to achieve additional acoustic benefits. As the actual
temperature starts ramping up and approaches the target temperature, the algorithm
will instruct the fan to speed up gradually, but will not abruptly increase the fan speed
to respond to the condition. It can allow an overshoot over the target temperature for
a short period of time while ramping up the fan to bring the actual temperature to the
target temperature. As a result of its operation, the PID control algorithm can enable
an acoustic-friendly platform.
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Figure 25. PID Controller Fundamentals

Integral (time averaged)

B
Limit

Proportional Temperature
Error

Temperature

Derivative (Slope)

>

Fan
Speed

RPM

>

For a PID algorithm to work limit temperatures are assigned for each temperature
sensor. For Intel QST, the TconTroL fOr the processor and chipset are to be used as the
limit temperature. The ME will measure the error, slope and rate of change using the
equations below:

¢ Proportional Error (P) = Ty ywit - TacTuaL
¢ Integral (I) = Time averaged error

¢ Derivative (D) = ATemp / ATime

Three gain values are used to control response of algorithm.
¢ Kp = proportional gain
¢ Ki = Integral gain

¢ Kd = derivative gain

The Intel® Quiet System Technology (Intel® QST) Configuration and Tuning Manual
provides initial values for the each of the gain constants. In addition it provides a
methodology to tune these gain values based on system response.

Finally the fan speed change will be calculated using the following formula:

APWM = -P*(Kp) - I*(Ki) + D*(Kd)
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7.2 Board and System Implementation of Intel® QST

To implement the board must be configured as shown in Figure 26 and listed below:
e ME system (SO-S1) with Controller Link connected and powered

e DRAM with Channel A DIMM O installed and 2MB reserved for Intel® QST FW
execution

e SPI Flash with sufficient space for the Intel® QST Firmware

¢ SST-based thermal sensors to provide board thermal data for Intel® QST
algorithms

e Intel® QST firmware

Figure 26. Intel® QST Platform Requirements

Controller Link

Note: Simple Serial Transport (SST) is a single wire bus that is included in the ICHS8 to
provide additional thermal and voltage sensing capability to the Manageability Engine
(ME)
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Figure 27 shows the major connections for a typical implementation that can support
processors with Digital thermal sensor or a thermal diode. In this configuration a SST
Thermal Sensor has been added to read the on-die thermal diode that is in all of the
processors in the 775-land LGA packages shipped before the Intel® Core™2 Duo
desktop processor E6000 sequence. With the proper configuration information the ME
can be accommodate inputs from PECI or SST for the processor socket. Additional SST
sensors can be added to monitor system thermal (see Appendix F for BTX
recommendations for placement).

Figure 27. Example Acoustic Fan Speed Control Implementation

Thermal and Mechanical Design Guidelines
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Intel has engaged with a number of major manufacturers of thermal / voltage sensors
to provide devices for the SST bus. Contact your Intel Field Sales representative for
the current list of manufacturers and visit their web sites or local sales representatives
for a part suitable for your design.
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7.3

7.4

Intel® QST Configuration and Tuning

Initial configuration of the Intel QST is the responsibility of the board manufacturer.
The SPI flash should be programmed with the hardware configuration of the

motherboard and initial settings for fan control, fan monitoring, voltage and thermal
monitoring. This initial data is generated using the Intel provided Configuration Tool.

At the system integrator level the Configuration Tool can be used again but this time
to tune the Intel QST subsystem to reflect the shipping system configuration. In the
tuning process the Intel QST can be modified to have the proper relationships between
the installed fans and sensors in the shipping system. A Weighting Matrix Utility and
Intel QST Log program are planned to assist in optimizing the fan management and
achieve acoustic goal.

See your Intel field sales representative for availability of these tools.

Fan Hub Thermistor and Intel® QST

There is no closed loop control between Intel QST and the thermistor, but they can
work in tandem to provide the maximum fan speed reduction. The BTX reference
design includes a thermistor on the fan hub. This Variable Speed Fan curve will
determine the maximum fan speed as a function of the inlet ambient temperature and
by design provides a ¥ca sufficient to meet the thermal profile of the processor. Intel
QST, by measuring the processor Digital thermal sensor, will command the fan to
reduce speed below the VSF curve in response to processor workload. Conversely if
the processor workload increases, the FSC will command the fan via the PWM duty
cycle to accelerate the fan up to the limit imposed by the VSF curve. Care needs to be
taken in BTX designs to ensure the fan speed at the minimum operating speed
provides sufficient air flow to support the other system components.

Figure 28. Digital Thermal Sensor and Thermistor
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Appendix ALGA775 Socket Heatsink
Loading

A.l LGA775 Socket Heatsink Considerations

Heatsink clip load is traditionally used for:

e Mechanical performance in mechanical shock and vibration
— Refer to Section 6.6.1 above for information on the structural design strategy
for ATX thermal solutions.

e Thermal interface performance
— Required preload depends on TIM
— Preload can be low for thermal grease

In addition to mechanical performance in shock and vibration and TIM performance,
LGA775 socket requires a minimum heatsink preload to protect against fatigue failure
of socket solder joints.

Solder ball tensile stress is originally created when, after inserting a processor into the
socket, the LGA775 socket load plate is actuated. In addition, solder joint shear stress
is caused by coefficient of thermal expansion (CTE) mismatch induced shear loading.

The solder joint compressive axial force (Fgxjal) induced by the heatsink preload helps
to reduce the combined joint tensile and shear stress.

Overall, the heatsink required preload is the minimum preload needed to meet all of
the above requirements: Mechanical shock and vibration and TIM performance AND
LGA775 socket protection against fatigue failure.

A.2 Metric for Heatsink Preload for ATX/ZuATX
Designs Non-Compliant with Intel®
Reference Design

A.2.1 Heatsink Preload Requirement Limitations

Heatsink preload by itself is not an appropriate metric for solder joint force across
various mechanical designs and does not take into account for example (not an
exhaustive list):

¢ Heatsink mounting hole span

¢ Heatsink clip/fastener assembly stiffness and creep

e Board stiffness and creep

¢ Board stiffness is modified by fixtures like backing plate, chassis attach, etc.
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A.2.2

Simulation shows that the solder joint force (Fgxijg|) is proportional to the board

deflection measured along the socket diagonal. The matching of Fgxjg| required to

protect the LGA775 socket solder joint in temperature cycling is equivalent to
matching a target MB deflection.

Therefore, the heatsink preload for LGA775 socket solder joint protection against
fatigue failure can be more generally defined as the load required to create a target
board downward deflection throughout the life of the product

This board deflection metric provides guidance for mechanical designs that differ from
the reference design for ATX//pATX form factor.

Motherboard Deflection Metric Definition

Motherboard deflection is measured along either diagonal (refer to Figure 29):

d = dmax — (d1 + d2)/2

d’ = dmax — (d’'1 + d’2)/2

Configurations in which the deflection is measured are defined in Table 11.

To measure board deflection, follow industry standard procedures (such as IPC) for

board deflection measurement. Height gauges, and possibly dial gauges may also be
used.

Table 11. Board Deflection Configuration Definitions

72

Configuration Processor + Socket Heatsink Parameter Name
Parameter load plate
d_ref yes no BOL deflection, no preload
d_BOL yes yes BOL deflection with
preload
d_EOL yes yes EOL deflection

BOL: Beginning of Life

EOL: End of Life
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Figure 29. Board Deflection Definition

dl
Tl Al
. N
N\
3 —
i d2
N ] . Wailil P
Y "4
Socleat body Socleat body
comer d1 comer d2
i 48"'“ i
[ =8
Motherboard Displacements

A.2.3 Board Deflection Limits

Deflection limits for the ATX/pATX form factor are:
d BOL-d ref2 0.09mMm and d _EOL-d _ref = 0.15 mm
And

d BOL—-d _ref20.09 mMm and d _EOL'—d ref = 0.15 mm

NOTE:

1. The heatsink preload must remain within the static load limits defined in the processor
datasheet at all times.

2. Board deflection should not exceed motherboard manufacturer specifications.
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Board Deflection Metric Implementation Example

This section is for illustration only and relies on the following assumptions:
e 72 mm x 72 mm hole pattern of the reference design

e Board stiffness = 900 Ib/in at BOL, with degradation that simulates board creep
over time
— Though these values are representative, they may change with selected
material and board manufacturing process. Check with your motherboard
vendor.

¢ Clip stiffness assumed constant — No creep.

Using Figure 30, the heatsink preload at beginning of life is defined to comply with
d_EOL — d_ref = 0.15 mm depending on clip stiffness assumption.

Note that the BOL and EOL preload and board deflection differ. This is a result of the
creep phenomenon. The example accounts for the creep expected to occur in the
motherboard. It assumes no creep to occur in the clip. However, there is a small
amount of creep accounted for in the plastic fasteners - This situation is somewhat
similar to the Intel Reference Design.

The impact of the creep to the board deflection is a function of the clip stiffness:

¢ The relatively compliant clips store strain energy in the clip under the BOL preload
condition and tend to generate increasing amounts of board deflection as the
motherboard creeps under exposure to time and temperature.

¢ In contrast, the stiffer clips stores very little strain energy, and therefore do not
generate substantial additional board deflection through life.

NOTE:
1. Board and clip creep modify board deflection over time and depends on board stiffness,
clip stiffness, and selected materials.
2. Designers must define the BOL board deflection that will lead to the correct end of life
board deflection.
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Figure 30. Example: Defining Heatsink Preload Meeting Board Deflection Limit
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Additional Considerations

Intel recommends to design to {d_BOL - d_ref = 0.15mm} at BOL when EOL
conditions are not known or difficult to assess

The following information is given for illustration only. It is based on the reference
keep-out, assuming there is no fixture that changes board stiffness:

d_ref is expected to be 0.18 mm on average, and be as high as 0.22 mm
As a result, the board should be able to deflect 0.37 mm minimum at BOL

Additional deflection as high as 0.09 mm mayimum be necessary to account for
additional creep effects impacting the board/clip/fastener assembly. As a result,
designs could see as much as 0.50 mm total downward board deflection under the
socket.

In addition to board deflection, other elements need to be considered to define the
space needed for the downward board total displacement under load, like the potential
interference of through-hole mount component pin tails of the board with a
mechanical fixture on the back of the board.

NOTES:

1. The heatsink preload must remain below the maximum load limit of the package
at all times (Refer to processor datasheet)

2. Board deflection should not exceed motherboard manufacturer specifications.
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A.2.5.1

A.3
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Motherboard Stiffening Considerations
To protect LGA775 socket solder joint, designers need to drive their mechanical design
to:

¢ Allow downward board deflection to put the socket balls in a desirable force state
to protect against fatigue failure of socket solder joint (refer to Sections A.2.1,
A.2.2, and A.2.3.

¢ Prevent board upward bending during mechanical shock event

¢ Define load paths that keep the dynamic load applied to the package within
specifications published in the processor datasheet

Limiting board deflection may be appropriate in some situations like:
¢ Board bending during shock

e Board creep with high heatsink preload

However, the load required to meet the board deflection recommendation (refer to
Section A.2.3) with a very stiff board may lead to heatsink preloads exceeding
package maximum load specification. For example, such a situation may occur when
using a backing plate that is flush with the board in the socket area, and prevents the
board to bend underneath the socket.

Heatsink Selection Guidelines

Evaluate carefully heatsinks coming with motherboard stiffening devices (like backing
plates), and conduct board deflection assessments based on the board deflection
metric.

Solutions derived from the reference design comply with the reference heatsink
preload, for example:

¢ The Boxed processor

¢ The Intel RCFH-4 reference design available from licensed suppliers (refer to
Appendix H for contact information)

Intel will collaborate with vendors participating in its third party test house program to
evaluate third party solutions. Vendor information will be available after product
launch.
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Appendix B Heatsink Clip Load

Metrology

B.1

Note:

B.2

B.2.1

Note:

Overview

This section describes a procedure for measuring the load applied by the
heatsink/clip/fastener assembly on a processor package.

This procedure is recommended to verify the preload is within the design target range
for a design, and in different situations. For example:

« Heatsink preload for the LGA775 socket

= Quantify preload degradation under bake conditions.

This document reflects the current metrology used by Intel. Intel is continuously
exploring new ways to improve metrology. Updates will be provided later as this
document is revised as appropriate.

Test Preparation

Heatsink Preparation

Three load cells are assembled into the base of the heatsink under test, in the area
interfacing with the processor Integrated Heat Spreader (IHS), using load cells
equivalent to those listed in Section B.2.2.

To install the load cells, machine a pocket in the heatsink base, as shown Figure 31
and Figure 32. The load cells should be distributed evenly, as close as possible to the
pocket walls. Apply wax around the circumference of each load cell and the surface of
the pocket around each cell to maintain the load cells in place during the heatsink
installation on the processor and motherboard (Refer to Figure 32).

The depth of the pocket depends on the height of the load cell used for the test. It is
necessary that the load cells protrude out of the heatsink base. However, this
protrusion should be kept minimal, as it will create additional load by artificially
raising the heatsink base. The measurement offset depends on the whole assembly
stiffness (i.e., motherboard, clip, fastener, etc.). For example, the Intel RCFH-4
Reference Heatsink Design clip and fasteners assembly stiffness is expected to be
similar to the RCBFH-3 or around 380 N/mm [2180 Ib/in]. Final values will be
published after design validation. In that case, a protrusion of 0.038 mm [0.0015”]
will create an extra load of 15 N [3.3 Ib]. Figure 33 shows an example using the Intel
RCFH-4 Reference Heatsink.

When optimizing the heatsink pocket depth, the variation of the load cell height
should also be taken into account to make sure that all load cells protrude equally
from the heatsink base. It may be useful to screen the load cells prior to installation to
minimize variation.
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Remarks: Alternate Heatsink Sample Preparation

As mentioned above, making sure that the load cells have minimum protrusion out of
the heatsink base is paramount to meaningful results. An alternate method to make
sure that the test setup will measure loads representative of the non-modified design
is:

¢ Machine the pocket in the heat sink base to a depth such that the tips of the load
cells are just flush with the heat sink base

¢ Then machine back the heatsink base by around 0.25 mm [0.01"], so that the
load cell tips protrude beyond the base.

Proceeding this way, the original stack height of the heatsink assembly should be
preserved. This should not affect the stiffness of the heatsink significantly.

Figure 31. Load Cell Installation in Machined Heatsink Base Pocket — Bottom View

!
!
Heatsink Base Pocket
Package IHS
Diameter ~ 29 mm Outline (Top
[-1.157] Surface)
: Load Cells
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Figure 32. Load Cell Installation in Machined Heatsink Base Pocket — Side View
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Figure 33. Preload Test Configuration
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B.2.2

Heatsink Clip Load Metrology

Typical Test EqQuipment

For the heatsink clip load measurement, use equivalent test equipment to the one
listed Table 12.

Table 12. Typical Test EqQuipment

B.3

80

Item Description Part Number
(Model)

Load cell Honeywell*-Sensotec* Model 13 subminiature AL322BL
load cells, compression only

Notes: 1, 5
Select a load range depending on load level
being tested.
Www.sensotec.com

Data Logger (or Vishay* Measurements Group Model 6100 Model 6100

scanner) scanner with a 6010A strain card (one card
required per channel).

Notes: 2, 3, 4

NOTE:
3. Select load range depending on expected load level. It is usually better, whenever possible,

to operate in the high end of the load cell capability. Check with your load cell vendor for
further information.

. Since the load cells are calibrated in terms of mV/V, a data logger or scanner is required to

supply 5 volts DC excitation and read the mV response. An automated model will take the
sensitivity calibration of the load cells and convert the mV output into pounds.

With the test equipment listed above, it is possible to automate data recording and control
with a 6101-PCI card (GPIB) added to the scanner, allowing it to be connected to a PC
running LabVIEW* or Vishay's StrainSmart* software.

IMPORTANT: In addition to just a zeroing of the force reading at no applied load, it is
important to calibrate the load cells against known loads. Load cells tend to drift. Contact
your load cell vendor for calibration tools and procedure information.

When measuring loads under thermal stress (bake for example), load cell thermal
capability must be checked, and the test setup must integrate any hardware used along
with the load cell. For example, the Model 13 load cells are temperature compensated up to
71°C, as long as the compensation package (spliced into the load cell's wiring) is also
placed in the temperature chamber. The load cells can handle up to 121°C (operating), but
their uncertainty increases according to 0.02% rdg/°F.

Test Procedure Examples

The following sections give two examples of load measurement. However, this is not
meant to be used in mechanical shock and vibration testing.

Any mechanical device used along with the heatsink attach mechanism will need to be
included in the test setup (i.e., back plate, attach to chassis, etc.).

Prior to any test, make sure that the load cell has been calibrated against known
loads, following load cell vendor’s instructions.

Thermal and Mechanical Design Guidelines



[ | ®
Heatsink Clip Load Metrology lntel >

B.3.1 Time-Zero, Room Temperature Preload
Measurement

1. Pre-assemble mechanical components on the board as needed prior to mounting
the motherboard on an appropriate support fixture that replicate the board attach
to a target chassis

e For example: standard ATX board should sit on ATX compliant stand-offs. If the
attach mechanism includes fixtures on the back side of the board, those must be
included, as the goal of the test is to measure the load provided by the actual
heatsink mechanism.

2. Install relevant test vehicle (TTV, processor) in the socket

3. Assemble the heatsink reworked with the load cells to motherboard as shown for
the Intel® RCFH-4 reference heatsink example in Figure 33, and actuate attach
mechanism.

4. Collect continuous load cell data at 1 Hz for the duration of the test. A minimum
time to allow the load cell to settle is generally specified by the load vendors
(often of order of 3 minutes). The time zero reading should be taken at the end of
this settling time.

5. Record the preload measurement (total from all three load cells) at the target time
and average the values over 10 seconds around this target time as well, i.e. in the
interval , for example over [target time — 5 seconds ; target time + 5 seconds].

B.3.2 Preload Degradation under Bake Conditions

This section describes an example of testing for potential clip load degradation under
bake conditions.

1. Preheat thermal chamber to target temperature (45 ©C or 85 °C for example)
2. Repeat time-zero, room temperature preload measurement

3. Place unit into preheated thermal chamber for specified time

4. Record continuous load cell data as follows:

e Sample rate = 0.1 Hz for first 3 hrs

e Sample rate = 0.01 Hz for the remainder of the bake test

5. Remove assembly from thermal chamber and set into room temperature
conditions

6. Record continuous load cell data for next 30 minutes at sample rate of 1 Hz.
8
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Appendix C Thermal Interface

Management

C.1

C.2

C.3

To optimize a heatsink design, it is important to understand the impact of factors
related to the interface between the processor and the heatsink base. Specifically, the
bond line thickness, interface material area and interface material thermal
conductivity should be managed to realize the most effective thermal solution.

Bond Line Management

Any gap between the processor integrated heat spreader (IHS) and the heatsink base
degrades thermal solution performance. The larger the gap between the two surfaces,
the greater the thermal resistance. The thickness of the gap is determined by the
flatness and roughness of both the heatsink base and the integrated heat spreader,
plus the thickness of the thermal interface material (for example thermal grease) used
between these two surfaces and the clamping force applied by the heatsink attach

clip(s).

Interface Material Area

The size of the contact area between the processor and the heatsink base will impact
the thermal resistance. There is, however, a point of diminishing returns. Unrestrained
incremental increases in thermal interface material area do not translate to a
measurable improvement in thermal performance.

Interface Material Performance

Two factors impact the performance of the interface material between the processor
and the heatsink base:

¢ Thermal resistance of the material
¢ Wetting/filling characteristics of the material

Thermal resistance is a description of the ability of the thermal interface material to
transfer heat from one surface to another. The higher the thermal resistance, the less
efficient the interface material is at transferring heat. The thermal resistance of the
interface material has a significant impact on the thermal performance of the overall
thermal solution. The higher the thermal resistance, the larger the temperature drop
is across the interface and the more efficient the thermal solution (heatsink, fan) must
be to achieve the desired cooling.

The wetting or filling characteristic of the thermal interface material is its ability,
under the load applied by the heatsink retention mechanism, to spread and fill the gap
between the processor and the heatsink. Since air is an extremely poor thermal
conductor, the more completely the interface material fills the gaps, the lower the
temperature drops across the interface. In this case, thermal interface material area
also becomes significant; the larger the desired thermal interface material area, the
higher the force required to spread the thermal interface material.
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Appendix DCase Temperature
Reference Metrology

D.1 Objective and Scope

This appendix defines a reference procedure for attaching a thermocouple to the IHS
of a 775-land LGA package for Tc measurement. This procedure takes into account the
specific features of the 775-land LGA package and of the LGA775 socket for which it is
intended. The recommended equipment for the reference thermocouple installation,
including tools and part numbers are also provided. In addition a video Thermocouple
Attach Using Solder — Video CD-ROM is available that shows the process in real time.
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Supporting Test Equipment

To apply the reference thermocouple attach procedure, it is recommended to use the
equipment (or equivalent) given in the following table.

Item Description Part Number
Measurement and Output
Microscope Olympus* Light microscope or equivalent SZ-40

DMM

Digital Multi Meter for resistance measurement

Fluke 79 Series

Thermal Meter

Hand held thermocouple meter

Multiple Vendors

Solder Station (see note 1 for ordering information)

Heater Block

Heater assembly to reflow solder on IHS

30330

Accelerator

Heater WATLOW120V 150 W Firerod 0212G G1A38-
L12
Transformer Superior Powerstat transformer 05F857
Miscellaneous Hardware
Solder Indium Corp. of America 52124
Alloy 57BI / 42SN / 1AG 0.010 Diameter
Flux Indium Corp. of America 5RMA
Loctite* 498 Super glue w/thermal characteristics 49850
Adhesive
Adhesive Loctite* 7452 for fast glue curing 18490

Kapton* Tape

For holding thermocouple in place

Not Available

Thermocouple

Omega *,36 gauge, “T” Type
(see note 2 & 3 for ordering information)

OSK2K1280/5SR
TC-TT-T-36-72

Calibration and Control

Ice Point Cell Omega*, stable 0 °C temperature source for TRCIII
calibration and offset
Hot Point Cell Omega *, temperature source to control and CL950-A-110
understand meter slope gain
NOTE:

8. The Solder Station consisting of the Heater Block, Heater, Press and Transformer are
available from Jemelco Engineering 480-804-9514

9. This part number is a custom part with the specified insulation trimming and packaging
requirements necessary for quality thermocouple attachment, See Figure 34. Order from
Omega Anthony Alvarez, Direct phone (203) 359-7671, Direct fax (203) 968-7142, E-Mail:

aalvarez@omega.com

10. Intel has enabled Therm-x of California to mill the IHS, manufacture the thermocouple
and install the thermocouple on the IHS. The order number is XTMS-1565. Company
contact information: Therm-x of California, Attn: Dan Trujillo, 1837 Whipple Rd, Hayward,
CA 94544, (510) 441-7566 x212
dant@therm-x.com
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Figure 34. Omega Thermocouple

D.3

D.4

Thermal calibration and controls

It is recommended that full and routine calibration of temperature measurement
equipment be performed before attempting to perform temperature case
measurement. Intel recommends checking the meter probe set against known
standards. This should be done at 0°C (using ice bath or other stable temperature
source) and at an elevated temperature, around 80 ©C (using an appropriate
temperature source).

Wire gauge and length also should be considered as some less expensive
measurement systems are heavily impacted by impedance. There are numerous
resources available throughout the industry to assist with implementation of proper
controls for thermal measurements.

NOTES:

1. Itis recommended to follow company standard procedures and wear safety items
like glasses for cutting the IHS and gloves for chemical handling.

2. Ask your Intel field sales representative if you need assistance to groove and/or
install a thermocouple according to the reference process.

IHS Groove

Cut a groove in the package IHS according to the drawing provided in either Figure 35
or Figure 36. The alternate groove orientation in Figure 36 allows the thermocouple
to be routed toward the latch side of the processor retention lid of the 775LGA socket.
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The orientation of the groove relative to the package pin 1 indicator (gold triangle in
one corner of the package) is shown in Figure 37 for the 775-Land LGA package IHS.

Figure 37. IHS Groove per Figure 35 on the 775-LAND LGA Package

IHS Groove

Pinl
indicator

When the processor is installed in the LGA775 socket, the groove is perpendicular to
the socket load lever, and on the opposite side of the lever, as shown Figure 38.

Figure 38. IHS Groove per Figure 35 Orientation Relative to the LGA775 Socket

Select a machine shop that is capable of holding drawing specified tolerances. IHS
groove geometry is critical for repeatable placement of the thermocouple bead,
ensuring precise thermal measurements. The specified dimensions minimize the
impact of the groove on the IHS under the socket load. A larger groove may cause the
IHS to warp under the socket load such that it does not represent the performance of
an ungrooved IHS on production packages.

Inspect parts for compliance to specifications before accepting from machine shop.
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D.5 Thermocouple Attach Procedure

The procedure to attach a thermocouple with solder takes about 15 minutes to
complete. Before proceeding, turn on the solder block heater, as it can take up to
30 minutes to reach the target temperature of 153 — 155 °C.

Note: To avoid damage to the processor ensure the IHS temperature does not exceed
155 °C.

As a complement to the written procedure a video Thermocouple Attach Using Solder
— Video CD-ROM is available.

D.5.1 Thermocouple Conditioning and Preparation

1. Use a calibrated thermocouple as specified in Sections D.2 and D.3.

2. Under a microscope verify the thermocouple insulation meets the quality
requirements. The insulation should be about 1/16 inch (0.062 + 0.030) from the
end of the bead (Figure 39).

Figure 39. Inspection of Insulation on Thermocouple

3. Measure the thermocouple resistance by holding both contacts on the connector
on one probe and the tip of thermocouple to the other probe of the DMM
(measurement should be about ~3.0 ohms for 36-gauge type T thermocouple).

4. Straighten the wire for about 38 mm [1 %2 inch] from the bead.
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5. Using the microscope and tweezers, bend the tip of the thermocouple at
approximately 10 degree angle by about 0.8 mm [.030 inch] from the tip
(Figure 40).

Figure 40. Bending the Tip of the Thermocouple

D.5.2 Thermocouple Attachment to the IHS

6. Clean groove and IHS with Isopropyl Alcohol (IPA) and a lint free cloth removing
all residues prior to thermocouple attachment.

7. Place the thermocouple wire inside the groove; letting the exposed wire and bead
extend about 1.5 mm [0.030 inch] past the end of groove. Secure it with Kapton*
tape (Figure 41). Clean the IHS with a swab and IPA.

8. Verify under the microscope that the thermocouple wires are straight and parallel
in the groove and that the bead is still bent.

Figure 41. Securing Thermocouple Wires with Kapton* Tape Prior to Attach
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9. Lift the wire at the middle of groove with tweezers and bend the front of wire to
place the thermocouple in the groove ensuring the tip is in contact with the end
and bottom of the groove in the IHS (Figure 42-A and B).

Figure 42. Thermocouple Bead Placement

A

(B)

10. Place the package under the microscope to continue with process. It is also
recommended to use a fixture (like processor tray or a plate) to help hold the unit
in place for the rest of the attach process.
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11. While still at the microscope, press the wire down about 6 mm [0.125”] from the
thermocouple bead using the tweezers or your finger. Place a piece of Kapton*

tape to hold the wire inside the groove (Figure 43). Refer to Figure 44 for detailed
bead placement.

Figure 43. Position Bead on the Groove Step

Wire section
into the
groove to
prepare for
final bead
placement

Kapton* tape

Figure 44. Detailed Thermocouple Bead Placement

Y TC Bead
TC Wire with Insulation

IHS with Groove
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Figure 45. Third Tape Installation

12. Place a 3" piece of tape at the end of the step in the groove as shown in
Figure 45. This tape will create a solder dam to prevent solder from flowing into
the larger IHS groove section during the melting process.

13. Measure resistance from thermocouple end wires (hold both wires to a DMM
probe) to the IHS surface. This should be the same value as measured during the
thermocouple conditioning in Section D.5.1.step 3 (Figure 46)

Figure 46. Measuring Resistance between Thermocouple and IHS
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14. Using a fine point device, place a small amount of flux on the thermocouple bead.
Be careful not to move the thermocouple bead during this step (Figure 47). Ensure
the flux remains in the bead area only.

Figure 47. Applying Flux to the Thermocouple Bead

15. Cut two small pieces of solder 1/16 inch (0.065 inch / 1.5 mm) from the roll using
tweezers to hold the solder while cutting with a fine blade(Figure 48)

Figure 48. Cutting Solder
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16. Place the two pieces of solder in parallel, directly over the thermocouple bead
(Figure 49)

Figure 49. Positioning Solder on IHS

17. Measure the resistance from the thermocouple end wires again using the DMM
(refer to Section D.5.1.step 2) to ensure the bead is still properly contacting the
IHS.

D.5.3 Solder Process

18. Make sure the thermocouple that monitors the Solder Block temperature is
positioned on the Heater block. Connect the thermocouple to a handheld meter to
monitor the heater block temperature

19. Verify the temperature of the Heater block station has reached 155 °C =5 °C
before proceeding.

20. Connect the thermocouple for the device being soldered to a second hand-held
meter to monitor IHS temperature during the solder process.
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Figure 50. Solder Station Setup

Note:

Note:

98

21. Remove the land side protective cover and place the device to be soldered in the
solder station. Make sure the thermocouple wire for the device being soldered is
exiting the heater toward you.

Don’t touch the copper heater block at any time as this is very hot.

22. Move a magnified lens light close to the device in the solder status to get a better
view when the solder begins to melt.

23. Lower the Heater block onto the IHS. Monitor the device IHS temperature during
this step to ensure the maximum IHS temperature is not exceeded

The target IHS temperature during reflow is 150 °C *=3 °C. At no time should the IHS

temperature exceed 155 °C during the solder process as damage to the device may
occur.
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24. You may need to move the solder back toward the groove as the IHS begins to
heat. Use a fine tip tweezers to push the solder into the end of the groove until a
solder ball is built up (Figure 51 and Figure 52)

Figure 51. View Through Lens at Solder Station

Figure 52. Moving Solder back onto Thermocouple Bead
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25. Lift the heater block and magnified lens, using tweezers quickly rotate the device
90 degrees clockwise. Using the back of the tweezers press down on the solder;
this will force out the excess solder

Figure 53. Removing Excess Solder

26. Allow the device to cool down. Blowing compressed air on the device can
accelerate the cooling time. Monitor the device IHS temperature with a handheld
meter until it drops below 50 °C before moving it to the microscope for the final
steps.
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D.5.4 Cleaning & Completion of Thermocouple
Installation

27. Remove the device from the solder station and continue to monitor IHS
Temperature with a handheld meter. Place the device under the microscope and
remove the three pieces of Kapton* tape with Tweezers, keeping the longest for
re-use.

28. Straighten the wire and work the wire in to the groove. Bend the thermocouple
over the IHS. Replace the long piece of Kapton* tape at the edge of the IHS.

Note: The wire needs to be straight so it does not sit above the IHS surface at anytime
(Figure 54).

Figure 54. Thermocouple placed into groove
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29. Using a blade carefully shave the excess solder above the IHS surface. Only shave
in one direction until solder is flush with the groove surface (Figure 55).

Figure 55. Removing Excess Solder

Note: Take usual precautions when using open blades

30. Clean the surface of the IHS with alcohol and use compressed air to remove any
remaining contaminants.

31. Fill the rest of the groove with Loctite* 498 Adhesive. Verify under the microscope
that the thermocouple wire is below the surface along the entire length of the IHS
groove (Figure 56)

Figure 56. Filling Groove with Adhesive
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32. To speed up the curing process apply Loctite* Accelerator on top of the Adhesive
and let it set for a couple of minutes(Figure 57)

Figure 57. Application of Accelerant

Figure 58. Removing Excess Adhesive from IHS

33. Using a blade, carefully shave any adhesive that is above the IHS surface
(Figure 58). The preferred method is to shave from the edge to the center of the
IHS.

Note: The adhesive shaving step should be performed while the adhesive is partially cured,
but still soft. This will help to keep the adhesive surface flat and smooth with no pits
or voids. If there are voids in the adhesive, refill the voids with adhesive and shave a
second time.
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34. Clean IHS surface with IPA and a wipe.
35. Clean the LGA pads with IPA and a wipe.
36. Replace the land side cover on the device.
37. Perform a final continuity test.

38. Wind the thermocouple wire into loops and secure or if provided by the vendor
back onto the plastic roll. (Figure 59)

Figure 59. Finished Thermocouple Installation

D.6

104

Note:

39. Place the device in a tray or bag until it's ready to be used for thermal testing use.

Thermocouple Wire Management

When installing the processor into the socket, make sure that the thermocouple wires
exit above the load plate as Figure 60. Pinching the thermocouple wires between the
load plate and the IHS will likely damage the wires.

When thermocouple wires are damaged, the resulting reading maybe wrong. For
example, if there are any cuts into the wires insulation where the wires are pinched
between the IHS and the load plate, the thermocouple wires can get in contact at this
location. In that case, the reported temperature would be the edge of the IHS/socket
load plate area. This temperature is usually much lower than the temperature at the
center of the IHS.

Prior to installing the heatsink, make sure that the thermocouple wires remain below
the IHS top surface, by running a flat blade on top of the IHS for example.
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Figure 60. Thermocouple Wire Management
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Appendix E Legacy Fan Speed

Control

E.1l

A motherboard design may opt to use a SIO or ASIC based fan speed control device
that uses the existing look up or state based fan speed control.

The fan speed control implementations consist of the following items

¢ A motherboard designed with a fan speed controller with the following

functionality:

— PWAM fan control output

— Remote Digital thermal sensor measurement capability over the PECI bus for
Intel® Core™2 Duo desktop processor E6000/E4000 sequence and Intel®
Pentium® Dual Core processor E2000 sequence.

— SST thermal sensor to measure the on-die thermal diode for all earlier
processors in the 775-land LGA package

¢ A motherboard with a 4 pin fan header for the processor heatsink fan.

e Processor heatsink with 4—wire PWM controlled Fan.
A thermistor in the fan hub is recommended, but not a requirement. The reference
solution and the Boxed Processor will implement a thermistor into the design.

The following sections discuss the necessary steps to implement Legacy Fan Speed
Control.

Note: For the rest of this section the term “on-die thermal sensor” will be used
interchangeably for the Digital thermal sensor or on-die thermal diode. On-die thermal
diode will only be used when required for clarity.

Thermal Solution Design

The first step is to select or design a processor thermal solution that meets the
thermal profile for the processor. See Section 2.2.2 for the definition of the thermal
profile and consult the processor datasheet for the specific values.

The designer needs to ensure that when the heatsink fan is operating at full speed the
thermal solution will meet the Tc.uyax limits at TDP. The slope of the thermal profile will
allow the designer to make tradeoffs in thermal performance versus the inlet
temperature to the processor fan heatsink.

E.1.1 Determine Thermistor Set Points

A thermistor implemented in the hub of a fan is a first level of fan speed control. It
provides an easy and cost effective means to begin acoustic noise reduction. It will, by
design, run the fan at an appropriate speed based on the ambient conditions.

Chapter 5 and 6 discussed in detail the reference thermal solution, including the
target Yca, and fan speed based on temperature to ensure that Tc_yax iS not exceeded
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for TDP power at a given ambient temperature. The resulting variable speed fan (VSF)
curve is the upper limit on fan speed.

The benefit of this upper limit will become more apparent when the fan speed
controller is responding to the on-die thermal sensor.

Figure 61. Thermistor Set Points

E.1.2

108

Variable Speed Fan (VSF) Curve
Full 1

N\
Speed \

Fan Speed
(RPM)

Min. 4
Operating

30 38
Fan Inlet

Temperature (°C)

Minimum Fan Speed Set Point

The final aspect of thermal solution design is to determine the minimum speed the fan
will be allowed to operate. This value can be driven by the cooling requirements for
another portion of the design, such as the processor voltage regulator, or by
functional limits of the fan design.

Per the Fan Specification for 4 wire PWM Controlled Fans; there are three possible
options to consider

e Type A: The fan will run at minimum RPM for all PWM duty cycle values less than
minimum duty cycle. This would be programmed into the fan controller located on
the fan hub. It can not be overridden by the external fan speed control.

e Type B: The fan will run at minimum RPM for all non-zero PWM duty cycle values
less than minimum duty cycle and turn off the fan at 0% PWM duty cycle.

e Type C: The fan will stop running when the current provided to the motor
windings is insufficient to support commutation. The fan would turn off at 0%
PWM duty cycle input.

For the reference thermal solution Type A was implemented.
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E.2

Board and System Implementation

Once the thermal solution is defined, the system designer and board designer can
define the fan speed control implementation. The first step is to select the appropriate
fan speed controller (FSC). Figure 62 shows the major connections for a typical
implementation.

Figure 62. Example Fan Speed Control Implementation

E.2.1

Inlet 4-Pin Fan Sy§ Sys Fan
Ambient Header Ambient  4wire
(Thermistor GND +12V (SST) PWM
Tachometer v T
HS Fan [ »
PWM ICH8 /| ME

| Processor | y r'y

Digital Thermal Sensor

BIOS

TCONTROL

A number of major manufacturers have FSC components that include the necessary
functionality to measure the temperature of the digital thermal sensor via the PECI
interface and output a PWM signal. These components can be a discrete device or a
super 10 (S10) with the functionality embedded. Intel has engaged with a number of
major manufacturers of FSC components to provide devices that have a PECI host
controller. Contact your Intel Field Sales representative for the current list of
manufacturers and visit their web sites or contact your local sales representatives for
a part suitable for your design.

Choosing Fan Speed Control Settings

Fan speed control algorithms allow the system thermal engineer a number of options
to consider. The typical control settings that need to be considered are:

¢ The temperature when the fan will begin to accelerate in response to the on-die
thermal sensor temperature (T ow)

e The temperature where the fan is operating at full speed (100% PWM duty cycle).
By specification this is TcontroL-

e The minimum fan speed (PWM duty cycle). For any on-die thermal sensor
temperature less than T oy, the fan will run at this speed
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These are the minimum parameters required to implement acoustic fan speed control.
See Figure 63 for an example. There may be vendor specific options that offer
enhanced functionality. See the appropriate vendor datasheet on how to implement
those features.

Figure 63. Fan Speed Control
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The first item to consider is the value for T ow. The FSC device needs a minimum
temperature to set as the threshold to begin increasing PWM duty cycle to the fan.

The system designer might initially consider a small temperature range

(TcontroL — Trow = Trance), 5 °C to accelerate the fan. That would delay the fan
accelerating for the longest time after an increase in Tsgnsor- There are a number of
issues that should be considered with this strategy

¢ There is little granularity in the fan speeds. For each 1°C of increase in diode
temperature = 20% jump in PWM duty cycle %

¢ Fan speed oscillation as the thermal solution chases the on-die thermal sensor
temperature

e Having Tsensor OVershoot Teontror @and the thermal profile causing the Thermal
Control Circuit to activate to reduce the temperature.

¢ In extreme cases Thermtrip# activates and shuts down the processor
The first two cases can create a poor acoustic response for the user. The third case
the user could notice a drop in performance as the thermal control circuit reduces the

power. Figure 64 is an example of this situation. The system begins at idle and the
Maxpower program is started at 65% workload.
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Figure 64. Temperature Range =5 °C
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An alternate would be to consider a slightly larger value such as Tgrange = 10 °C. In
this case the design is trading off the acoustic margin for thermal margin.

¢ There is increased granularity in the fan speeds.
¢ Fan speed oscillation are significantly reduced

¢ Maximum fan speed is lower

The rate of change of ¥ca vs. RPM is an exponential curve with a larger decrease at
the beginning of the fan acceleration than as the maximum speed is approached. By
having the fan start to accelerate at a lower Tsensor Feading the thermal solution can
keep up with rate of change in processor power. The rate of change in acoustics (dBA)
is more linear with RPM. When comparing these two metrics the choice of a larger
Trance Value becomes a more acceptable trade off. Figure 65 graphs the system at the
same conditions as in Figure 64 but Tgranee = 10 °C.
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Figure 65. Temperature Range = 10 °C

E.2.1.2
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It should be noted that having Tsensor above TeontroL IS €xpected for workloads near
TDP power levels and high system ambient. See Section E.4 for additional discussion
on Tcontrol VErsus Thermal Profile

For use with the ATX Boxed Processor enabled reference solution a Trange Value of
10 °C is recommended. For BTX Boxed processor enabled reference solutions Trance
value of 7 °C is recommended.

Minimum PWM Duty Cycle

The final step in determining the FSC setting is to determine the minimum PWM Duty
cycle. This is the fan speed for any Tsensor < TLow- The selection of this value is
dependent on:

¢ Acoustic target at system idle

¢ Voltage regulator cooling

For a motherboard design intending to use the Boxed Processor or the enabled
reference thermal solution, the recommended minimum PWM duty cycle is 20%.

Set minimum PWM Duty Cycle only as low as required to meet acoustic requirements.
The FSC design needs to accommodate transition from a low power state to TDP
workloads without having Prochot# becoming active.
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E.3

Combining Thermistor and Digital Thermal
Sensor Control

There is no closed loop control between the FSC and the thermistor, but they work in
tandem to provide the maximum fan speed reduction. As discussed in Section E.1.1,
the thermistor establishes the VSF curve. This curve determines the maximum fan
speed as a function of the ambient temperature and by design provides a Yca
sufficient to meet the thermal profile. The FSC, by measuring the processor on-die
thermal sensor will command the fan to reduce speed below the VSF curve in
response to processor workload. Conversely, if the processor workload increases, the
FSC will command the fan via the PWM duty cycle to accelerate the fan up to the limit
imposed by the VSF curve.

Figure 66. On-Die Thermal Sensor and Thermistor
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Interaction of Thermal Profile and TconTtrOL

The processor thermal specification is comprised of the two parameters, TcontroL and
Thermal Profile. The minimum requirement for thermal compliance is to ensure the
thermal solution, by design, meets the thermal profile.

If the system design incorporates acoustic speed fan control, Intel requires monitoring
the on-die thermal sensor to implement acoustic fan speed control. The value of the
on-die thermal sensor temperature determines which specification must be met.

e On-die Thermal Sensor less than TconTroL
— When the thermal solution can maintain the thermal sensor temperature to
less than T¢onTroL then the fan speed can be reduced.

¢ On-die Thermal Sensor greater than TcontroL
— The T must be maintained at or below the Thermal Profile for the measured
power dissipation.
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To use all of the features in the Intel reference heatsink design or the Boxed
processor, system integrators should verify the following functionality is present in the
board design. Refer to the Fan Specification for 4 wire PWM Controlled Fans and
Chapter 6 for complete details on the Intel enabled thermal solution.

The basics of Fan Speed Control were discussed in Chapter 7, as a review the FSC
definitions are listed in Table 13.

Table 13. FSC Definitions

Item

Definition

Tsensor

Temperature reported from the processor on-die thermal sensor.

TCONTROL

TconTroL IS the specification limit for use with the on-die thermal sensor

Tiow

The temperature above which the fan will begin to accelerate in response to the
on-die thermal sensor temperature.

Hysteresis

The number of degrees below Tcontrol the fans will remain on before slowing
down.

ThicH

The temperature at which the fan is operating at full speed (100% PWM Duty
Cycle). By specification this is TcontroL-

All Fans ON

The processor temperature at which all fans in the system are increased to
100% Duty Cycle.

Min PWM

Minimum pulse width modulation (% duty cycle) that the fans will run at when
TSENSOR is less than TLOW-

Spin-up

Amount of time fan is run at 100% duty cycle to overcome fan inertia.

PWM Freq

The operating frequency of the PWM signal.

TaveraGiNG

The time (in seconds) that elapses while the fan is gradually sped up in
response to a processor temperature spike.
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Figure 67. FSC Definition Example

T-Low T-I-!igh All Fans ON
100 —— Full Speed -
9_\91
o
5]
>
&
=
=
[
=
©
L
Min PWM
0
T-control
Processor Diode Temp (C)

Requirements Classification

e Required — an essential part of the design necessary to meet specifications.
Should be considered a pass or fail in selection of a board.

¢ Suggested — highly desired for consistency among designs. May be specified or
expanded by the system integrator.

The motherboard needs to have a fan speed control component that has the following
characteristics:

e PWM output programmable to 21-28 kHz (required). PWM output set to 25 kHz
(Suggested) as this value is the design target for the reference and for the Boxed
Processor.

e External/remote thermal sensor measurement capability (required). Must support
PECI and thermal diode via an SST device

¢ External/remote thermal sensor sampling rate = 4 times per second (required).

¢ External/remote diode measurement (SST device) is calibrated by the component
vendor to account for the diode ideality and package series resistance as listed in
the appropriate datasheet.

Note: If the SST thermal sensor is not calibrated with the diode ideality and package series

resistance, verify the board manufacturer has made provisions within the BIOS setup
or other utility to input the corrections factors.
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The BIOS, at a minimum, must program the settings in Table 14 or Table 15, as
appropriate, into the fan speed controller. The values are the minimum required to
establish a fan speed control algorithm consistent with this document, the reference
thermal solution, and Boxed processor thermal solution.

Table 14. ATX FSC Settings

Parameter Classification Processor Thermal PWM Output Notes

Sensor

Thich Required TconTroL 3

Tiow Required TcontroL — 10 °C 3

Minimum PWM Required 20%

Duty Cycle

PWM Frequency Required 21-28 kHz 1

Spin-up time Suggested 250 - ~500 ms 2,4

T AVERAGING Suggested 35 sec 6

When Tsensor < Suggested Minimum PWM%

Tiow

All Fans ON Suggested TcontroL + 3 °C

Hysteresis Suggested 2 °C

NOTE:

1. A PWM frequency of 25 kHz is the design target for the reference and for the Intel®
Boxed processor and the reference design.

2. Use the lowest time available in this range for the device selected.

3. To ensure compliance with the thermal specification, thermal profile and usage of the
TSENSOR for fan speed control these setting should not be user configurable.

4. If this function is present on the device it must be enabled
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Table 15. Balanced Technology Extended (BTX) Fan Speed Control Settings

Parameter Classification Processor System PWM Output Notes
Thermal Ambient
Sensor Sensor
THIGH Required TCQNTRQL 54 °C 3:5
Tiow Required TcontroL — 7 °C 47 °C 3,5
Minimum PWM Duty Required PWM 1 (TMA) —20%
Cycle
PWM Frequency Required 21-28 kHz 1
Spin Up Time Suggested 250 - ~ 500 ms 2,7
TAVERAGING Suggested 4.0 sec 4.0 sec 3,7
When Tsensor < Tiow Suggested Minimum Minimum
PWM% PWM%
All Fans On Suggested TecontroL + 3 °C 65 °C
Hysteresis Suggested 2 °C 4 °C
NOTE:

5. A PWM frequency of 25 kHz is the design target for the reference and for the Intel Boxed
processor and the reference design.

6. Use the lowest time available in this range for the device selected

7. Taveracing = represents the amount of delay time before responding to the temperature
change, defined in fan speed control device (sometimes called ramp range control or spike
smoothing). Select the lowest setting available close to 4.0 seconds by the fan speed
control device

8. The Fan Speed Controller, or Health Monitor Component, takes the result of the two fan
speed ramps (processor and system) and drives the TMA fan to the highest resulting PWM
duty cycle (%)

9. For BTX systems a second thermal sensor is recommended to capture chassis ambient for
more detail see Appendix F.

10. To ensure compliance with the thermal specification, thermal profile, and usage of the
Tsensor for fan speed control these setting should not be user configurable.

11. If this function is present on the device it must be enabled.

Note: The fan speed component vendors provide libraries that are used by the BIOS writer
to program the component registers with the parameters listed above. Consult the
appropriate vendor datasheet for detailed information on programming their
component.
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Appendix F Balanced Technology
Extended (BTX) System
Thermal Considerations

There are anticipated system operating conditions in which the processor power may
be low but other system component powers may be high. If the only Fan Speed
Control (FSC) circuit input for the Thermal Module Assembly (TMA) fan is from the
processor sensor then the fan speed and system airflow is likely to be too low in this
operating state. Therefore, it is recommended that a second FSC circuit input be
acquired from an ambient temperature monitor location within the system.

The location of the System Monitor thermal sensor is best determined through
extensive system-level numerical thermal modeling or prototype thermal testing. In
either case, the temperature of critical components or the air temperature near critical
components should be assessed for a range of system external temperatures,
component powers, and fan speed operating conditions. The temperature at the
selected location for the System Monitor Point should be well correlated to the
temperatures at or near critical components. For instance, it may be useful to monitor
the temperature near the PSU airflow inlet, near the graphics add-in card, or near
memory.

The final system integrator is typically responsible for ensuring compliance with the
component temperature specifications at all operating conditions and, therefore,
should be responsible for specifying the System Monitor thermal sensor location.
However, it is not always possible for a board supplier — especially a channel board
supplier — to know the system into which a board will be installed. It is, therefore,
important for BTX board suppliers to select a System Monitor thermal sensor location
that will function properly in most systems.

A BTX system should be designed such that the TMA exhaust is the primary airflow
stream that cools the rest of the system. The airflow passes through the chipset
heatsink and its temperature will rise as the memory controller chipset power
increases. Since chipset power will increase when other subsystems (e.g. memory,
graphics) are active, a System Monitor thermal sensor located in the exhaust airflow
from the chipset heatsink is a reasonable location.

It is likely that a thermal sensor that is not mounted above the board and in the
chipset exhaust airflow will reflect board temperature and not ambient temperature. It
is therefore recommended that the Thermal sensor be elevated above the board.
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The thermal sensor location and elevation are reflected in the Flotherm thermal model
airflow illustration and pictures (see Figure 68 and Figure 69).The Intel® Boxed Boards
in BTX form factor have implemented a System Monitor thermal sensor. The following
thermal sensor or its equivalent can be used for this function:

Part Number: C83274-002 Part Number: 68801-0170
BizLink USA Technology, Inc. Molex Incorporated
44911 Industrial Drive 2222 Wellington Ct.
Fremont, CA 94538 USA Lisle, IL 60532
(510)252-0786 phone 1-800-78MOLEX phone
(510)252-1178 fax 1-630-969-1352 fax
sales@bizlinktech.com amerinfo@molex.com

Figure 68. System Airflow lllustration with System Monitor Point Area lIdentified

OM16791
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Figure 69. Thermal sensor Location lllustration

Thermal
Sensor
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intel.

Appendix GMechanical Drawings

Note:

The following table lists the mechanical drawings included in this appendix. These
drawings refer to the reference thermal mechanical enabling components for the

processor.

Intel reserves the right to make changes and modifications to the design as

necessary.

Drawing Description

Page Number

ATX/pPATX Motherboard Keep-out Footprint Definition and Height 124
Restrictions for Enabling Components — Sheet 1

ATX/PATX Motherboard Keep-out Footprint Definition and Height 125
Restrictions for Enabling Components — Sheet 2

ATX/PATX Motherboard Keep-out Footprint Definition and Height 126
Restrictions for Enabling Components — Sheet 3

. Balanced Technology Extended (BTX) Thermal Module Keep Out 127
Volumetric — Sheet 1

Balanced Technology Extended (BTX) Thermal Module Keep Out 128
Volumetric — Sheet 2

. Balanced Technology Extended (BTX) Thermal Module Keep Out 129
Volumetric — Sheet 3

Balanced Technology Extended (BTX) Thermal Module Keep Out 130
Volumetric — Sheet 4

Balanced Technology Extended (BTX) Thermal Module Keep Out 131
Volumetric — Sheet 5

ATX Reference Clip — Sheet 1 132
ATX Reference Clip — Sheet 2 133
Reference Fastener — Sheet 1 134
Reference Fastener — Sheet 2 135
Reference Fastener — Sheet 3 136
Reference Fastener — Sheet 4 137
Intel® RCFH4 Reference Solution Assembly 138
Intel® RCFH4 Reference Solution Assembly — Sheet 2 139
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Intel® Currently Enabled Reference Solution Information

intel.

Appendix HIntel® Currently Enabled
Reference Solution
Information

This appendix includes supplier information for Intel enabled vendors.

The reference component designs are available for adoption by suppliers and heatsink
integrators pending completion of appropriate licensing contracts. For more
information on licensing, contact the Intel representative mentioned in

Table 16.

Table 16. Intel® Representative Contact for Licensing Information

Company Contact Phone Email

Travis Ness

Intel Corporation (253) 371-9169 travis.b.ness@intel.com

Table 17 and Table 18 lists suppliers that produce Intel enabled reference
components. The part numbers listed below identifies these reference components.
End-users are responsible for the verification of the Intel enabled component offerings
with the supplier. OEMs and System Integrators are responsible for thermal,
mechanical, and environmental validation of these solutions.

Table 17. Intel® Reference Component ATX Thermal Solution Providers

Supplier Part Part Number Contact Phone Email
Description
CCIl* Intel® RCFH-4 001830901A Harry Lin 714-739-5797 ackinc@aol.com
Reference . . . . .
(Chaun- Heatsink Monica Chih +886-2- monica_chih@ccic.
Choung 29952666 com.tw
Technology Extension 131
Corp.)
AVC* Intel® RCFH-4 Z9U703K001 David Chao +886-2- david_chao@avc.c
. Reference 22996930 om.tw
(ASIA Vital Heatsink Extension: 619
Components
Co., Ltd)
Sunon* RCFH-4 Fan PMD1209PKB1- Tom 714-255-0208 tomb@sunon.com
Assembly A.(2).S.B1379.F Blaskovich extension 206
ITW Fastex* Fastener Base: C33389 Ron Schmidt 847-299-2222 rschmidt@itwfaste
x.com
Cap: C33390

Note: These vendors and devices are listed by Intel as a convenience to Intel's general
customer base, but Intel does not make any representations or warranties whatsoever
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Table 18.

intel.

regarding quality, reliability, functionality, or compatibility of these devices. This list
and/or these devices may be subject to change without notice.

Intel® Reference Component for Balanced Technology Extended (BTX)
Thermal Solution Providers

Supplier Part Part Contact Phone Email
Description Number
Mitac Support and _ Michael Tsai 886-3-328- _
International Retention Module 9000 Ext.6545
Corp
AVC* Type Il Thermal Z7U705N001 David Chao +886-2- david_chao@avc.c
. Module Fan 22996930 om.tw
(ASIA Vital Assembly Extension: 619
Components 65W
Co., Ltd)

CcCl Type Il Thermal 00C903201A Harry Lin 714-739-5797 ackinc@aol.com
(Chaun- Module Fan Monica Chih 886-2 . hih .
Choung Assembly onica Chi + -2- monica_chih@ccic.

Technology 65W . 2995_2661631 com.tw
Corp.) xtension
NOTE:
12. Vendor part numbers for the SRM were not available at the time of release of this
document. Contact the company for part number identification.
13. The Type Il TMA designed for 65 W 775_VR_CONFIG_06 processors has been optimized
for acoustics and cost. It is not interchangeable with the 95 W Type Il reference design.
Note: These vendors/devices are listed by Intel as a convenience to Intel's general customer

base, but Intel does not make any representations or warranties whatsoever regarding
quality, reliability, functionality, or compatibility of these devices. This list and/or
these devices may be subject to change without notice.
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