Intel® E7500 Chipset MCH Intel® x4 Single Device Data Correction (x4 SDDC) Implementation and Validation

Application Note (AP-726)

August 2002

Revision 1.0
Information in this document is provided in connection with Intel products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® E7500 MCH product may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I²C is a 2-wire communications bus/protocol developed by Philips. SMBus is a subset of the I²C bus/protocol and was developed by Intel. Implementations of the I²C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Alert on LAN is a result of the Intel-IBM Advanced Manageability Alliance and a trademark of IBM.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
www.intel.com
or call 1-800-548-4725

*Third-party brands and names are the property of their respective owners.

Copyright © Intel Corporation, 2002
Contents

1. Overview .. 5
2. SDDC Algorithm .. 7
3. Intel® E7500 Chipset MCH x4 SDDC Technology Implementation .. 9
4. Testing x4 SDDC Corrections on the Intel® E7500 Chipset MCH .. 11

Table of Figures

Figure 1. Example of x4 Interleaved Approach .. 7

*Other brands and names are the property of their respective owners
Revision History

<table>
<thead>
<tr>
<th>Rev. Date</th>
<th>Doc. Ref. No.</th>
<th>Rev. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2002</td>
<td>292274-001</td>
<td>-001</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
1. **Overview**

The Intel® E7500 Chipset MCHs support Intel® x4 Single Device Data Correction (x4 SDDC). x4 SDDC provides S4EC-D4ED (Single x4 Error Correction-Double x4 Error Detection). This document covers the Intel® E7500 MCH specific implementation and validation.
This Page Intentionally Left Blank
2. Intel® Single Device Data Correction (SDDC) Algorithm

The x4 SDDC is an ECC algorithm designed to recover from a single DRAM chip failure of the data signals. x4 SDDC can be configured to correct errors in x4 chips or to correct in x8 chips. Data or data pin errors in the same chip are correctable. Double errors across two chips are detectable. The SxEC-DxED algorithm is similar to SEC-DED (x = number of bits, 4 or 8). Below is a x4 SDDC example of how bits are organized into words that will contain at most a single bit error in the case of a single device failure.

Figure 1. Example of x4 Interleaved Approach

Divide 144 bits into 4 words

Interleave the modules such that each word contains 1 bit from each x4 module

Now if a chip fails, there will be one error in each word, can use SEC-DED algorithm (ECC)
3. **Intel® E7500 Chipset MCH x4 Intel® SDDC Technology Implementation**

The Intel® E7500 Chipset MCH use the x4 SDDC implementation that allows the memory system to detect and correct 1 to 4-bit internal data and data pin failures within one DDR memory device and detect up to 8-bit internal data and data pin failures within two DDR memory devices. This implementation is designed to recover from faults that are contained within a single DDR memory device that do not impact other DDR memory devices in the memory system. This implementation cannot tolerate the failure of control signals or the failure to properly complete the JEDEC Mode Register Set (MRS) initialization of the DDR memory device.
4. Testing Intel® x4 SDDC Corrections on the Intel® E7500 Chipset MCH

Two sets of tests can safely validate the operation of the Intel® E7500 Chipset MCH x4 SDDC logic, an Open Circuit Test and a Short to Ground Test. These two tests can be executed in the following sequence using two "sacrificial" DIMMs built using 66-pin TSOP x4 DDR memory devices. Once done with these tests, the "sacrificial" DIMMs represent two worst-case scenarios (all-open and all-short-to-ground) and they can be used to validate the x4 SDDC operation in additional systems.

A. Open Circuit Test:
 1. Select any memory device on the DIMM to be used for the test
 2. Open circuit DQ0 pin 5 of the selected memory device by lifting it from the PCB pad
 3. Ensure the system boots and runs with the modified DIMM
 4. Open circuit DQ1 pin 11 of the selected memory device by lifting it from the PCB pad
 5. Ensure the system boots and runs with the modified DIMM
 6. Open circuit DQ2 pin 56 of the selected memory device by lifting it from the PCB pad
 7. Ensure the system boots and runs with the modified DIMM
 8. Open circuit DQ3 pin 62 of the selected memory device by lifting it from the PCB pad
 9. Ensure the system boots and runs with the modified DIMM

B. Short Circuit to Ground Test:
 1. Select any memory device on the DIMM to be used for the test
 2. Short circuit DQ0 pin 5 of the selected memory device by connecting it ground
 3. Ensure the system boots and runs with the modified DIMM
 4. Short circuit DQ1 pin 11 of the selected memory device by connecting it ground
 5. Ensure the system boots and runs with the modified DIMM
 6. Short circuit DQ2 pin 56 of the selected memory device by connecting it ground
 7. Ensure the system boots and runs with the modified DIMM
 8. Short circuit DQ3 pin 62 of the selected memory device by connecting it ground
 9. Ensure the system boots and runs with the modified DIMM